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TIME DISCRETIZATION OF A TEMPERED FRACTIONAL
FEYNMAN–KAC EQUATION WITH MEASURE DATA∗
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Abstract. A feasible approach to study tempered anomalous dynamics is to analyze its func-
tional distribution, which is governed by the tempered fractional Feynman–Kac equation. The main
challenges of numerically solving the equation come from the time-space coupled nonlocal operators
and the complex parameters involved. In this work, we introduce an efficient time-stepping method
to discretize the tempered fractional Feynman–Kac equation by using the Laplace transform repre-
sentation of convolution quadrature. Rigorous error estimate for the discrete solutions is carried out
in the measure norm. Numerical experiments are provided to support the theoretical results.
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1. Introduction. The phenomenon of diffusion occurs ubiquitously in nature.
While Fick first set up the diffusion equation, it was Einstein who derived the diffusion
equation from first principles [7]. Pearson modeled the diffusion process via random
walk under the same assumptions as Einstein: (i) the existence of a mean free path
and (ii) the existence of a mean waiting time of particles between collisions [31]. In
this case, a particle’s motion of independent jumps has no spatial correlation, and
the variance of a particle excursion distance is finite. Consequently, the central limit
theorem implies that the probability density function p(x, t) of finding a particle at
position x satisfies a normal distribution at any time t, and so, a diffusion equation.

In the last few decades more and more diffusion processes were found to be non-
Fickian. For example, for a diffusive process in a heterogeneous medium, the particles
may be absorbed to a low permeability zone which has a longer waiting time and
leads to a subdiffusive process. The macroscopic dynamic equations for describing
the distribution of the particles undergoing an anomalous subdiffusive process have
been derived in [27]. For instance, the following time-fractional diffusion equation

∂tu−∆∂1−α
t u = 0, α ∈ (0, 1),(1.1)
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3250 WEIHUA DENG, BUYANG LI, ZHI QIAN, AND HONG WANG

and its alternative formulation

∂αt u−∆u = 0, α ∈ (0, 1),(1.2)

have been used to model subdiffusive processes [3, 14, 25, 27], where ∂1−α
t u in (1.1)

denotes the Riemann–Liouville fractional derivative of order α, defined by

(1.3) ∂1−α
t u(t) :=

1

Γ(α)

d

dt

∫ t

0

(t− s)α−1u(s) ds

with Γ(ξ) :=
∫∞

0
sξ−1e−sds denoting the Gamma function, and ∂αt u in (1.2) denotes

the Caputo fractional derivative of order α, defined by

(1.4) ∂αt u(t) :=
1

Γ(1− α)

∫ t

0

(t− s)−α∂su(s) ds.

The Riemann–Liouville and Caputo fractional derivatives agree when u(0) = 0.
The functionals of the trajectories of tempered anomalous diffusions, a special

kind of statistical quantity, appear in a wide range of problems across different fields
ranging from probability theory, finance, data analysis, disordered systems, and com-
puter science. Since the statistical quantities are random variables, it is interesting to
know their probability distribution functions. The probability distribution functions
can be obtained by solving the tempered fractional Feymann–Kac equation

Dt(x)G(x, t)− (λα + ∆)Dt(x)1−αG(x, t) = −G0(x)(λαDt(x)1−α − λ)eipU(x)t,(1.5)

which was derived in [38] (we refer to [37] for the case λ = 0), where Dt(x) :=
λ − ipU(x) + ∂

∂t is the substantial derivative, and G0(x) is a prescribed initial da-
tum. The solution G(x, t) = G(x, t; p), depending on the parameter p, represents
the characteristic function of the joint probability density function ρ(x, t;A) of find-

ing a particle at position x and time t with functional value
∫ t

0
U(x(τ))dτ = A,

i.e., G(x, t; p) =
∫
R e
−ipAρ(x, t;A)dA. The Riemann–Liouville fractional substantial

derivative Dt(x)1−α with α ∈ (0, 1), is defined by

Dt(x)1−αG(x, t) =

(
λ− ipU(x) +

∂

∂t

)1−α

G(x, t)

=
1

Γ(α)

(
λ− ipU(x) +

∂

∂t

)∫ t

0

e−(t−s)(λ−ipU(x))

(t− s)1−α G(x, s)ds.(1.6)

The tempering exponent λ controls the rate of the transition from an anomalous
diffusion to a normal diffusion. The function U(x) is usually determined by a specific
application [37].

Due to their wide applications, fractional evolution partial differential equations
(FPDEs) have generated much interest in developing stable and accurate numerical
methods as well as rigorous mathematical and numerical analysis. Various efficient
time discretization methods have been proposed for solving these problems, including
finite difference methods [6, 8, 12, 17, 29], convolution quadrature [5, 13, 21, 33],
and discontinuous Galerkin stepping schemes [23, 24, 28]. The main difficulty of
solving such problems is to achieve the desired accuracy for solutions which are weakly
singular at t = 0. To overcome this difficluty, the error estimates in [5, 13, 21, 24, 29,
33] were carried out based only on the regularity of the initial data and source term
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without extra assumptions on the regularity of the solutions. These articles mainly
focus on the models (1.1) and (1.2); see [16] on a fractional Fokker–Planck equation.

The tempered fractional Feynman–Kac equation (1.5) presents new mathematical
difficulties that were not encountered in the FPDEs mentioned above. In particular,
both the complex-valued function ipU(x) involved in the fractional substantial deriva-
tive and the noncommutativity of the time and space partial differential operators,
i.e., ∆Dt(x)1−α 6= Dt(x)1−α∆, lead to difficulties in the analysis of the resolvent
operator (on the Laplace transform side)(

(λ− ipU(x) + z)− (λα + ∆)(λ− ipU(x) + z)1−α)−1
,(1.7)

whose boundedness is crucial for the analysis of time discretization of (1.5). As a
result, the existing numerical analysis of (1.1) and (1.2), as well as the analysis of
the fractional Fokker–Planck equation [16], cannot be directly carried over to (1.5).
To our best knowledge, no rigorous numerical analysis of the tempered fractional
Feynman–Kac equation (1.5) is available in the literature despite its wide potential
applications in describing the slow transition from anomalous diffusion to normal
diffusion [4, 26, 36], solving occupation time in the half-space [22], first passage time
[32], maximal displacement [35], and fluctuations of the occupation fraction [9] for
the space and time-tempered anomalous diffusion.

The objective of this paper is to introduce an efficient time discretization method
for solving (1.5), with rigorous analysis of the stability and convergence of the numer-
ical solutions. We consider (1.5) in a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 1, with
the initial condition

(1.8) G(x, 0) = G0(x), x ∈ Ω,

and the Dirichlet boundary condition

(1.9) G(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

which means that the particles are absorbed when they reach the boundary. Consis-
tent with the physical meaning of the solution, we assume that the initial datum G0

is an arbitrary finite signed measure on Ω. Thus G0 may not be a pointwise defined
function. For example, G0 can be a δ-function placed at the origin, which models the
situation that the particles are initially concentrated at the origin. Recall that the
space of finite signed measures on Ω, denoted by M(Ω), is the dual space of C(Ω)
(the space of continuous functions on Ω); see [15, Appendix A]. We assume that α,
λ, and p are fixed constants and U a given function defined on Ω with

α ∈ (0, 1), λ ≥ 0, p ∈ R, U ∈ C(Ω), and G0 ∈M(Ω).(1.10)

Under these assumptions, we prove the following error estimate for the numerical
solution GN (x) at tN = T :

‖G(·, T )−GN‖M(Ω) ≤ cT ‖G0‖M(Ω)τ,(1.11)

where τ = T/N denotes the step size of time discretization, and ‖ · ‖M(Ω) simply

denotes the dual norm of C(Ω), i.e.,

‖φ‖M(Ω) := sup
f∈C(Ω)
‖f‖C(Ω)≤1

|(f, φ)|.(1.12)
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3252 WEIHUA DENG, BUYANG LI, ZHI QIAN, AND HONG WANG

The error estimate above depends only on the measure of the initial data, without
extra regularity assumption on the solution of the PDE. The derivation and analy-
sis of the numerical scheme are based on Lubich’s Laplace transform representation
of convolution quadrature [18, 20], where the main difficulty is the analysis of the
resolvent operator (1.7) and its discrete approximation.

The rest of this paper is organized as follows. In section 2, we illustrate our
methodology on the basic fractional diffusion equation (1.1). In section 3, we extend
the analysis in section 2 to the tempered fractional Feynman–Kac equation (1.5), and
point out the key differences. The technical proofs for the analyticity and bound-
edness of the continuous and discrete resolvent operators of the tempered fractional
Feynman–Kac equation are presented in section 4. In the last section, we present
numerical examples to support the theoretical results proved in this paper.

2. Illustration of our methodology on the model (1.1). For the readers’
convenience, we first illustrate our method of analysis on the basic fractional diffusion
equation (1.1) under the boundary and initial conditions

u = 0 on ∂Ω× R+,
u(·, 0) = u0 in Ω,

(2.1)

by using the Laplace transform and convolution quadrature techniques for the nu-
merical analysis of (1.1); see [5, 21]. We then extend the analysis to the tempered
fractional Feynman–Kac equation (1.5) in the next section by pointing out the key
differences.

2.1. Derivation of the time-stepping scheme. The idea is to consider the
Laplace transform (in time) of (1.1), namely,

(z − z1−α∆)û(x, z) = u0(x),(2.2)

where û(x, z) =
∫∞

0
e−tzu(x, t)dt denotes the Laplace transform of u(x, t) with respect

to t. The last equation can be rewritten as

z1−α(zα −∆)û(x, z) = u0(x).(2.3)

Let tn = nτ , n = 0, 1, . . . , N , be a uniform partition of the time interval [0, T ],
with step size τ = T/N , and let un(x) denote the approximation of u(x, tn). By
denoting ζ = e−τz, we approximate z, û(·, z), and u0 in (2.3) by 1−ζ

τ , τ
∑∞
n=1 unζ

n,
and ζu0, respectively. This gives us the following equation:(

1− ζ
τ

)1−α((
1− ζ
τ

)α
−∆

) ∞∑
n=1

unζ
n =

ζ

τ
u0.(2.4)

If we let b
(α)
j , j = 0, 1, 2, . . . , denote the coefficients in the power series expansion

(1− ζ)α =

∞∑
j=0

b
(α)
j ζj(2.5)

and approximate the Riemann–Liouville fractional derivative ∂αt by (the backward
Euler convolution quadrature)

∂τ
α
un =

1

τα

n∑
j=1

b
(α)
n−juj ,(2.6)
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then straightforward calculation of the coefficients of the following product series
yields (

1− ζ
τ

)α ∞∑
n=1

unζ
n =

1

τα

 ∞∑
j=0

b
(α)
j ζj

 ∞∑
n=1

unζ
n =

∞∑
n=1

(∂τ
α
un)ζn.(2.7)

Consequently, by expanding (2.4) into a power series of ζ and considering the co-
efficients of the power series on both sides, we obtain the following time-stepping
scheme:

∂τ
1−α

(∂τ
α −∆)un =

{
τ−1u0 if n = 1,

0 if n ≥ 2.
(2.8)

By using the product rule

∂τ
1−α

∂τ
α
un =

{
τ−1u1 if n = 1,

τ−1(un − un−1) if n ≥ 2,
(2.9)

the last equation reduces to

τ−1u1 − ∂τ
1−α

∆u1 = τ−1u0 if n = 1,

un − un−1

τ
− ∂τ

1−α
∆un = 0 if n ≥ 2,

(2.10)

which coincidently agrees with the following backward Euler convolution quadrature
method considered in [21]:

un − un−1

τ
− ∂τ

1−α
∆un = 0.(2.11)

This coincidence is due to our special construction of (2.4) in approximating (2.3).
In section 3, we apply the methodology described above to derive an efficient time-
stepping scheme for the tempered fractional Feynman–Kac equation (1.5). In contrast
with (1.1), due to the complex structure of this physical model, the time-stepping
scheme derived for (1.5) is no longer equivalent to the standard backward Euler con-
volution quadrature discretization of (1.5).

Remark 2.1. The scheme (2.11) can be used for practical computation, while
(2.4) can be used for estimating the error of the numerical solutions. Since the in-
verse Laplace transforms of z1−αû and zαû do not involve any initial data of u,
we choose to approximate (2.3) rather than approximating (2.2) directly. Starting
with approximating (2.3) makes it easier to preserve the structure of the PDE on the
Laplace transform side, thus more convenient for estimating the error of the numerical
solutions (especially for the complex model (1.5) to be considered in this paper).

2.2. Error estimate. In this subsection, we illustrate the idea of the error
estimate in [21]. We present a complete proof for comparison with the analysis of
(1.5) in the next section. To this end, we note that for θ ∈ (π2 , π) sufficiently close to
π
2 the following estimates hold:

c1|z| ≤
∣∣∣∣1− e−τzτ

∣∣∣∣ ≤ c2|z| ∀ z ∈ Σθ, |Im(z)| ≤ π

τ
(by Taylor expansion),

(2.12)D
ow

nl
oa

de
d 

03
/1

2/
21

 to
 1

58
.1

32
.1

61
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3254 WEIHUA DENG, BUYANG LI, ZHI QIAN, AND HONG WANG

∣∣∣∣1− e−τzτ
− z
∣∣∣∣ ≤ cτ |z|2 ∀ z ∈ Σθ, |Im(z)| ≤ π

τ
(by Taylor expansion),

(2.13)

∣∣∣∣(1− e−τz

τ

)α
− zα

∣∣∣∣ ≤ cτ |z|1+α ∀ z ∈ Σθ, |Im(z)| ≤ π

τ
(by Taylor expansion),

(2.14)

(
1− e−τz

τ

)α
∈ Σθ ∀ z ∈ Σθ, |Im(z)| ≤ π

τ
(by [10, eqs. (3.13)–(3.14)]),

(2.15)

where

Σθ = {z ∈ C : |arg(z)| < θ}.(2.16)

Since ∆ generates a bounded analytic semigroup of angle π
2 on L2(Ω), the properties

(2.15) and (2.12) imply the following resolvent estimates (see [1, Theorem 3.7.11]):

‖(zα −∆)−1‖ ≤ c|z|−α ∀ z ∈ Σθ, |Im(z)| ≤ π

τ
,∥∥∥∥((1− e−τz

τ

)α
−∆

)−1∥∥∥∥ ≤ c∣∣∣∣(1− e−τz

τ

)∣∣∣∣−α ≤ c|z|−α ∀ z ∈ Σθ, |Im(z)| ≤ π

τ
,

(2.17)

where ‖ · ‖ denotes the operator norm on L2(Ω).
We rewrite (2.4) into the following form:

∞∑
n=1

unζ
n =

(
1− ζ
τ

)α−1((
1− ζ
τ

)α
−∆

)−1
ζ

τ
u0.(2.18)

For κ > 0 and %κ = e−(κ+1)τ ∈ (0, 1), the Cauchy integral formula implies that

un =
1

2πi

∫
|ζ|=%κ

ζ−n−1
∞∑
m=1

umζ
mdζ

=
1

2πi

∫
|ζ|=%κ

ζ−n
(

1− ζ
τ

)α−1((
1− ζ
τ

)α
−∆

)−1
1

τ
u0dζ

=
1

2πi

∫
Γτ
etnze−τz

(
1− e−τz

τ

)α−1((
1− e−τz

τ

)α
−∆

)−1

u0 dz,

(2.19)

where the last equality is due to the change of variable ζ = e−zτ with the contour

Γτ = {z = κ+ 1 + iy : y ∈ R and |y| ≤ π/τ} .(2.20)

The angle condition (2.15) and [1, Theorem 3.7.11] imply that the integrand of (2.19)
is analytic in the region

Στθ,κ =
{
z ∈ C : |arg(z)| ≤ θ, |z| ≥ κ, |Im(z)| ≤ π

τ
, Re(z) ≤ κ+ 1

}
,(2.21)

enclosed by the four paths Γτ , Γτθ,κ, and R± iπ/τ , where

(2.22) Γτθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪
{
z ∈ C : z = re±iθ, κ ≤ r ≤ π

τ sin(θ)

}
.
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Then Cauchy’s theorem allows us to deform the integration path from Γτ to Γτθ,κ
in the integral (2.19) (the integrals on R ± iπ/τ cancel each other). This yields the
desired representation of the numerical solution

un =
1

2πi

∫
Γτθ,κ

etnze−τz
(

1− e−τz

τ

)α−1((
1− e−τz

τ

)α
−∆

)−1

u0 dz.(2.23)

On the other hand, by using (2.3) and inverse Laplace transform, we have the
following representation of the PDE’s solution:

u(·, tn) =
1

2πi

∫
Γθ,κ

etnzzα−1(zα −∆)−1u0 dz,(2.24)

where

(2.25) Γθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪
{
z ∈ C : z = re±iθ, κ ≤ r <∞

}
,

which differs from Γτθ,κ by

(2.26) Γθ,κ\Γτθ,κ =

{
z ∈ C : z = re±iθ,

π

τ sin(θ)
≤ r <∞

}
.

It remains to compare (2.23) and (2.24) in order to make an estimate of the error
‖un − u(·, tn)‖L2(Ω). To this end, we use (2.12)–(2.14) and (2.17) to estimate the
difference between the integrands of (2.23) and (2.24):∥∥∥∥e−τz(1− e−τz

τ

)α−1((
1− e−τz

τ

)α
−∆

)−1

− zα−1(zα −∆)−1

∥∥∥∥
= |e−τz|

∥∥∥∥(1− e−τz

τ

)α−1((
1− e−τz

τ

)α
−∆

)−1

− eτzzα−1(zα −∆)−1

∥∥∥∥
≤ |e−τz|

∥∥∥∥((1− e−τz

τ

)α
− zα

)(
1− e−τz

τ

)−1((
1− e−τz

τ

)α
−∆

)−1∥∥∥∥
+ |e−τz|

∥∥∥∥zα((1− e−τz

τ

)−1

− z−1

)((
1− e−τz

τ

)α
−∆

)−1∥∥∥∥
+ |e−τz|

∥∥∥∥zα−1

[((
1− e−τz

τ

)α
−∆

)−1

−
(
zα −∆

)−1
]∥∥∥∥

+ |e−τz|
∥∥(1− eτz)zα−1

(
zα −∆

)−1∥∥
=: |e−τz|(I1 + I2 + I3 + I4),

(2.27)

where |e−τz| ≤ c for z ∈ Γτθ,κ due to τ |z| ≤ c, and I1 + I2 ≤ cτ for z ∈ Γτθ,κ, which
is a simple consequence of (2.12)–(2.14) and (2.17). The two terms I3 and I4 are
estimated below:

I3 = |z|α−1

∥∥∥∥((1− e−τz

τ

)α
−∆

)−1(
zα −∆

)−1
(
zα −

(
1− e−τz

τ

)α)∥∥∥∥ ≤ cτ
∀ z ∈ Γτθ,κ,

I4 =
∥∥(1− eτz)zα−1

(
zα −∆

)−1∥∥ ≤ cτ,
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3256 WEIHUA DENG, BUYANG LI, ZHI QIAN, AND HONG WANG

where the last two inequalities are also simple consequences of (2.12)–(2.14) and
(2.17). Substituting the estimates of I1, I2, I3, and I4 into (2.27), we obtain

∥∥∥∥e−τz(1− e−τz

τ

)α−1((
1− e−τz

τ

)α
−∆

)−1

− zα−1(zα −∆)−1

∥∥∥∥ ≤ cτ ∀ z ∈ Γτθ,κ.

(2.28)

Then the difference between (2.23) and (2.24) yields

‖un(x)− u(·, tn)‖L2(Ω)

≤ c
∫

Γτθ,κ

eRe(z)tn

∥∥∥∥e−τz(1−e−τz

τ

)α−1((
1−e−τz

τ

)α
−∆

)−1

−zα−1(zα−∆)−1

∥∥∥∥‖u0‖L2(Ω)|dz|

+ c

∫
Γθ,κ\Γτθ,κ

eRe(z)tn
∥∥zα−1(zα−∆)−1

∥∥‖u0‖L2(Ω)|dz|

≤ c
∫

Γτθ,κ

eRe(z)tnτ |dz|+ c

∫
Γθ,κ\Γτθ,κ

eRe(z)tn |z|−1|dz| (use (2.28) and (2.17) here)

≤
(
c

∫ π
τ sin(θ)

κ

er cos(θ)tnτdr + c

∫ θ

−θ
eκ cos(ϕ)tnτκdϕ

)
+ c

∫ ∞
π

τ sin(θ)

er cos(θ)tnr−1dr,

(2.29)

where we have used (2.22) and (2.26) in the last inequality. By using the change of
variable s = rtn and noting that cos(θ) < 0 for θ ∈ (π2 , π), we have∫ π

τ sin(θ)

κ

er cos(θ)tnτdr = t−1
n τ

∫ πtn
τ sin(θ)

κtn

e−s| cos(θ)|ds ≤ ct−1
n τ(2.30)

and ∫ ∞
π

τ sin(θ)

er cos(θ)tnr−1dr ≤
(

π

τ sin(θ)

)−1 ∫ ∞
π

τ sin(θ)

e−r| cos(θ)|tndr

= t−1
n

(
π

τ sin(θ)

)−1 ∫ ∞
πtn

τ sin(θ)

e−s| cos(θ)|ds ≤ ct−1
n τ.(2.31)

Substituting the last two estimates into (2.29) yields

‖un − u(·, tn)‖L2(Ω) ≤
(
ct−1
n τ + cκeκtnτ

)
+ ct−1

n τ ≤ c(κeκT + t−1
n )τ.(2.32)

3. Application of the methodology to (1.5). In this section, we apply the
method of analysis described in the last section to the tempered fractional Feynman–
Kac equation (1.5), and point out the main differences. The technical proofs are
deferred to section 4.

3.1. Inverse Laplace transform representation of the solution. Similarly
to section 2.1, we consider the Laplace transform of (1.5), namely,

(z + λ− ipU(x))Ĝ(x, z)−G0(x)−
(
λα + ∆

)
(z + λ− ipU(x))1−αĜ(x, z)

= −G0(x)(λα(z + λ− ipU(x))1−α − λ)(z − ipU(x))−1,
(3.1)
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where Ĝ(x, z) =
∫∞

0
G(x, t)e−tzdt denotes the Laplace transform of G(x, t) in time.

By introducing the notations

η(x, z) = (z + λ− ipU(x))α − λα, β(x, z) = z + λ− ipU(x)(3.2)

with the abbreviations

η(z) = η(·, z), β(z) = β(·, z),(3.3)

we reformulate (3.1) in the following way, collecting all the terms involving G0(x) to
the right-hand side of the equation:(

η(z)−∆
)
β(z)1−αĜ(x, z) = G0(x)β(z)1−α η(z)

z − ipU(x)
.(3.4)

From (3.4) we derive

Ĝ(x, z) = β(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)
.(3.5)

Due to the noncommutativity between (η(z) − ∆)−1 and β(z)1−α, the two terms
β(z)α−1 and β(z)1−α in the expression above cannot be canceled. By using the
inverse Laplace transform, we have

G(x, t) =
1

2πi

∫
κ+1+iR

etzβ(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)
dz.(3.6)

From Proposition 3.1 below we see that the integrand in (3.6) is an M(Ω)-valued
analytic function for z ∈ Στθ,κ (see (2.21) for the definition of Στθ,κ). Consequently,
similarly to the last section (cf. (2.19)–(2.23)), we can deform the integration path
from κ+ 1 + iR to Γθ,κ (defined in (2.25)):

G(x, t) =
1

2πi

∫
Γθ,κ

etzβ(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)
dz.(3.7)

This integral representation will be used for estimating the error of the numerical
solutions.

Proposition 3.1. By choosing θ ∈ (π2 , π) sufficiently close to π
2 and κ > 0 suf-

ficiently large (depending on the value λ+ |p|‖U‖C(Ω)), we have the following results:

(1) For all x ∈ Ω and z ∈ Σθ,κ, we have β(z) ∈ Σ 3π
4 ,

κ
2

and η(z) ∈ Σ 3π
4 ,

κα

2
, and

c|z| ≤ |β(z)| ≤ c|z|, c|z|α ≤ |η(z)| ≤ c|z|α,(3.8)

where

Σθ,κ = {z ∈ C : |z| ≥ κ, |arg(z)| ≤ θ}.(3.9)

Consequently, β(z)1−α, β(z)α−1, and η(z) are all C(Ω)-valued analytic func-
tion of z ∈ Σθ,κ.

(2) The operator
(
η(z) − ∆

)−1
: M(Ω) → M(Ω) is well-defined, bounded, and

analytic with respect to z ∈ Σθ,κ, satisfying∥∥∆
(
η(z)−∆

)−1∥∥
M(Ω)→M(Ω)

≤ c ∀ z ∈ Σθ,κ,(3.10) ∥∥(η(z)−∆
)−1∥∥

M(Ω)→M(Ω)
≤ c|z|−α ∀ z ∈ Σθ,κ.(3.11)
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3258 WEIHUA DENG, BUYANG LI, ZHI QIAN, AND HONG WANG

(3) The contour integral (3.7) defines a solution of (1.5) under the initial and
boundary conditions (1.8), (1.9), with the regularity G(·, t) ∈M(Ω), DtG(·, t)
∈M(Ω), D1−α

t G(·, t) ∈M(Ω), and ∆D1−α
t G(·, t) ∈M(Ω) for t ∈ (0, T ]. The

solution given by (3.7) is called the mild solution of (1.5), with each term of
(1.5) well-defined as a measure.

The proof of Proposition 3.1 is presented in section 4.1, which is the main differ-
ence between this subsection and the derivation of (2.24) in section 2. In the following
two subsections, we present a numerical method for approximating the mild solution
of (1.5) given by (3.6).

3.2. Discretization of the fractional substantial derivative. By straight-
forward calculation, we see that the fractional substantial derivative Dt(x)1−α defined
in (1.6) has the following decomposition:

Dt(x)1−αG(x, t)

=
1

Γ(α)

(
λ− ipU(x) +

∂

∂t

)(
e−t(λ−ipU(x))

∫ t

0

1

(t− s)1−α e
s(λ−ipU(x))G(x, s)ds

)
= e−t(λ−ipU(x)) 1

Γ(α)

∂

∂t

∫ t

0

1

(t− s)1−α e
s(λ−ipU(x))G(x, s)ds

= e−t(λ−ipU(x))∂1−α
t

(
et(λ−ipU(x))G(x, t)

)
,

(3.12)

where ∂1−α
t is the standard Riemann–Liouville fractional derivative defined in (1.3). In

view of (3.12), we approximate the fractional substantial derivative Dt(x)1−αG(x, tn)
by

Dτ (x)1−αGn(x) := e−tn(λ−ipU(x))∂τ
1−α(

etn(λ−ipU(x))Gn(x)
)
,(3.13)

which relates the discretized fractional substantial derivative Dτ (x)1−α to the stan-
dard backward Euler convolution quadrature defined in (2.6).

Consistent with the notation Dτ (x)1−α introduced above, we denote by Dτ (x)
the time discretization of the differential operator Dt(x), defined by

Dτ (x)Gn(x) = e−tn(λ−ipU(x))∂τ
(
etn(λ−ipU(x))Gn(x)

)
(3.14)

= e−tn(λ−ipU(x)) e
tn(λ−ipU(x))Gn(x)− etn−1(λ−ipU(x))Gn−1(x)

τ
.

With the notation (3.13), we have

∞∑
n=1

Dτ
1−α

(x)Gn(x)ζn

=

∞∑
n=1

∂τ
1−α(

etn(λ−ipU(x))Gn(x)
)
(e−τ(λ−ipU(x))ζ)n

=

(
1− e−τ(λ−ipU(x))ζ

τ

)1−α ∞∑
n=1

(
etn(λ−ipU(x))Gn(x)

)
(ζe−τ(λ−ipU(x)))n

=

(
1− e−τ(λ−ipU(x))ζ

τ

)1−α ∞∑
n=1

Gn(x)ζn.(3.15)

The identity (3.15) motivates our approximation of (3.4) in the next subsection.
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3.3. Derivation of the time-stepping scheme. Let ητ (x, z) and βτ (x, z) be
approximations of η(x, z) and β(x, z), respectively, defined by

ητ (x, z) =

(
1− e−τ(z+λ−ipU(x))

τ

)α
− λα, βτ (x, z) =

1− e−τ(z+λ−ipU(x))

τ
(3.16)

with the abbreviations

ητ (z) = ητ (·, z), βτ (z) = βτ (·, z),(3.17)

and choose τe−τ(z−ipU(x))

1−e−τ(z−ipU(x)) to be the approximation of 1
z−ipU(x) in (3.4). Analogous to

the last section, we start with approximating the problem on the Laplace transform
side. In other words, we wish to construct the numerical solutions Gn(x), n = 1, 2, . . . ,
satisfying the equation

(
ητ (z)−∆

)
βτ (z)1−ατ

∞∑
n=1

Gn(x)e−tnz

= G0(x)βτ (z)1−αητ (z)
τe−τ(z−ipU(x))

1− e−τ(z−ipU(x))
,

(3.18)

where τ
∑∞
n=1Gn(x)e−tnz approximates the Laplace transform Ĝ(x, z) in (3.4). To

this end, it suffices to construct Gn(x), n = 1, 2, . . . , satisfying the following equation
(replacing e−τz by the notation ζ in the last equation):

((
1− e−τ(λ−ipU(x))ζ

τ

)α
− λα −∆

)(
1− e−τ(λ−ipU(x))ζ

τ

)1−α ∞∑
n=1

Gn(x)ζn

(3.19)

= G0(x)

(
1− e−τ(λ−ipU(x))ζ

τ

)1−α((
1− e−τ(λ−ipU(x))ζ

τ

)α
− λα

)
eiτpU(x)ζ

1− eiτpU(x)ζ
.

In view of (3.15), the last equation is equivalent to

∞∑
n=1

((
Dτ (x)α − λα −∆

)
Dτ (x)1−αGn(x)

)
ζn

=

∞∑
n=1

(
G0(x)Dτ (x)1−α(Dτ (x)α − λα

)
eipU(x)tn

)
ζn.(3.20)

Consequently, we define Gn(x), n = 1, 2, . . . , to be the solutions of

(3.21)
(
Dτ (x)α − λα −∆

)
Dτ (x)1−αGn(x)

= G0(x)Dτ (x)1−α(Dτ (x)α − λα
)
eipU(x)tn .

Similar to the product rule (2.9), it is straightforward to verify the following identity:

Dτ (x)αDτ (x)1−αGn(x) =


1

τ
G1(x) if n = 1,

Dτ (x)Gn(x) if 2 ≤ n ≤ N.
(3.22)
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3260 WEIHUA DENG, BUYANG LI, ZHI QIAN, AND HONG WANG

By using (3.22), the numerical scheme (3.21) can be equivalently written as(
Dτ (x)− (λα + ∆)Dτ (x)1−α)Gn(x)

= G0(x)
(
Dτ (x)− λαDτ (x)1−α)eipU(x)tn

= −G0(x)

(
λαDτ (x)1−α − 1− e−λτ

τ

)
eipU(x)tn , n = 1, 2, . . . , N.(3.23)

The scheme (3.23) is equivalent to applying the implicit Euler scheme to the equation

(3.24) Dt(x)G(x, t)− (λα + ∆)Dt(x)1−αG(x, t)

= −G0(x)

(
λαDt(x)1−α − 1− e−λτ

τ

)
eipU(x)t,

which replaces a constant λ in the original equation (1.5) by 1−e−λτ
τ .

Remark 3.1. The evaluation of the discrete convolutions in (3.23) is computation-
ally expensive whereas some fast algorithms can be applied. The fast algorithm devel-
oped in [11] can be used to evaluate the discrete convolutions exactly with O(log2N)
operations and O(N) storage (up to the Nth time step). Instead of evaluating the dis-
crete convolutions exactly, one can also approximate the discrete convolutions with
error ε (see, for example, [2, 34]), with complexity O(N(logN) log 1

ε ) and storage
O((logN) log 1

ε ).

In the next subsection, we estimate the error of the numerical solution given by
(3.23) by using the identity (3.18).

3.4. Error estimate for the time-stepping scheme (3.23). Applying
Cauchy’s integral formula yields, for %κ = e−τ(κ+1) ∈ (0, 1),
(3.25)

Gn(x) =
1

2πi

∫
|ζ|=%κ

ζ−n−1
∞∑
m=1

Gm(x)ζm dζ =
1

2πi

∫
Γτ
eztn

( ∞∑
n=1

Gn(x)e−tnz

)
τ dz,

where the second equality is due to the change of variable ζ = e−zτ with the contour
Γτ defined in (2.20). From (3.18) we see that
(3.26)
∞∑
n=1

Gn(x)e−tnz = βτ (z)α−1
(
ητ (z)−∆

)−1
(
G0(x)βτ (z)1−α ητ (z)e−τ(z−ipU(x))

1− e−τ(z−ipU(x))

)
,

which together with (3.25) gives

Gn(x) =
1

2πi

∫
Γτ
eztnβτ (z)α−1

(
ητ (z)−∆

)−1
(
G0(x)βτ (z)1−α ητ (z)τe−τ(z−ipU(x))

1− e−τ(z−ipU(x))

)
dz

=
1

2πi

∫
Γτθ,κ

eztnβτ (z)α−1
(
ητ (z)−∆

)−1
(
G0(x)βτ (z)1−α ητ (z)τe−τ(z−ipU(x))

1− e−τ(z−ipU(x))

)
dz,

(3.27)

where we have deformed the integration path (using Cauchy’s theorem of complex
analysis) from Γτ to Γτθ,κ defined in (2.22). Such a deformation requires the integrand
in (3.6) to be an M(Ω)-valued analytic function for z ∈ Στθ,κ (see (2.21) for the
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definition of Στθ,κ), which is a consequence of Proposition 3.2 below. Unlike the
analysis of (1.1), where the integrand of (2.23) is clearly analytic in the region Στθ,κ
due to property (2.15). The proof of Proposition 3.2 is more technical and presented
in section 4.2.

Proposition 3.2. By choosing θ ∈ (π2 , π) sufficiently close to π
2 and κ > 0

sufficiently large (depending on λ + |p|‖U‖C(Ω)), there exists a positive constant τ∗
(depending on θ and κ) such that the following estimates hold when τ ≤ τ∗:

(1′) βτ (z), ητ (z) ∈ Σ 3π
4

for z ∈ Στθ,κ, and

c|z| ≤ |βτ (z)| ≤ c|z|, c|z|α ≤ |ητ (z)| ≤ c|z|α ∀ z ∈ Στθ,κ.(3.28)

(2′) The operator (ητ (z) − ∆)−1 is bounded and analytic in M(Ω) for z ∈ Στθ,κ,
satisfying ∥∥(ητ (z)−∆

)−1∥∥
M(Ω)→M(Ω)

≤ c|z|−α ∀ z ∈ Στθ,κ.

By using the integral representations (3.7) and (3.27) derived in the last two
sections, as well as Propositions 3.1 and 3.2, we prove the convergence of the discrete
solutions given by (3.23). The result is presented in the following theorem.

Theorem 3.3. There exists a positive constant τ∗ (see Proposition 3.2) such that
for τ ≤ τ∗, the solution of (1.5) under the initial and boundary conditions (1.8)–(1.9)
and the solution of (3.23) satisfy the following error estimate:

‖G(·, tn)−Gn‖M(Ω) ≤ cT ‖G0‖M(Ω) t
−1
n τ, n = 1, 2, . . . , N,(3.29)

where the constant cT may grow exponentially with respect to T and the quantity
λ+ |p|‖U‖C(Ω).

Remark 3.2. The factor t−1
n in the error estimate is sharp (cf. [21, estimate

(1.14)]). One cannot expect any uniform accuracy up to time t = 0, due to the
possible nonsmoothness of the initial data G0, which is only assumed to be a measure
on Ω (such as the Delta function).

Proof of Theorem 3.3. Consider the difference between (3.7) and (3.27):

G(x, tn)−Gn(x)

=
1

2πi

∫
Γθ,κ\Γτθ,κ

etnzβ(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)
dz

+
1

2πi

∫
Γτθ,κ

etnz
[
β(z)α−1

(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)
− βτ (z)α−1

(
ητ (z)−∆

)−1(
βτ (z)1−αG0(x)ητ (z)τe−τ(z−ipU(x))

1− e−τ(z−ipU(x))

)]
dz

=: J1 + J2.(3.30)

Note that |z − ipU(x)| ≥ 1
2 |z| on the contour Γθ,κ, due to the largeness of κ

compared with λ+ |p|‖U‖C(Ω). By denoting |dz| to be the arc length element on the

contour Γθ,κ\Γτθ,κ, we have

‖J1‖M(Ω)≤ c

∫
Γθ,κ\Γτθ,κ

etn|z| cos(θ)

∥∥∥∥β(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0η(z)

z − ipU(x)

)∥∥∥∥
M(Ω)

|dz|,
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where∥∥∥∥β(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0η(z)

z − ipU(x)

)∥∥∥∥
M(Ω)

≤ c‖β(z)α−1‖C(Ω)‖
(
η(z)−∆

)−1‖M(Ω)→M(Ω)

∥∥∥∥β(z)1−α G0η(z)

z − ipU(x)

∥∥∥∥
M(Ω)

≤ c‖β(z)‖α−1

C(Ω)
‖
(
η(z)−∆

)−1‖M(Ω)→M(Ω)‖β(z)‖1−α
C(Ω)

∥∥∥∥ η(z)

z − ipU(x)

∥∥∥∥
C(Ω)

‖G0‖M(Ω)

≤ c|z|α−1|z|−α|z|1−α|z|α−1‖G0‖M(Ω)

(use (3.8), (3.11) and |z − ipU(x)| ≥ 1
2 |z| on Γθ,κ\Γτθ,κ)

≤ c|z|−1‖G0‖M(Ω).

Consequently, we obtain

‖J1‖M(Ω) ≤ c‖G0‖M(Ω)

∫
Γθ,κ\Γτθ,κ

etn|z| cos(θ)|z|−1 |dz|

= c‖G0‖M(Ω)

∫ ∞
π

τ sin(θ)

etnr cos(θ)r−1 dr (use (2.26))

≤ c‖G0‖M(Ω)

∫ ∞
πtn

τ sin(θ)

es cos(θ)s−1 ds (use the change of variable s = tnr)

≤ c‖G0‖M(Ω)
τ sin(θ)

πtn

∫ ∞
πtn

τ sin(θ)

es cos(θ)ds ≤ c‖G0‖M(Ω)t
−1
n τ.

In order to estimate ‖J2‖M(Ω) in (3.30) we need to use the following lemma, whose
proof is deferred to the next subsection.

Lemma 3.4.∥∥∥∥β(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0η(z)

z − ipU

)
− βτ (z)α−1

(
ητ (z)−∆

)−1
(
βτ (z)1−αG0ητ (z)τe−τ(z−ipU)

1− e−τ(z−ipU)

)∥∥∥∥
M(Ω)

≤ c‖G0‖M(Ω)τ ∀ z ∈ Γτθ,κ.(3.31)

By using Lemma 3.4, we have

‖J2‖M(Ω) ≤ c‖G0‖M(Ω)τ

∫
Γτθ,κ

etn|z| cos(arg(z))|dz|

≤ c‖G0‖M(Ω)τ

∫ π
τ sin(θ)

κ

etnr cos(θ)dr + c‖G0‖M(Ω)τ

∫ θ

−θ
etnκ cos(ϕ)κdϕ

≤ c‖G0‖M(Ω)t
−1
n τ

∫ πtn
τ sin(θ)

κtn

es cos(θ)ds+ c‖G0‖M(Ω)τκ

∫ θ

−θ
eTκdϕ

≤ c‖G0‖M(Ω)(t
−1
n + κeκT )τ

≤ cT ‖G0‖M(Ω)t
−1
n τ (note that κeκT ≤ κTeκT t−1

n ).(3.32)

This completes the proof of Theorem 3.3 in view of (3.30).
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3.5. Proof of Lemma 3.4. In this subsection we prove Lemma 3.4, which is
used in the proof of Theorem 3.3 in the last subsection. To this end, we note that∥∥∥∥β(z)α−1

(
η(z)−∆

)−1
(
β(z)1−α G0η(z)

z − ipU

)
− βτ (z)α−1

(
ητ (z)−∆

)−1
(
βτ (z)1−αG0ητ (z)τe−τ(z−ipU)

1− e−τ(z−ipU)

)∥∥∥∥
M(Ω)

≤
∥∥∥∥(β(z)α−1 − βτ (z)α−1)

(
η(z)−∆

)−1
(
β(z)1−α G0η(z)

z − ipU

)∥∥∥∥
M(Ω)

+

∥∥∥∥βτ (z)α−1
(
(η(z)−∆)−1 − (ητ (z)−∆)−1

)(
β(z)1−α G0η(z)

z − ipU

)∥∥∥∥
M(Ω)

+

∥∥∥∥βτ (z)α−1(ητ (z)−∆)−1

(
(β(z)1−α − βτ (z)1−α)

G0η(z)

z − ipU

)∥∥∥∥
M(Ω)

+

∥∥∥∥βτ (z)α−1(ητ (z)−∆)−1

(
βτ (z)1−αG0(η(z)− ητ (z))

z − ipU

)∥∥∥∥
M(Ω)

+

∥∥∥∥βτ (z)α−1(ητ (z)−∆)−1

(
βτ (z)1−αG0ητ (z)

(
1

z − ipU
− τe−τ(z−ipU)

1− e−τ(z−ipU)

))∥∥∥∥
M(Ω)

=: I∗1 + I∗2 + I∗3 + I∗4 + I∗5 .

(3.33)

To estimate β(z)α−1 − βτ (z)α−1 in I1 and β(z)1−α − βτ (z)1−α in I3, we denote
w = z + λ− ipU(x) and use the Taylor expansion

e−τw = 1− τw +
1

2
τ2w2

∫ 1

0

e−θτw(1− θ)dθ.

Then we have

|β(z)γ − βτ (z)γ | =
∣∣∣∣β(z)γ −

(
1− e−τβ(z)

τ

)γ∣∣∣∣
=

∣∣∣∣β(z)γ −
(
β(z)− τβ(z)2

∫ 1

0

e−θτβ(z)(1− θ)dθ
)γ∣∣∣∣

= |β(z)|γ
∣∣∣∣1− (1− τβ(z)

∫ 1

0

e−θτβ(z)(1− θ)dθ
)γ∣∣∣∣.

If τ |β(z)| < 1
2 , then the following Taylor expansion holds:(

1− 1

2
τβ(z)

∫ 1

0

e−θτw(1−θ)dθ
)γ

= 1+O
(
τβ(z)

∫ 1

0
e−θτw(1− θ)dθ

)
= 1+O(τ |β(z)|).

In this case, the last two identities imply

|β(z)γ − βτ (z)γ | ≤ |β(z)|γcτ |β(z)| ≤ cτ |z|1+γ (here we use (3.8)).(3.34)

If τ |β(z)| ≥ 1
2 , then (3.8) and (3.28) imply

τ |z| ≥ cτ |β(z)| ≥ c ∀ z ∈ Γτθ,κ,(3.35)

|β(z)γ − βτ (z)γ | ≤ c|z|γ ≤ cτ |z|1+γ ∀ z ∈ Γτθ,κ.(3.36)

In either case, we have

|β(z)γ − βτ (z)γ | ≤ cτ |z|1+γ ∀ z ∈ Γτθ,κ,(3.37)
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which further implies

|β(z)α−1 − βτ (z)α−1| ≤ cτ |z|α ∀ z ∈ Γτθ,κ,(3.38)

|β(z)1−α − βτ (z)1−α| ≤ cτ |z|2−α ∀ z ∈ Γτθ,κ,(3.39)

|η(z)− ητ (z)| = |β(z)α − βτ (z)α| ≤ cτ |z|1+α ∀ z ∈ Γτθ,κ,(3.40)

and

∥∥(η(z)−∆
)−1 −

(
ητ (z)−∆

)−1∥∥
M(Ω)→M(Ω)

=
∥∥(η(z)−∆

)−1(
η(z)− ητ (z)

)(
ητ (z)−∆

)−1∥∥
M(Ω)→M(Ω)

≤ c
∥∥(η(z)−∆

)−1∥∥
M(Ω)→M(Ω)

‖η(z)− ητ (z)‖C(Ω)

∥∥(ητ (z)−∆
)−1∥∥

M(Ω)→M(Ω)

≤ c|z|−α cτ |z|1+α c|z|−α (use Proposition 3.1(2), Proposition 3.2(2′), and (3.40))

≤ cτ |z|1−α.
(3.41)

By using (3.38)-(3.40) and (3.41), we have

I∗1 =

∥∥∥∥(β(z)α−1 − βτ (z)α−1)
(
η(z)−∆

)−1
(
β(z)1−α G0η(z)

z − ipU

)∥∥∥∥
M(Ω)

≤ cτ |z|αc|z|−α
(
c|z|1−α c|z|

α

c|z|

)
‖G0‖M(Ω) (use (3.38), (3.8), and (3.11))

≤ c‖G0‖M(Ω)τ(3.42)

I∗2 =

∥∥∥∥βτ (z)α−1
(
(η(z)−∆)−1 − (ητ (z)−∆)−1

)(
β(z)1−α G0η(z)

z − ipU

)∥∥∥∥
M(Ω)

≤ c|z|α−1cτ |z|1−α
(
c|z|1−α c|z|

α

c|z|

)
‖G0‖M(Ω) (use (3.8) and (3.41))

≤ c‖G0‖M(Ω)τ(3.43)

I∗3 =

∥∥∥∥βτ (z)α−1(ητ (z)−∆)−1

(
(β(z)1−α − βτ (z)1−α)

G0η(z)

z − ipU

)∥∥∥∥
M(Ω)

≤ c|z|α−1c|z|−α
(
cτ |z|2−α c|z|

α

c|z|

)
‖G0‖M(Ω) (use (3.39), (3.8), and (3.11))

≤ c‖G0‖M(Ω)τ(3.44)

I∗4 =

∥∥∥∥βτ (z)α−1(ητ (z)−∆)−1

(
βτ (z)1−αG0(η(z)− ητ (z))

z − ipU

)∥∥∥∥
M(Ω)

≤ c|z|α−1c|z|−α
(
c|z|1−α cτ |z|

1+α

c|z|

)
‖G0‖M(Ω) (use (3.40), (3.8), and (3.11))

≤ c‖G0‖M(Ω)τ.(3.45)
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Finally, to estimate I5, we denote ξ = z − ipU and use the Taylor expansions

1− e−τξ = τξ − τ2ξ2

∫ 1

0

e−θτξ(1− θ)dθ,(3.46)

τξe−τξ = τξ − τ2ξ2

∫ 1

0

e−θτξdθ.(3.47)

In the case τ |ξ| < 1
2 we have∥∥∥∥ 1

z − ipU
− τe−τ(z−ipU)

1− e−τ(z−ipU)

∥∥∥∥ =

∥∥∥∥1

ξ
− τe−τξ

1− e−τξ

∥∥∥∥
=

∥∥∥∥1− e−τξ − τξe−τξ

ξ(1− e−τξ)

∥∥∥∥
=

∥∥∥∥ τ2ξ2
∫ 1

0
e−θτξθdθ

τξ2(1− τξ
∫ 1

0
e−θτξ(1− θ)dθ)

∥∥∥∥
≤ cτ.(3.48)

In the case τ |ξ| ≥ 1
2 we have

τ |z| ≥ τ |ξ + ipU(x)| ≥ 1

2
− τ |p|‖U‖C(Ω) ≥

1

4
when τ <

1

4|p|‖U‖C(Ω)

,

cτ |z| ≤ |1− e−τ(z−ipU)| ≤ cτ |z| (just as c|z| ≤ |βτ (z)| ≤ c|z| proved in (3.28)),

τ |z − ipU | ≤ c for z ∈ Γτθ,κ,

which implies∥∥∥∥ 1

z − ipU
− τe−τ(z−ipU)

1− e−τ(z−ipU)

∥∥∥∥ ≤ ∥∥∥∥ 1

z − ipU

∥∥∥∥+

∥∥∥∥ τe−τ(z−ipU)

1− e−τ(z−ipU)

∥∥∥∥
≤ c

|z|
+

c

|z|

≤ cτ

τ |z|
≤ cτ.(3.49)

In either case, we have ∥∥∥∥ 1

z − ipU
− τe−τ(z−ipU)

1− e−τ(z−ipU)

∥∥∥∥ ≤ cτ.(3.50)

Then we have

I∗5 =

∥∥∥∥βτ (z)α−1(ητ (z)−∆)−1

(
βτ (z)1−αG0ητ (z)

(
1

z − ipU
− τe−τ(z−ipU)

1− e−τ(z−ipU)

))∥∥∥∥
M(Ω)

≤ c|z|α−1c|z|−α
(
c|z|1−αc|z|αcτ

)
‖G0‖M(Ω) (use (3.8), (3.11), and (3.50))

≤ c‖G0‖M(Ω)τ.

(3.51)

Substituting the estimates of I∗j , j = 1, . . . , 5, into (3.33) yields the result of
Lemma 3.4.

Remark 3.3. Let F (w) = wα−1(wα − λα − ∆)−1w1−α(wα − λα) and g(t) =
G0(x)eλt, which satisfies ‖F (w)‖M(Ω)→M(Ω) ≤ c. Intuitively, the following estimate
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of CQ discretization is a consequence of [19, Theorem 3.1] with µ = 0:∥∥∥∥L−1
w [F (w)ĝ]− L−1

w

[
F

(
1− e−τw

τ

)
ĝ

]∥∥∥∥
M(Ω)

≤ c‖G0‖M(Ω)t
−1τ,(3.52)

where L−1
w denotes inverse Laplace transform with respect to the variable w. The

estimate of J2 in (3.32) is analogous to (3.52) but not exactly the same. The gap
between (3.32) and (3.52) includes

(i) ĝ = G0(x)
w−λ is further approximated by g̃ = G0(x)τe−τweλτ

1−e−τweλτ ;
(ii) if U(x) =const, then

J2 = e(λ−ipU)t

(
L−1
w [F (w)ĝ]− L−1

w

[
F

(
1− e−τw

τ

)
g̃

])
.

However, since w = z+λ− ipU(x) is a function of x (instead of a complex constant),
it follows that

J2 6= L−1
w [F (w)ĝ]− L−1

w

[
F

(
1− e−τw

τ

)
g̃

]
.

Therefore we have to prove (3.32) and Lemma 3.4 instead of applying [19, Theo-
rem 3.1] directly;

(iii) [19, Theorem 3.1] was proved for µ > 0.

Remark 3.4. In Theorem 3.3 we have proved the convergence of the numerical
solutions under the measure norm. The error estimate presented in this paper can
be easily adapted to the case G0 ∈ L2(Ω) by changing both the norms ‖ · ‖M(Ω) and
‖ · ‖C(Ω) to ‖ · ‖L2(Ω) in the proof. In this case we would have the following estimate:

‖G(·, tn)−Gn‖L2(Ω) ≤ cT ‖G0‖L2(Ω) t
−1
n τ, n = 1, 2, . . . , N.(3.53)

4. Technical proofs.

4.1. Proof of Proposition 3.1. In the analysis of (1.1), the analyticity and
estimates of the integrands in (2.23) and (2.24) are immediate consequences of the
angle property (2.15) and [1, Theorem 3.7.11]. In the analysis of (1.5), however, the
analyticity and estimates of the integrands in (3.6) and (3.27) require more technical
analysis. In particular, we need to show that

η(x, z) = (z+λ−ipU(x))α−λα ∈ Σφ, ητ (x, z) =

(
1− e−τ(z+λ−ipU(x))

τ

)α
−λα ∈ Σφ

for some φ ∈ (π2 , π) in order to apply [1, Theorem 3.7.11]. To this end, we need the
following technical lemma, which differs from (2.15) by allowing |Im(z)| to exceed π

τ .
The proof of Lemma 4.1 is presented in Appendix A. Roughly speaking, the lemma

says that arg( 1−e−τz
τ ) can be controlled by |arg(z)| up to O(τ).

Lemma 4.1. Let L = λ+ |p|‖U‖C(Ω). There exist positive constants θ0 ∈ (π2 ,
5π
8 ),

τ0, and c0 such that if θ ∈ (π2 , θ0) and τ ∈ (0, τ0], then

− |arg(z)| − c0τ ≤ arg

(
1− e−τz

τ

)
≤ |arg(z)| + c0τ

(4.1)

if |z| 6= 0, |arg(z)| ≤ θ, and |Im(z)| ≤ π

τ
+ L .

Let θ ∈ (π2 , θ0) be a fixed angle. We summarize the results of this section in the
following proposition.
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Proof of Proposition 3.1(1). For all z ∈ Σθ,κ and x ∈ Ω, we have

|arg(β(z))− arg(z)| = |arg(z + λ− ipU(x))− arg(z)| ≤ arcsin

(
|λ− ipU(x)|

|z|

)
≤ arcsin

( |λ|+ |p|‖U‖C(Ω)

κ

)
.

When κ is large enough compared with |λ| + |p|‖U‖C(Ω), the angle above is smaller
than π

8 and

|z + λ− ipU(x)| ≥ κ− |λ− ipU(x)| ≥ 3κ

4
.

Consequently, we have

z + λ− ipU(x) ∈ Σθ+π
8 ,

3κ
4

and (z + λ− ipU(x))α ∈ Σα(θ+π
8 ),( 3κ

4 )α .(4.2)

This proves β(z) ∈ Σ 3π
4 ,

κ
2
. Similarly, we have

|arg[(z + λ− ipU(x))α − λα]− arg[(z + λ− ipU(x))α]|

≤ arcsin

(
λα

|z + λ− ipU(x)|α

)
≤ arcsin

(
λα

( 3κ
4 )α

)
.

When κ is large enough, the angle above is smaller than 3(1−α)π
4 and ( 3κ

4 )α − λα ≥
(κ2 )α. Consequently, we have

η(z) = (z + λ− ipU(x))α − λα ∈ Σ
α(θ+π

8 )+
3(1−α)π

4 ,(κ2 )α
⊂ Σ 3π

4 ,
κα

2
.(4.3)

(3.8) is a consequence of the fact that |z| dominates λ and U(x) (due to the largeness
of κ).

Proof of Proposition 3.1(2). Choose a fixed x0 ∈ Ω and note that Proposition
3.1(1) implies (z + λ− ipU(x0))α − λα ∈ Σ 3π

4 ,
κα

2
. Hence, the operator(

(z + λ− ipU(x0))α − λα −∆
)−1

: C(Ω)→ C(Ω) ∩H1
0 (Ω)

is well-defined, satisfying the following basic resolvent estimate:

∥∥((z + λ− ipU(x0))α − λα −∆
)−1∥∥

C(Ω)→C(Ω)
≤ c
∣∣(z + λ− ipU(x0))α − λα

∣∣−1
,

(4.4)

which is a consequence of the analytic semigroup result [30, Theorem 3.3] and the
resolvent estimate [1, Theorem 3.7.11]. Since the equation(

(z + λ− ipU(x))α − λα −∆
)
φ = f(4.5)

can be reformulated as(
(z + λ− ipU(x0))α − λα −∆

)
φ

= f +
(
(z + λ− ipU(x0))α − (z + λ− ipU(x))α

)
φ,(4.6)

applying (4.4) to (4.6) yields∣∣(z + λ− ipU(x0))α − λα
∣∣‖φ‖C(Ω)

≤ c‖f‖C(Ω) + c
∣∣(z + λ− ipU(x0))α − (z + λ− ipU(x))α

∣∣‖φ‖C(Ω)

≤ c‖f‖C(Ω) + c
∣∣U(x0)− U(x)|α‖φ‖C(Ω) ≤ c‖f‖C(Ω) + c‖φ‖C(Ω).
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Since |z| ≥ κ and κ can be chosen to be large compared with λ and |p| · ‖U‖C(Ω), it
follows that ∣∣(z + λ− ipU(x0))α − λα

∣∣ ≥ |z|α − cλα − c|U(x0)|α ≥ 1

2
|z|α.

The last two inequalities imply ‖φ‖C(Ω) ≤ c|z|−α‖f‖C(Ω) + c|z|−α‖φ‖C(Ω). Again,

when |κ| is larger than some constant, |z| is sufficiently large so that the second term
on the right-hand side can be absorbed by the left-hand side. Consequently, we have
proved that the solution of (4.5) satisfies ‖φ‖C(Ω) ≤ c|z|−α‖f‖C(Ω). This proves the

well-definedness and boundedness of the operator (η(z) − ∆)−1 : C(Ω) → C(Ω) for
z ∈ Σθ,κ with∥∥(η(z)−∆

)−1∥∥
C(Ω)→C(Ω)

≤ c|z|−α ∀ z ∈ Σθ,κ.(4.7)

The duality between M(Ω) and C(Ω) immediately implies the extended map
(η(z)−∆)−1 : M(Ω)→M(Ω) as well as the resolvent estimate (3.11).

By using (3.11), we have

‖∆
(
η(z)−∆

)−1‖M(Ω)→M(Ω) = ‖ − I + η(z)
(
η(z)−∆

)−1‖M(Ω)→M(Ω)

≤ 1 + ‖η(z)
(
η(z)−∆

)−1‖M(Ω)→M(Ω)

≤ 1 + c|z|α‖
(
η(z)−∆

)−1‖M(Ω)→M(Ω) (use (3.8) here)

≤ c (use (3.11) here).(4.8)

This proves (3.10). The proof of Proposition 3.1(2) is complete.

Proof of Proposition 3.1(3). Note that

‖G(·, t)‖M(Ω)

≤ c
∫

Γθ,κ

et|z| cos(arg(z))

∥∥∥∥(β(z)α−1
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)∥∥∥∥
M(Ω)

|dz|

≤ c
∫

Γθ,κ

et|z| cos(arg(z))‖β(z)α−1‖C(Ω)‖
(
η(z)−∆

)−1‖M(Ω)→M(Ω)

×
∥∥∥∥β(z)1−αη(z)

z − ipU(x)

∥∥∥∥
C(Ω)

‖G0‖M(Ω)|dz|

≤ c
∫

Γθ,κ

et|z| cos(arg(z))c|z|α−1c|z|−αc|dz|

(use (3.8) and (3.11); |z| dominates λ and U(x))

≤ c
∫

Γθ,κ

et|z| cos(arg(z))|z|−1|dz|

≤ c
∫ ∞
κ

etr cos(θ)r−1dr + c

∫ θ

−θ
etr cos(ϕ)κ−1κdϕ

≤ c
∫ ∞
κt

es cos(θ)s−1ds+ c

∫ θ

−θ
etκ cos(ϕ)dϕ

≤ c+ ceκT ;
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and similarly,

‖DtG(·, t)‖M(Ω)

=

∥∥∥∥ 1

2πi

∫
Γθ,κ

etzβ(z)α
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)
dz

∥∥∥∥
M(Ω)

≤ c
∫

Γθ,κ

et|z| cos(arg(z))

∥∥∥∥(β(z)α
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)∥∥∥∥
M(Ω)

dz

≤ c
∫

Γθ,κ

et|z| cos(arg(z))‖β(z)α‖C(Ω)‖
(
η(z)−∆

)−1‖M(Ω)→M(Ω)

×
∥∥∥∥β(z)1−αη(z)

z − ipU(x)

∥∥∥∥
C(Ω)

‖G0‖M(Ω)|dz|

≤ c
∫

Γθ,κ

et|z| cos(arg(z))c|z|αc|z|−αc|dz|

(use (3.8) and (3.11); |z| dominates λ and U(x))

≤ c
∫

Γθ,κ

et|z| cos(arg(z))|dz|

≤ c
∫ ∞
κ

etr cos(θ)dr + c

∫ θ

−θ
etr cos(ϕ)κdϕ

≤ ct−1

∫ ∞
κt

es cos(θ)ds+ c

∫ θ

−θ
etκ cos(ϕ)κdϕ

≤ ct−1 + cκeκT .

Similarly, we also have

‖∆D1−α
t G(·, t)‖M(Ω)

=

∥∥∥∥ 1

2πi

∫
Γθ,κ

etz∆
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)∥∥∥∥
M(Ω)

dz

≤ c
∫

Γθ,κ

et|z| cos(arg(z))

∥∥∥∥∆
(
η(z)−∆

)−1
(
β(z)1−α G0(x)η(z)

z − ipU(x)

)∥∥∥∥
M(Ω)

dz

≤ c
∫

Γθ,κ

et|z| cos(arg(z))‖∆
(
η(z)−∆

)−1‖M(Ω)→M(Ω)

×
∥∥∥∥β(z)1−α η(z)

z − ipU(x)

∥∥∥∥
C(Ω)

‖G0‖M(Ω)|dz|

≤ c
∫

Γθ,κ

et|z| cos(arg(z))c‖G0‖M(Ω)|dz| (here we used (3.10) and (3.8))

≤ c
∫ ∞
κ

etr cos(θ)dr + c

∫ θ

−θ
etκ cos(ϕ)κdϕ

≤ ct−1

∫ ∞
κt

es cos(θ)s−αds+ c

∫ θ

−θ
etκ cos(ϕ)κdϕ

≤ c(t−1 + κeκT ).

In the same way, one also can prove ‖D1−α
t G(·, t)‖M(Ω) ≤ c(tα−1 + κeκT ).

Applying the differential operators to the integral representation (3.7) yields that
the solution G(x, t) satisfies (1.5) with each term well-defined in M(Ω).
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4.2. Proof of Proposition 3.2. We start with proving (3.28). Let w = z+λ−
ipU(x), with z ∈ Στθ,κ. For sufficiently small step size τ < π

2λ+2|p|‖U‖C(Ω)
, we have

τ |Im(w)| < τ(|Im(z)|+ λ+ |p|‖U‖C(Ω)) ≤ π + τ(λ+ |p|‖U‖C(Ω)) <
3

2
π.(4.9)

Hence, 1− e−τw = 0 only when ω = 0. In particular,

if τ |w| ≥ c, then |1− e−τw| ≥ c.(4.10)

For z ∈ Στθ,κ, we have τ |Im(z)| ≤ π and τ |Re(z)| ≤ τ(κ+ 1) ≤ π when τ ≤ π
κ+1 .

Consequently, we have

τ |z| ≤ τ |Im(z)|+ τ |Re(z)| ≤ 2π,(4.11)

τ |w| ≤ τ |z|+ τ(λ+ |p|‖U‖C(Ω)) ≤
5

2
π.(4.12)

By choosing κ ≥ 2(λ+ |p|‖U‖C(Ω)), Taylor’s expansion yields, for z ∈ Στθ,κ,

|βτ (z)| =
∣∣∣∣1− e−τwτ

∣∣∣∣ ≤ c|w| ≤ c(|z|+ λ+ |p|‖U‖C(Ω)) ≤ c(|z|+ κ) ≤ c|z|,(4.13)

where the last inequality is a consequence of |z| ≥ κ for z ∈ Στθ,κ. This proves the
inequality |βτ (z)| ≤ c|z| in (3.28).

To prove c|z| ≤ |βτ (z)| for z ∈ Στθ,κ, we consider two cases below.
If τ |w| is smaller than some constant, then we can use Taylor’s expansion (with

|O(τw)| < 1
2 , due to the smallness of τ |w| assumed):

|βτ (z)| =
∣∣∣∣1− e−τwτ

∣∣∣∣ = |w(1 +O(τw))| ≥ 1

2
|w| ≥ 1

2
(|z| − λ− |p|‖U‖C(Ω))

≥ 1

2
(|z| − κ/2) ≥ 1

4
|z|,(4.14)

where we have used κ ≥ 2(λ+ |p|‖U‖C(Ω)) again and noted that |z| ≥ κ for z ∈ Στθ,κ.

If τ |w| is larger than the constant, then (4.10) and (4.11) imply

|βτ (z)| =
∣∣∣∣1− e−τwτ

∣∣∣∣ ≥ c

τ
≥ c|z|.(4.15)

Overall, under the conditions κ ≥ 2(λ+ |p|‖U‖C(Ω)) and τ < π
κ+1 , we have proved

c1|z| ≤ |βτ (z)| =
∣∣∣∣1− e−τ(z+λ−ipU(x))

τ

∣∣∣∣ ≤ c2|z| ∀ z ∈ Στθ,κ(4.16)

for some positive constants c1 and c2. The last inequality further implies

c1|z|α − λα ≤
∣∣∣∣(1− e−τ(z+λ−ipU(x))

τ

)α
− λα

∣∣∣∣ ≤ c2|z|α + λα.(4.17)

By choosing κ larger than some constant (depending on λ and |p|‖U‖C(Ω)), we have

λα ≤ c1
2 κ

α ≤ c1
2 |z|

α. Consequently, (4.17) implies

c1
2
|z|α ≤ |ητ (z)| =

∣∣∣∣(1− e−τ(z+λ−ipU(x))

τ

)α
− λα

∣∣∣∣ ≤ (c12 + c2

)
|z|α.(4.18)
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The proof of (3.28) is complete. Next, we prove βτ (z), ητ (z) ∈ Σ 3π
4

for z ∈ Στθ,κ.
Lemma 4.1 implies

−|arg(z + λ− ipU(x)| − c0τ ≤ arg

(
1− e−τ(z+λ−ipU(x))

τ

)
≤ |arg(z + λ− ipU(x))|+ c0τ,(4.19)

which together with (4.2) implies − 5π
8 −c0τ ≤ arg

(
1−e−τ(z+λ−ipU(x))

τ

)
≤ 5π

8 +c0τ. This
proves βτ (z) ∈ Σ 3π

4
when the step size τ is smaller than some constant. Furthermore,

by choosing κ large enough and using (4.16) we have∣∣∣∣1− e−τ(z+λ−ipU(x))

τ

∣∣∣∣ = |βτ (z)| ≥ c|z| ≥ cκ ∀ z ∈ Στθ,κ.(4.20)

The last two inequalities yield

1− e−τ(z+λ−ipU(x))

τ
∈ Σ 3π

4 ,cκ
and

(
1− e−τ(z+λ−ipU(x))

τ

)α
∈ Σ 3απ

4 ,cακα ,(4.21)

which further implies that (by choosing κ to be large enough and using the same
argument for (4.3))

ητ (z) =

(
1− e−τ(z+λ−ipU(x))

τ

)α
− λα ∈ Σ 3π

4 ,cκ
α ⊂ Σ 3π

4
.(4.22)

This completes the proof of Proposition 3.2(1′). Using the results βτ (z), ητ (z) ∈
Σ 3π

4
, Proposition 3.2(2′) can be proved in the same way as (2) of Proposition 3.1.

The details are omitted.

5. Numerical tests. In this section, we test the convergence of the time dis-
cretization method (3.23) numerically. We solve (1.5) in the one-dimensional domain
Ω = (0, 1) by the proposed method up to time T = 1, with the following parameters:

λ = 0.01, p = 1, U(x) = x,(5.1)

where the choice of the function U(x) = x physically corresponds to the distribution
of the time average of the particles’ trajectories. The numerical results with smooth
initial data G(x, 0) = 10x(1−x) and measure data G(x, 0) = δ(x−1/4) are presented
in Tables 1 and 2, respectively, where GNτ denotes the numerical solution with step
size τ at time tN = 1. Since the exact solutions of these problems are unknown, the
order of convergence of the numerical solutions are computed by the formula

order of convergence in the norm ‖ · ‖ =
ln
(
‖GN2τ −GNτ ‖/‖GNτ −GNτ/2‖

)
ln 2

.

To investigate the convergence in time and eliminate the influence from spatial
discretization, we use the P1 finite element method with a sufficiently small mesh size
h = 1/500 so that the error due to spatial discretization can be omitted (roughly 10−6

based on numerical tests). Since the two norms ‖ · ‖M(Ω) and ‖ · ‖L1(Ω) are the same
for finite element solutions, the norm ‖GNτ − GNτ/2‖M(Ω) can be calculated via inte-

gration (with 5-node Gauss quadrature on each subinterval, which yields sufficiently
accurate results). From Tables 1–2 we see that the proposed method has first-order
convergence, which is consistent with the theoretical analysis presented in Theorem
3.3.
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Table 1
Order of convergence when the initial data are smooth: G(x, 0) = 10x(1− x).

τ ‖GNτ −GNτ/2‖L2(Ω)

‖GN2τ−G
N
τ ‖L2(Ω)

‖GNτ −GNτ/2‖L2(Ω)

Order

1/8 1.609E-03 — —
α = 0.25 1/16 7.913E-04 2.034 1.02

1/32 3.923E-04 2.016 1.01
1/64 1.953E-04 2.008 1.00
1/8 2.733E-03 — —

α = 0.5 1/16 1.310E-03 2.085 1.06
1/32 6.419E-04 2.041 1.03
1/64 3.177E-04 2.020 1.01
1/8 3.381E-03 — —

α = 0.75 1/16 1.535E-03 2.202 1.14
1/32 7.328E-04 2.095 1.07
1/64 3.582E-04 2.046 1.03

Table 2
Order of convergence when the initial data are a measure: G(x, 0) = δ(x− 1/4).

τ ‖GNτ −GNτ/2‖M(Ω)
‖GN2τ−G

N
τ ‖M(Ω)

‖GNτ −GNτ/2‖M(Ω)
Order

1/8 1.058E-03 — —
α = 0.25 1/16 5.194E-04 2.037 1.03

1/32 2.574E-04 2.018 1.01
1/64 1.281E-04 2.009 1.01
1/8 1.553E-03 — —

α = 0.5 1/16 7.452E-04 2.083 1.06
1/32 3.653E-04 2.040 1.03
1/64 1.808E-04 2.020 1.01
1/8 1.772E-03 — —

α = 0.75 1/16 8.061E-04 2.198 1.14
1/32 3.852E-04 2.093 1.06
1/64 1.884E-04 2.045 1.03

6. Conclusion. In this article, we have developed time discretization method for
approximating the mild solution of the tempered fractional Feynman–Kac equation
based on convolution quadrature approximation of the fractional substantial deriva-
tive. We have proved first-order convergence of the numerical method with U ∈ C(Ω)
and the initial data G0 being a finite measure.

If U(x) is second-order continuously differentiable, then by letting u(x, t) =
et(λ−ipU(x))G(x, t) and using (3.13), the tempered fractional Feynman–Kac equation
can be rewritten as

∂tu−∆∂1−α
t u− 2

f
∇f · ∂1−α

t ∇u−
(
λα +

∆f

f

)
∂1−α
t u = F(6.1)

with

f(x, t) = e−t(λ−ipU(x)) and F (x, t) = −G0(x)(λα∂1−α
t − λ)eλt = O(tα−1) as t→ 0.

(6.2)

It is worth mentioning that a uniform-in-time O(τα) convergence of a time discretiza-
tion method for (6.1) can be proved analogously to [16, Theorem 4.4] in the case
α ∈ ( 1

2 , 1].
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Appendix A. Proof of Lemma 4.1. It is clear that if |z| 6= 0 and arg(z) = 0,

then arg( 1−e−τz
τ ) = 0.

If |z| 6= 0 and arg(z) = ϕ ∈ (0, θ] and 0 ≤ Im(z) ≤ π/τ+L, then ω := τ |z| sin(ϕ) ∈
(0, π + Lτ ] and it is easy to see that

Case 1: if ω ∈ (0, π], then arg( 1−e−τz
τ ) ∈ [0, π);

Case 2: if ω ∈ (π, π+Lτ ], then ∃ a constant c0 such that arg( 1−e−τz
τ ) ∈ [−c0τ, 0).

In Case 2, (4.1) holds automatically.

In Case 1, if ω = π, then arg( 1−e−τz
τ ) = 0 and (4.1) holds. If ω ∈ (0, π), then

we have arg( 1−e−τz
τ ) ∈ (0, π) and we prove arg( 1−e−τz

τ ) ≤ ϕ below (then (4.1) follows
immediately).

Note that

cot

(
arg

(
1− e−τz

τ

))
=

1− e−τ |z| cos(ϕ) cos(τ |z| sin(ϕ))

e−τ |z| cos(ϕ) sin(τ |z| sin(ϕ))

=
eτ |z| cos(ϕ) − cos(τ |z| sin(ϕ))

sin(τ |z| sin(ϕ))

≥ 1 + τ |z| cos(ϕ)− cos(τ |z| sin(ϕ))

sin(τ |z| sin(ϕ))
=

1 + ω cot(ϕ)− cos(ω)

sin(ω)
,

where we have used Taylor’s expansion in the last inequality and set ω = τ |z| sin(ϕ) ∈
(0, π). We shall prove cot(arg( 1−e−τz

τ )) ≥ cot(ϕ) for ω ∈ (0, π), so that 0 ≤ arg( 1−e−τz
τ )

≤ ϕ = arg(z). To this end, we consider the function

f(ω) := 1 + ω cot(ϕ)− cos(ω)− sin(ω) cot(ϕ), ω ∈ [0, π]

with fixed ϕ and variable ω (due to the change of |z|). The derivative of f is

f ′(ω) = sin(ω) + (1− cos(ω)) cot(ϕ)

= 2 sin

(
ω

2

)
cos

(
ω

2

)
+ 2 sin2

(
ω

2

)
cot(ϕ) = 2 sin2

(
ω

2

)(
cot

(
ω

2

)
+ cot(ϕ)

)
.

If ϕ ∈ (0, π2 ], then f ′(ω) > 0 for ω ∈ (0, π), which means that the minimum value of f
is achieved at f(0) = 0. If ϕ ∈ (π2 , θ], then f ′(ω) > 0 for ω ∈ (0, π−ϕ) and f ′(ω) < 0
for ω ∈ (π − ϕ, π], which means that the minimum value of f is achieved at either
f(0) = 0 or f(π) = 2 + ω cot(ϕ). In either case, the minimum value of f is achieved
at one of the two end points, ω = 0 and ω = π with

f(0) = 0 and f(π) = 2 + π cot(ϕ).

By choosing θ ∈ (π2 , π) sufficiently close to π
2 we have f(π) ≥ 0. Consequently,

f(ω) ≥ 0 for all ω ∈ (0, π). This proves cot(arg( 1−e−τz
τ )) ≥ cot(ϕ) for all ω ∈ (0, π),

which yields arg( 1−e−τz
τ ) ≤ ϕ, completing the proof of Case 1.

Overall, we have proved (4.1) in the case arg(z) ∈ [0, θ]. The case arg(z) ∈ [−θ, 0)
can be proved in the same way.
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[34] A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadra-

ture, SIAM J. Sci. Comput., 28 (2006), pp. 421–438.
[35] G. Schehr and P. L. Doussal, Extreme value statistics from the real space renormalization

group: Brownian motion, Bessel processes and continuous time random walks, J. Stat.
Mech. Theory Exp., 2010 (2010), P01009.

[36] A. Stanislavsky, K. Weron, and A. Weron, Anomalous diffusion with transient subordina-
tors: A link to compound relaxation laws, J. Chem. Phys., 140 (2014), 054113.

[37] L. Turgeman, S. Carmi, and E. Barkai, Fractional Feynman-Kac equation for non-Brownian
functionals, Phys. Rev. Lett., 103 (2009), 190201.

[38] X. C. Wu, W. H. Deng, and E. Barkai, Tempered fractional Feynman-Kac equation: Theory
and examples, Phys. Rev. E (3), 93 (2016), 32151.

D
ow

nl
oa

de
d 

03
/1

2/
21

 to
 1

58
.1

32
.1

61
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s


	Introduction
	Illustration of our methodology on the model (1.1)
	Derivation of the time-stepping scheme
	Error estimate

	Application of the methodology to (1.5)
	Inverse Laplace transform representation of the solution
	Discretization of the fractional substantial derivative
	Derivation of the time-stepping scheme
	Error estimate for the time-stepping scheme (3.23)
	Proof of Lemma 3.4

	Technical proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Numerical tests
	Conclusion
	Appendix A. Proof of Lemma 4.1
	References

