Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/89354
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Deng, W | en_US |
dc.creator | Li, B | en_US |
dc.creator | Qian, Z | en_US |
dc.creator | Wang, H | en_US |
dc.date.accessioned | 2021-03-18T03:04:38Z | - |
dc.date.available | 2021-03-18T03:04:38Z | - |
dc.identifier.issn | 0036-1429 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/89354 | - |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.rights | © 2018, Society for Industrial and Applied Mathematics. | en_US |
dc.rights | Posted with permission of the publisher. | en_US |
dc.rights | The following publication Deng, W., Li, B., Qian, Z., & Wang, H. (2018). Time discretization of a tempered fractional Feynman--Kac equation with measure data. SIAM Journal on Numerical Analysis, 56(6), 3249-3275 is available at https://dx.doi.org/10.1137/17M1118245 | en_US |
dc.subject | Convergence | en_US |
dc.subject | Convolution quadrature | en_US |
dc.subject | Feynmann-Kac equation | en_US |
dc.subject | Integral representation | en_US |
dc.subject | Tempered fractional operators | en_US |
dc.title | Time discretization of a tempered fractional Feynman-Kac equation with measure data | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 3249 | en_US |
dc.identifier.epage | 3275 | en_US |
dc.identifier.volume | 56 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.doi | 10.1137/17M1118245 | en_US |
dcterms.abstract | A feasible approach to study tempered anomalous dynamics is to analyze its functional distribution, which is governed by the tempered fractional Feynman-Kac equation. The main challenges of numerically solving the equation come from the time-space coupled nonlocal operators and the complex parameters involved. In this work, we introduce an efficient time-stepping method to discretize the tempered fractional Feynman-Kac equation by using the Laplace transform representation of convolution quadrature. Rigorous error estimate for the discrete solutions is carried out in the measure norm. Numerical experiments are provided to support the theoretical results. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2018, v. 56, no. 6, p. 3249-3275 | en_US |
dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
dcterms.issued | 2018 | - |
dc.identifier.scopus | 2-s2.0-85060027928 | - |
dc.identifier.eissn | 1095-7170 | en_US |
dc.description.validate | 202103 bcvc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | a0602-n01 | - |
dc.identifier.SubFormID | 546 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | 15300817 | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Publisher permission | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
17m1118245.pdf | 431.61 kB | Adobe PDF | View/Open |
Page views
82
Last Week
0
0
Last month
Citations as of Apr 13, 2025
Downloads
63
Citations as of Apr 13, 2025
SCOPUSTM
Citations
25
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
22
Citations as of May 8, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.