Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89350
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorBo, Len_US
dc.creatorLiao, Hen_US
dc.creatorYu, Xen_US
dc.date.accessioned2021-03-18T03:04:36Z-
dc.date.available2021-03-18T03:04:36Z-
dc.identifier.issn0363-0129en_US
dc.identifier.urihttp://hdl.handle.net/10397/89350-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2019, Society for Industrial and Applied Mathematics.en_US
dc.rightsPosted with permission of the publisher.en_US
dc.rightsThe following publication Bo, L., Liao, H., & Yu, X. (2019). Risk sensitive portfolio optimization with default contagion and regime-switching. SIAM Journal on Control and Optimization, 57(1), 366-401 is available at https://dx.doi.org/10.1137/18M1166274en_US
dc.subjectCountably infinite statesen_US
dc.subjectDefault contagionen_US
dc.subjectRecursive dynamical programming equationsen_US
dc.subjectRegime switchingen_US
dc.subjectRisk-sensitive controlen_US
dc.subjectVerification theoremsen_US
dc.titleRisk sensitive portfolio optimization with default contagion and regime-switchingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage366en_US
dc.identifier.epage401en_US
dc.identifier.volume57en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/18M1166274en_US
dcterms.abstractWe study an open problem of risk-sensitive portfolio allocation in a regime-switching credit market with default contagion. The state space of the Markovian regime-switching process is assumed to be a countably infinite set. To characterize the value function, we investigate the corresponding recursive infinite-dimensional nonlinear dynamical programming equations (DPEs) based on default states. We propose working in the following procedure: Applying the theory of monotone dynamical systems, we first establish the existence and uniqueness of classical solutions to the recursive DPEs by a truncation argument in the finite state space. The associated optimal feedback strategy is characterized by developing a rigorous verification theorem. Building upon results in the first stage, we construct a sequence of approximating risk-sensitive control problems with finite states and prove that the resulting smooth value functions will converge to the classical solution of the original system of DPEs. The construction and approximation of the optimal feedback strategy for the original problem are also thoroughly discussed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2019, v. 57, no. 1, p. 366-401en_US
dcterms.isPartOfSIAM journal on control and optimizationen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85062695386-
dc.identifier.eissn1095-7138en_US
dc.description.validate202103 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0601-n07-
dc.identifier.SubFormID542-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextHong Kong Early Career Scheme No.25302117en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
18m1166274.pdf481.73 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

118
Last Week
2
Last month
Citations as of Nov 10, 2025

Downloads

56
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.