Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/89357
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Akrivis, G | en_US |
dc.creator | Li, B | en_US |
dc.creator | Li, D | en_US |
dc.date.accessioned | 2021-03-18T03:04:40Z | - |
dc.date.available | 2021-03-18T03:04:40Z | - |
dc.identifier.issn | 1064-8275 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/89357 | - |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.rights | © 2019, Society for Industrial and Applied Mathematics. | en_US |
dc.rights | Posted with permission of the publisher. | en_US |
dc.rights | The following publication Akrivis, G., Li, B., & Li, D. (2019). Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM Journal on Scientific Computing, 41(6), A3703-A3727 is available at https://dx.doi.org/10.1137/19M1264412 | en_US |
dc.subject | Algebraic stability | en_US |
dc.subject | Allen–Cahn equation | en_US |
dc.subject | Cahn–Hilliard equation | en_US |
dc.subject | Energy decay | en_US |
dc.subject | Extrapolation | en_US |
dc.subject | Gauss methods | en_US |
dc.subject | Radau IIA methods | en_US |
dc.subject | Runge–Kutta methods | en_US |
dc.subject | Scalar auxiliary variable | en_US |
dc.title | Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | A3703 | en_US |
dc.identifier.epage | A3727 | en_US |
dc.identifier.volume | 41 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.doi | 10.1137/19M1264412 | en_US |
dcterms.abstract | We construct and analyze a class of extrapolated and linearized Runge–Kutta (RK) methods, which can be of arbitrarily high order, for the time discretization of the Allen–Cahn and Cahn–Hilliard phase field equations, based on the scalar auxiliary variable (SAV) formulation. We prove that the proposed q-stage RK–SAV methods have qth-order convergence in time and satisfy a discrete version of the energy decay property. Numerical examples are provided to illustrate the discrete energy decay property and accuracy of the proposed methods. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | SIAM journal on scientific computing, 2019, v. 41, no. 6, p. A3703-A3727 | en_US |
dcterms.isPartOf | SIAM journal on scientific computing | en_US |
dcterms.issued | 2019 | - |
dc.identifier.scopus | 2-s2.0-85076686758 | - |
dc.identifier.eissn | 1095-7197 | en_US |
dc.description.validate | 202103 bcvc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | a0602-n05 | - |
dc.identifier.SubFormID | 550 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | 15300519 | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Publisher permission | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
19m1264412.pdf | 512.66 kB | Adobe PDF | View/Open |
Page views
135
Last Week
1
1
Last month
Citations as of Apr 13, 2025
Downloads
172
Citations as of Apr 13, 2025
SCOPUSTM
Citations
129
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
130
Citations as of May 8, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.