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Abstract. We study an open problem of risk-sensitive portfolio allocation in a regime-switching
credit market with default contagion. The state space of the Markovian regime-switching process
is assumed to be a countably infinite set. To characterize the value function, we investigate the
corresponding recursive infinite-dimensional nonlinear dynamical programming equations (DPEs)
based on default states. We propose working in the following procedure: Applying the theory of
monotone dynamical systems, we first establish the existence and uniqueness of classical solutions
to the recursive DPEs by a truncation argument in the finite state space. The associated optimal
feedback strategy is characterized by developing a rigorous verification theorem. Building upon
results in the first stage, we construct a sequence of approximating risk-sensitive control problems
with finite states and prove that the resulting smooth value functions will converge to the classical
solution of the original system of DPEs. The construction and approximation of the optimal feedback
strategy for the original problem are also thoroughly discussed.
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1. Introduction. One ultimate goal for the community of financial mathemat-
ics is to characterize the sophisticated investment environment using tractable prob-
abilistic or stochastic models. For example, the market trend is usually described
by some random factors such as Markov chains. In particular, the so-called regime-
switching model is widely accepted and usually proposed to capture the influence on
the behavior of the market caused by transitions in the macroeconomic system or the
macroscopic readjustment and regulation. For instance, the empirical results by Ang
and Bekaert [2] illustrate the existence of two regimes characterized by different levels
of volatility. It is well known that default events modulated by the regime-switching
process have an impact on the distress state of the surviving securities in the port-
folio. More specifically, by an empirical study of the corporate bond market over
150 years, Giesecke et al. [19] suggest the existence of three regimes corresponding to
high, middle, and low default risk. With finitely many economical regimes, Capponi
and Figueroa-López [12] investigate the classical utility maximization problem from
terminal wealth based on a defaultable security, and Capponi, Figueroa-López, and
Nisen [13] obtain a Poisson series representation for the arbitrage-free price process
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of vulnerable contingent claims.
On the other hand, the importance of considering the defaultable underlying

assets has attracted a lot of attention, especially after the systemic failure caused by
the global financial crisis. Some recent developments extend the early model of single
defaultable security to default contagion effects on portfolio allocations. The research
of these mutual contagion influences opens the door to provide possible answers to
some empirical puzzles like the high mark-to-market variations in prices of credit
sensitive assets. For example, Kraft and Steffensen [22] discuss the contagion effects
on defaultable bonds. Callegaro, Jeanblanc, and Runggaldier [11] consider an optimal
investment problem with multiple defaultable assets which depend on a partially
observed exogenous factor process. Jiao, Kharroubi, and Pham [21] study the model
in which multiple jumps and default events are allowed. Recently, Bo and Capponi [9]
examine the optimal portfolio problem of a power utility investor who allocates the
wealth between credit default swaps and a money market for which the contagion risk
is modeled via interacting default intensities.

Apart from the celebrated Merton’s model on utility maximization, there has
been increasing interest in the risk-sensitive stochastic control criterion in the portfo-
lio management during recent years; see, e.g., Davis and Lleo [16] for an overview of
the theory and practice of risk-sensitive asset management. In a typical risk sensitive
portfolio optimization problem, the investor maximizes the long run growth rate of
the portfolio, adjusted by a measure of volatility. In particular, the classical utility
maximization from terminal wealth can be transformed into the risk-sensitive control
criterion by introducing a change of measure and a so-called risk-sensitive parameter
which characterizes the degree of risk tolerance of investors; see, e.g., Bielecki and
Pliska [6] and Nagai and Peng [24]. We will only explore a small portion of the vast
literature, for instance, the risk sensitive criterion can be linked to the dynamic version
of Markowitz’s mean-variance optimization by Bielecki and Pliska [6], to differential
games by Fleming [17], and more recently Bayraktar and Yao [5] made a connection
to zero-sum stochastic differential games using BSDEs and the weak dynamic pro-
gramming principle. Hansen et al. [20] further connect the risk-sensitive objective
to a robust criteria in which perturbations are characterized by the relative entropy.
Bayraktar and Cohen [4] later examine a risk sensitive control version of the lifetime
ruin probability problem.

Despite much existing work on the risk-sensitive control, optimal investment with
credit risk, or regime switching, there remains an open problem of risk-sensitive port-
folio allocation with both scenarios of default risk and regime-switching. Our paper
aims to fill this gap and considers an interesting case when the default contagion ef-
fect can depend on regime states, possibly infinitely many. For some recent related
work, it is worth noting that in the default-free market with finite regime states,
Andruszkiewicz, Davis, and Lleo [1] study the existence and uniqueness of the solu-
tion to the risk-sensitive asset maximization problem and provide an ODE for the
optimal value function, which may be efficiently solved numerically. Meanwhile, Das,
Goswami, and Rana [15] consider a risk-sensitive portfolio optimization problem with
multiple stocks modeled as a multidimensional jump diffusion whose coefficients are
modulated by an age-dependent semi-Markov process. They also establish the exis-
tence and uniqueness of classical solutions to the corresponding HJB equations. In the
context of theoretical stochastic control, we also note that Kumar and Pal [23] derive
the dynamical programming principle for a class of risk-sensitive control problems
of pure jump process with near monotone cost. To model hybrid diffusions, Nguyen
and Yin [25] propose a switching diffusion system with countably infinite states. The
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existence and uniqueness of the solution to the hybrid diffusion with past-dependent
switching are obtained. Returning to the practical implementation in financial mar-
kets with stochastic factors, the regime-switching model or continuous time Markov
chain is frequently used to approximate the dynamics of the time-dependent market
parameter or factors. The continuous state space of the parameter or factor is usually
discretized, which leads to infinite states of the approximating Markov chain (see,
e.g., Ang and Timmermann [3]). This mainly motivates us to consider the count-
able regime states in this work, and it is shown that these technical difficulties can
eventually be reconciled using an appropriate approximation by counterparts with fi-
nite states. Therefore, our analytical conclusions for regime-switching can potentially
provide theoretical foundations for numerical treatment of risk sensitive portfolio op-
timization with defaults and stochastic factor processes.

Our contributions are twofold. From the modeling perspective, it is considered
that the correlated stocks are subject to credit events, and in particular, the dynamics
of defaultable stocks, namely the drift, the volatility, and the default intensity coeffi-
cients all depend on the macroeconomic regimes. As defaults can occur sequentially,
the default contagion is modeled in the sense that default intensities of surviving
names are affected simultaneously by default events of other stocks as well as by
current regimes states. This set up in our model enables us to analyze the joint com-
plexity rooted in the investor’s risk sensitivity, the regime changes, and the default
contagion among stocks. From the mathematical perspective, the resulting dynamic
programming equation (DPE) can be viewed as a recursive infinite-dimensional non-
linear dynamical system in terms of default states. The depth of the recursion equals
the number of stocks in the portfolio. Our method to study this new type of recursive
dynamical system can be summarized in the following scheme: First, it is proposed to
truncate the countably infinite state space of the regime switching process and con-
sider the recursive DPE only with a finite state space. Second, for the finite state case,
the existence and uniqueness of the solutions of the recursive DPE are analyzed based
upon a backward recursion, namely from the state in which all stocks are defaulted
toward the state in which all stocks are alive. It is worth noting that no bounded
constraint is reinforced on the trading strategies of securities or control variables as in
Andruszkiewicz, Davis, and Lleo [1] and Kumar and Pal [23]. As a price to pay, the
nonlinearities of the HJB dynamical systems are not globally Lipschitz continuous.

To overcome this new challenge, we develop a truncation technique by proving a
comparison theorem based on the theory of monotone dynamical systems documented
in Smith [26]. Then, we establish a unique classical solution of the recursive DPE
by showing that the solution of truncated system has a uniform (strictly positive)
lower bound independent of the truncation level. This also enables us to characterize
the optimal admissible feedback trading strategy in the verification theorem. Next,
when the states are relaxed to be countably infinite, the results in the finite state
case can be applied to construct a sequence of approximating risk sensitive control
problems to the original problem and obtain elegant uniform estimates to conclude
that the sequence of associated smooth value functions will successfully converge to
the classical solution of the original recursive DPE. We also contribute to the existing
literature by exploring the possible construction and approximation of the optimal
feedback strategy in some rigorous verification theorems.

The rest of the paper is organized as follows. Section 2 describes the credit
market model with default contagion and regime switching. Section 3 formulates
the risk-sensitive stochastic control problem and introduces the corresponding DPE.
We analyze the existence and uniqueness of the classical global solution of recursive
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infinite-dimensional DPEs and develop rigorous verification theorems in section 4. For
the completeness, some auxiliary results and proofs are delegated to Appendix A.

2. The model. We consider a model of the financial market consisting of N ≥ 1
defaultable stocks and a risk-free money market account on a given complete filtered
probability space (Ω,G,G,P). Let Y = (Y (t))t∈[0,T ] be a regime-switching process
which will be introduced precisely later. The global filtration G = F ∨H augmented
by all P-null sets satisfies the usual conditions. The filtration F = (Ft)t∈[0,T ] is jointly
generated by the regime-switching process Y and an independent d ≥ 1-dimensional
Brownian motion denoted by W = (Wj(t); j = 1, . . . , d)>t∈[0,T ]. We use > to denote
the transpose operator. The time horizon of the investment is given by T > 0.

The price process of the money market account B(t) satisfies dB(t) = r(Y (t))B(t)
dt, where r(Y (t)) ≥ 0 is interest rate modulated by the regime-switching process Y .
The filtration H is generated by an N -dimensional default indicator process Z =
(Zj(t); j = 1, . . . , N)t∈[0,T ] which takes values in S := {0, 1}N . The default indicator
process Z links to the default times of the N defaultable stocks via τj := inf{t ≥
0; Zj(t) = 1} for j = 1, . . . , N . The filtration H = (Ht)t∈[0,T ] is defined by Ht =∨N
j=1 σ(Zj(s); s ≤ t). Hence H contains all information about default events until the

terminal time T . The market model is specified in detail in the following subsections.

2.1. Regime-switching process. The regime-switching process is described by
a continuous time (conservative) Markov chain Y = (Y (t))t∈[0,T ] with countable state
space Z+ := N \ {0} = {1, 2, . . .}. The generator of the Markov chain Y is given by
the Q-matrix Q = (qij)ij∈Z+ . This yields that qii ≤ 0 for i ∈ Z+, qij ≥ 0 for i 6= j,
and

∑∞
j=1 qij = 0 for i ∈ Z+ (i.e.,

∑
j 6=i qij = −qii for i ∈ Z+).

2.2. Credit risk model. The joint process (Y,Z) of the regime-switching pro-
cess and the default indicator process is a Markov process on the state space Z+ ×
S. Moreover, at time t, the default indicator process jumps from a state Z(t) :=
(Z1(t), . . . , Zj−1(t), Zj(t), Zj+1(t), . . . , ZN (t)) in which the obligor j is alive (Zj(t) =
0) to the neighbor state Zj(t) := (Z1(t), . . . , Zj−1(t), 1−Zj(t), Zj+1(t), . . . , ZN (t)) in
which the obligor j has defaulted at a strictly positive stochastic rate λj(Y (t), Z(t)).
We assume that Y and Z1, . . . , ZN will not jump simultaneously. Therefore, the
default intensity of the jth stock may change if either any other stock in the port-
folio defaults (contagion effect) or if there are regime-switchings. Our default model
thus belongs to the rich class of interacting intensity models, introduced by Frey and
Backhaus [18]. We set λ(i, z) = (λj(i, z); j = 1, . . . , N)> for (i, z) ∈ Z+ × S.

2.3. Price processes. The price process of the N defaultable stocks is denoted
by the vector process P̃ = (P̃ j(t); j = 1, . . . , N)>t∈[0,T ]. Here the price process of the

jth stock is given by, for t ∈ [0, T ],

(2.1) P̃j(t) = (1− Zj(t))Pj(t), j = 1, . . . , N,

where P = (Pj(t); j = 1, . . . , N)>t∈[0,T ] represents the predefault price of the N stocks.

In particular, the price of the jth stock is given by the predefault price Pj(t) up to
τj−, jumps to 0 at default time τj , and remains at 0 afterwards. The predefault price
process P of the N defaultable stocks is assumed to satisfy

dP (t) = diag(P (t))[(µ(Y (t)) + λ(Y (t), Z(t)))dt+ σ(Y (t))dW (t)],(2.2)

where diag(P (t)) is the diagonal N × N -dimensional matrix with diagonal elements
Pi(t). For each i ∈ Z+, the vector µ(i) is RN -valued column vector and σ(i) is
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RN×d-valued matrices such that σ(i)σ(i)> is positive definite. By (2.1), (2.2), and
integration by parts, the price dynamics of defaultable stocks satisfies that

dP̃ (t) = diag(P̃ (t))[µ(Y (t))dt+ σ(Y (t))dW (t)− dM(t)].(2.3)

Here, M = (Mj(t); j = 1, . . . , N)>t∈[0,T ] is a pure jump G = (Gt)t∈[0,T ]-martingale
given by

Mj(t) := Zj(t)−
∫ t∧τj

0

λj(Y (s), Z(s))ds, t ∈ [0, T ].(2.4)

By the construction of the default indicator process Z in Bo and Capponi [10], it can
be seen that W is also a G-Brownian motion using the condition (M.2a) in section
6.1.1 of Chapter 6 in Bielecki and Rutkowski [7].

3. Dynamic optimization problem. In this section, we formally derive the
DPE associated with the risk sensitive stochastic control problem. We first reformu-
late the risk sensitive portfolio optimization problem in an equivalent form in section
3.1. The corresponding DPE will be derived and analyzed in section 3.2.

3.1. Formulation of portfolio optimization problem. Let us first introduce
the set up and formulate the risk sensitive portfolio optimization problem. For t ∈
[0, T ], let φB(t) represent the number of shares of the risk-free asset, and let φj(t)
denote the number of shares of the jth stock at time t held by the investor. The
resulting wealth process is given by

Xφ(t) =

N∑
j=1

φj(t)P̃j(t) + φB(t)B(t), t ∈ [0, T ].

Using the price representation (2.1) of stocks, the above wealth process can be rewrit-
ten as

Xφ(t) =

N∑
j=1

φj(t)(1− Zj(t))Pj(t) + φB(t)B(t), t ∈ [0, T ].

For a given positive wealth process, we can consider the fractions of wealth invested
in the stocks and money market account as follows: for j = 1, . . . , N , let us define

π̃j(t) =
φj(t)P̃j(t−)
Xφ(t−)

and π̃B(t) = 1 − π̃(t)>eN , where π̃(t) = (π̃i(t); i = 1, . . . , N)>,

and
eN =

(
1, 1, . . . , 1︸ ︷︷ ︸
N ones

)>
.

Noting that the price of the jth stock jumps to zero when the jth stock defaults,
the fraction of wealth held by the investor in this stock is zero after it defaults. In
particular, the following equality holds: π̃j(t) = (1 − Zj(t−))π̃j(t) for j = 1, . . . , N .
Therefore, the self-financing condition leads to wealth dynamics in the following form:
X π̃(0) = x ∈ R+ := (0,∞) and

dX π̃(t) = X π̃(t−)π̃(t)>diag(P̃ (t−))−1dP̃ (t) +X π̃(t)(1− π̃(t)>eN )
dB(t)

B(t)
(3.1)

= X π̃(t)
[
r(Y (t)) + π̃(t)>(µ(Y (t))− r(Y (t))eN )

]
dt
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+X π̃(t−)π̃(t)>[σ(Y (t))dW (t)− dM(t)].

We next introduce the definition of the set of all admissible controls used in the
paper.

Definition 3.1. The admissible control set Ũ is a class of G-predictable feedback
strategies π̃(t) = (π̃j(t); j = 1, . . . , N)>, t ∈ [0, T ], given by π̃j(t) = πj(t,X

π̃(t−),
Y (t−), Z(t−)) such that SDE (3.1) admits a unique positive (strong) solution for
X π̃(0) = x ∈ R+ (i.e., the feedback strategies π̃(t) should take values in U :=
(−∞, 1)N ). Furthermore, the control π̃ = (π̃(t))t∈[0,T ] is required to make the positive

process Γπ̃,θ = (Γπ̃,θ(t))t∈[0,T ] defined later by (3.6) to be a P-martingale.

We will prove the martingale property of Γπ̃
∗,θ for a candidate optimal strategy

π̃∗ by verifying the generalized Novikov’s condition in section 4. We consider the
following risk-sensitive objective functional. For π̃ ∈ Ũ , and given the initial values
(X(0), Y (0), Z(0)) = (x, i, z) ∈ R+ × Z+ × S, we define

J (π̃;T, x, i, z) := −2

θ
logE

[
exp

(
−θ

2
logX π̃(T )

)]
= −2

θ
logE

[
(X π̃(T ))−

θ
2

]
.(3.2)

The investor aims to maximize the objective functional J over all strategies π̃ ∈ Ũ .
Let us only focus on the case when θ ∈ (0,∞) for a risk-sensitive investor. The case
θ ∈ (−2, 0) is ignored as it is associated to a risk-seeking behavior which is seldom
encountered in practice. The objective functional (3.2) has been considered in the
existing literature (see, e.g., Bielecki and Pliska [6]) for dynamic asset allocations
in the presence of market risk; however, it is still an open problem in the setting
with default risk and regime-switching, which motivates our research of this project.
Equation (1.1) in Bielecki and Pliska [6] in our case can be read as follows: for θ close
to 0,

J (π̃;T, x, y, z) = E
[
log
(
X π̃(T )

)]
− θ

4
Var

(
log(X π̃(T ))

)
+ o(θ2),(3.3)

where o(θ2) will typically depend on the terminal horizon T . Then J (π̃;T, x, y, z)
may be interpreted as the growth rate of the investor’s wealth minus a penalty term
proportional to the variance of the realized rate, with an error that is proportional to
θ2. This establishes a link between the risk-sensitive control problem and the robust
decision making rule. A risk-sensitive investor would like to design a decision rule
which protects him against large deviations of the growth rate from its expectation,
and he achieves this by choosing higher values of the parameter θ.

We next rewrite the objective functional as the exponential of an integral criterion
(similar to Nagai and Peng [24] and Capponi, Figueroa-López, and Pascucci [14])
which will turn out to be convenient for the analysis of the dynamic programming
equation. For all π̃ ∈ Ũ , the wealth process solving SDE (3.1) is given by

X π̃(T ) =x exp

{∫ T

0

[
r(Y (s)) + π̃>(s)(µ(Y (s))− r(Y (s))eN )

]
ds

+

∫ T

0

π̃>(s)σ(Y (s))dW (s)

− 1

2

∫ T

0

∥∥σ(Y (s))>π̃(s)
∥∥2
ds+

N∑
j=1

∫ T

0

log(1− π̃j(s))dMj(s)

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

58
.1

32
.1

61
.1

85
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

372 LIJUN BO, HUAFU LIAO, AND XIANG YU

+

N∑
j=1

∫ T∧τj

0

λj(Y (s), Z(s))
[
π̃j(s) + log(1− π̃j(s))

]
ds

}
,

and consequently,

(
X π̃(T )

)− θ2 = x−
θ
2 Γπ̃,θ(T ) exp

(
θ

2

∫ T

0

L(π̃(s);Y (s), Z(s))ds

)
,(3.4)

where, for (π, i, z) ∈ U × Z+ × S, the risk sensitive function L(π; i, z) is defined by

L(π; i, z) := −r(i)− π>(µ(i)− r(i)eN ) +
1

2

(
1 +

θ

2

)∥∥σ(i)>π
∥∥2

−
N∑
j=1

(1− zj)
[

2

θ
+ πj −

2

θ
(1− πj)−

θ
2

]
λj(i, z).(3.5)

Here, the positive density process is given by, for t ∈ [0, T ],

Γπ̃,θ(t) := E(Ππ̃,θ)t,(3.6)

Ππ̃,θ(t) := −θ
2

∫ t

0

π̃(s)>σ(Y (s))dW (s) +

N∑
j=1

∫ t

0

{(1− π̃j(s))−
θ
2 − 1}dMj(s),

where E(·) denotes the stochastic exponential.
As π̃ ∈ Ũ , we have that Γπ̃,θ = (Γπ̃,θ(t))t∈[0,T ] is a P-martingale. We can thus

define the following change of measure given by

dPπ̃,θ

dP
∣∣
Gt

= Γπ̃,θ(t), t ∈ [0, T ],(3.7)

under which

W π̃,θ(t) := W (t) +
θ

2

∫ t

0

σ(Y (s))>π̃(s)ds, t ∈ [0, T ],(3.8)

is a d-dimensional Brownian motion, while under Pπ̃,θ, for j = 1, . . . , N , it holds that

M π̃,θ
j (t) := Zj(t)−

∫ t∧τj

0

(1− π̃j(s))−
θ
2 λj(Y (s), Z(s))ds, t ∈ [0, T ],(3.9)

is a martingale. The definition of Pπ̃,θ enables us to rewrite the above risk-sensitive
objective functional (3.2) in an exponential form. From (3.4), we deduce that

J (π̃;T, x, i, z) = −2

θ
logE

[(
X π̃(T )

)− θ2 ]
= −2

θ
logE

[
x−

θ
2 Γπ̃,θ(T ) exp

(
θ

2

∫ T

0

L(π̃(s);Y (s), Z(s))ds

)]

= log x− 2

θ
logEπ̃,θ

[
exp

(
θ

2

∫ T

0

L(π̃(s);Y (s), Z(s))ds

)]
=: log x+ J̄ (π̃;T, i, z).
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DEFAULT CONTAGION AND REGIME-SWITCHING 373

Here Eπ̃,θ represents the expectation w.r.t. Pπ̃,θ defined by (3.7). Thanks to the
relationship between J and J̄ , our original problem is equivalent to maximize J̄ over
π̃ ∈ Ũ . We can, therefore, reformulate the value function of the risk-sensitive control
problem as

(3.10)

V (T, i, z) = sup
π̃∈Ũ
J̄ (π̃;T, i, z) = −2

θ
inf
π̃∈Ũ

logEπ̃,θ
[

exp

(
θ

2

∫ T

0

L(π̃(s);Y (s), Z(s))ds

)]
,

for (i, z) ∈ Z+ × S.

3.2. Dynamic programming equations. In this section, we will first derive
the DPE satisfied by the value function (3.10) using heuristic arguments in Birge, Bo,
and Capponi [8]. It will be postponed to the next section to show that the solution
of DPE indeed coincides with the value function of our risk sensitive control problem
in rigorous verification theorems.

Let (t, i, z) ∈ [0, T ]× Z+ × S, and define

V̄ (t, i, z) := −2

θ
inf
π̃∈Ũ

log J(π̃; t, i, z)

:= −2

θ
inf
π̃∈Ũ

logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (s), Z(s))ds

)]
,(3.11)

where Eπ̃,θt,i,z[·] := Eπ̃,θ[·|Y (t) = i, Z(t) = z]. This yields the relation V (T, i, z) =

V̄ (0, i, z). For 0 ≤ t < s ≤ T , the dynamic programming principle leads to

V̄ (t, i, z) = − 2

θ
inf
π̃∈Ũ

logEπ̃,θt,i,z

[
exp

(
− θ

2
V̄ (s, Y (s), Z(s))

+
θ

2

∫ s

t

L(π̃(u);Y (u), Z(u))du

)]
.

Using heuristic arguments from Birge, Bo, and Capponi [8], we have the following
DPE satisfied by V̄ , i.e., for all (t, i, z) ∈ [0, T )× Z+ × S,

0 =
∂V̄ (t, i, z)

∂t
− 2

θ

∑
l 6=i

qil

[
exp

(
−θ

2

(
V̄ (t, l, z)− V̄ (t, i, z)

))
− 1

]
+ sup
π∈U

H
(
π; i, z, (V̄ (t, i, zj); j = 0, 1, . . . , N)

)
(3.12)

with terminal condition V̄ (T, i, z) = 0 for all (i, z) ∈ Z+ × S. In the above equation,
the function H is defined by, for (π, i, z) ∈ U × Z+ × S,

H(π; i, z, f̄(z)) :=− 2

θ

N∑
j=1

[
exp

(
−θ

2
(f(zj)− f(z))

)
− 1

]
(1− zj)(1− πj)−

θ
2 λj(i, z)

+ r(i) + π>(µ(i)− r(i)eN )− 1

2

(
1 +

θ

2

)∥∥σ(i)>π
∥∥2

+

N∑
j=1

[
2

θ
+ πj −

2

θ
(1− πj)−

θ
2

]
(1− zj)λj(i, z).(3.13)

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

58
.1

32
.1

61
.1

85
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

374 LIJUN BO, HUAFU LIAO, AND XIANG YU

Here f̄(z) = (f(zj); j = 0, 1, . . . , N) for any measurable function f(z). Above, we
used the notation zj := (z1, . . . , zj−1, 1− zj , zj+1, . . . , zN ) for z ∈ S.

Equation (3.12) is in fact a recursive system of DPEs. We consider the following
Cole–Hopf transform of the solution given by

ϕ(t, i, z) := exp

(
−θ

2
V̄ (t, i, z)

)
, (t, i, z) ∈ [0, T ]× Z+ × S.(3.14)

Then ∂ϕ(t,i,z)
∂t = − θ2ϕ(t, i, z)∂V̄ (t,i,z)

∂t for (t, i, z) ∈ [0, T ] × Z+ × S. Plugging it into
(3.12), we get that

0 =
∂ϕ(t, i, z)

∂t
+
∑
l 6=i

qil [ϕ(t, l, z)− ϕ(t, i, z)](3.15)

+ inf
π∈U

H̃
(
π; i, z, (ϕ(t, i, zj); j = 0, 1, . . . , N)

)
with terminal condition ϕ(T, i, z) = 1 for all (i, z) ∈ Z+ × S. In the above equation,
the function H̃ is defined by

H̃(π; i, z, f̄(z)) :=

{
− θ

2
r(i)− θ

2
π>(µ(i)− r(i)eN ) +

θ

4

(
1 +

θ

2

)∥∥σ(i)>π
∥∥2

(3.16)

+

N∑
j=1

(
−1− θ

2
πj

)
(1− zj)λj(i, z)

}
f(z)

+

N∑
j=1

f(zj)(1− zj)(1− πj)−
θ
2 λj(i, z).

4. Main results and verification theorems. We analyze the existence of
global solutions of the recursive system of DPEs (3.15) in a two-step procedure. First,
we investigate the existence and uniqueness of classical solutions of (3.15) as a dynam-
ical system when the Markov chain Y takes values in the finite state space. Second,
we proceed to study the countably infinite state case using approximation arguments.

Let us introduce some notations which will be used frequently in this section.
Let n ∈ Z+. For x ∈ Rn, we write x = (x1, . . . , xn)>. For any x, y ∈ Rn, we
write x ≤ y if xi ≤ yi for all i = 1, . . . , n, while write x < y if x ≤ y and there
exists some i ∈ {1, . . . , n} such that xi < yi. In particular, x � y if xi < yi for all
i = 1, . . . , n. Recall that eN denotes the N -dimensional column vector whose entries
are all ones. For the general default state z ∈ S, we here introduce a general default
state representation z = 0j1,...,jk for indices j1 6= · · · 6= jk belonging to {1, . . . , N},
and k ∈ {0, 1, . . . , N}. Such a vector z is obtained by flipping the entries j1, . . . , jk
of the zero vector to one, i.e., zj1 = · · · = zjk = 1, and zj = 0 for j /∈ {j1, . . . , jk} (if
k = 0, we set z = 0j1,...,jk = 0). Clearly 0j1,...,jN = e>N .

4.1. Finite state case of regime-switching process. In this section, we
study the case where the regime-switching process Y is defined on a finite state space
given by Dn = {1, . . . , n}. Here n ∈ Z+ is a fixed number. The corresponding Q-
matrix of the Markov chain Y is given by Qn = (qij)i,j∈Dn satisfying

∑
j∈Dn qij = 0

for i ∈ Dn and qij ≥ 0 when i 6= j. It is worth noting that qij , i, j ∈ Dn here may be
different from what is given in subsection 2.1. With slight abuse of notation, we still
use qij here only for convenience.
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Let ϕ(t, z) := (ϕ(t, i, z); i = 1, . . . , n)> be a column vector of the solution for
(t, z) ∈ [0, T ]× S. Then, we can rewrite (3.15) as the following dynamical system:

∂ϕ(t, z)

∂t
+
(
Qn + diag(ν(z))

)
ϕ(t, z) +G(t, ϕ(t, z), z) = 0, t ∈ [0, T )× S;

ϕ(T, z) = en for all z ∈ S.
(4.1)

Here, the vector of function G(t, x, z) = (Gi(t, x, z); i = 1, . . . , n)> is given by, for
each i ∈ Dn and (t, x, z) ∈ [0, T ]× Rn × S,

Gi(t, x, z) = inf
π∈U

{
N∑
j=1

ϕ(t, i, zj)(1− zj)(1− πj)−
θ
2 λj(i, z)(4.2)

+

[
θ

4

(
1 +

θ

2

)∥∥σ(i)>π
∥∥2 − θ

2
π>(µ(i)− r(i)eN )

− θ

2

N∑
j=1

πj(1− zj)λj(i, z)
]
xi

}
.

The vector of coefficient ν(z) = (νi(z); i = 1, . . . , n)> for z ∈ S is given by, for each
i ∈ Dn,

νi(z) = −θ
2
r(i)−

N∑
j=1

(1− zj)λj(i, z).(4.3)

Recall the recursive system given by (4.1) in terms of default states z = 0j1,...,jk ∈
S (where k = 0, 1, . . . , N). The solvability can in fact be analyzed in the recursive
form on default states. Therefore, our strategy for analyzing the system is based on
a recursive procedure, starting from the default state z = e>N (i.e., all stocks have
defaulted) and proceeding backward to the default state z = 0 (i.e., all stocks are
alive).

(i) k = N (i.e., all stocks have defaulted). In this default state, it is clear that the
investor will not invest in stocks and hence the optimal fraction strategy in
stocks for this case is given by π∗1 = · · · = π∗N = 0 by virtue of Definition 3.1.
Let ϕ(t, e>N ) = (ϕ(t, i, e>N ); i = 1, . . . , n)>. As a consequence, the dynamical
system (4.1) can be written as

d

dt
ϕ(t, e>N ) =−A(N)ϕ(t, e>N ) in [0, T );

ϕ(T, e>N ) =en.
(4.4)

The matrix of coefficients A(N) := Qn + diag(ν(e>N )).
In order to establish the unique positive solution to the above dynamical system (4.4),
we need the following auxiliary result.

Lemma 4.1. Let g(t) = (gi(t); i = 1, . . . , n)> satisfy the following dynamical
system: 

d

dt
g(t) =Bg(t) in (0, T ];

g(0) = ξ.

If B = (bij)n×n satisfies bij ≥ 0 for i 6= j and ξ � 0, then we have g(t) � 0 for all
t ∈ [0, T ].
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Proof. Define f(x) = Bx for x ∈ Rn. By virtue of Proposition 1.1 of Chapter 3
in [26], it suffices to verify that f : Rn → Rn is of type K, i.e., for any x, y ∈ Rn
satisfying x ≤ y and xi = yi for some i = 1, . . . , n, it holds that fi(x) ≤ fi(y). Notice
that bij ≥ 0 for all i 6= j. Then, we have that

fi(x) = (Bx)i =

n∑
j=1

bijxj = biixi +

n∑
j=1,j 6=i

bijxj

= biiyi +

n∑
j=1,j 6=i

bijxj ≤ biiyi +

n∑
j=1,j 6=i

bijyj = fi(y),(4.5)

and hence f is of type K. Thus, we complete the proof of the lemma.

The next result is consequent on the previous lemma.

Lemma 4.2. The dynamical system (4.4) admits a unique solution which is given
by

ϕ(t, e>N ) = eA
(N)(T−t)en =

∞∑
i=0

(A(N))i(T − t)i

i!
en, t ∈ [0, T ],(4.6)

where the n× n-dimensional matrix A(N) = Qn + diag(ν(e>N )) = Qn − θ
2diag(r) with

r = (r(i); i = 1, . . . , n)>. Moreover, it holds that ϕ(t, e>N )� 0 for all t ∈ [0, T ].

Proof. The representation of the solution ϕ(t, e>N ) given by (4.6) is obvious. Note
that en � 0 and qij ≥ 0 for all i 6= j, as Qn = (qij)n×n is the generator of the Markov
chain. Then in order to prove ϕ(t, e>N ) � 0 for all t ∈ [0, T ], using Lemma 4.1, it
suffices to verify [A(N)]ij ≥ 0 for all i 6= j. However, [A(N)]ij = qij for all i 6= j, and the
condition given in Lemma 4.1 is, therefore, verified, which implies that ϕ(t, e>N ) � 0
for all t ∈ [0, T ].

We next consider the general default case with z = 0j1,...,jk for 0 ≤ k ≤ N − 1,
i.e., the stocks j1, . . . , jk have defaulted but the stocks {jk+1, . . . , jN} := {1, . . . , N} \
{j1, . . . , jk} remain alive. Then we have the following:

(ii) Because the stocks j1, . . . , jk have defaulted, the optimal fraction strategies

for the stocks j1, . . . , jk are given by π
(k,∗)
j = 0 for j ∈ {j1, . . . , jk} by virtue

of Definition 3.1. Let ϕ(k)(t) = (ϕ(t, i, 0j1,...,jk); i = 1, . . . , n)> and λ
(k)
j (i) =

λj(i, 0
j1,...,jk) for j /∈ {j1, . . . , jk} and i = 1, . . . , n. Then, the corresponding

DPE (4.1) to this default case is given by
d

dt
ϕ(k)(t) =−A(k)ϕ(k)(t)−G(k)(t, ϕ(k)(t)) in [0, T );

ϕ(k)(T ) = en.

(4.7)

Here, the n× n-dimensional matrix A(k) is given by

A(k) = diag

−θ
2
r(i)−

∑
j /∈{j1,...,jk}

λ
(k)
j (i); i = 1, . . . , n

+Qn.(4.8)

The coefficient G(k)(t, x) = (G
(k)
i (t, x); i = 1, . . . , n)> for (t, x) ∈ [0, T ]× Rn

is given by, for i ∈ Dn,

G
(k)
i (t, x) := inf

π(k)∈U(k)

{ ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)
(
1− π(k)

j

)− θ2 λ(k)
j (i)(4.9)

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

58
.1

32
.1

61
.1

85
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFAULT CONTAGION AND REGIME-SWITCHING 377

+H(k)(π(k); i)xi

}
,

where, for (π(k), i) ∈ U (k) ×Dn, the function H(k) is given by

H(k)(π(k); i) :=
θ

4

(
1 +

θ

2

)∥∥∥σ(k)(i)>π(k)
∥∥∥2

− θ

2
(π(k))>

(
µ(k)(i)− r(i)eN−k

)
− θ

2

∑
j /∈{j1,...,jk}

π
(k)
j λ

(k)
j (i).(4.10)

The policy space of this state is U (k) = (−∞, 1)N−k, and ϕ(k+1),j(t, i) :=
ϕ(t, i, 0j1,...,jk,j) for j /∈ {j1, . . . , jk} corresponds to the ith element of the
positive solution vector of (4.1) at the default state z = 0j1,...,jk,j . Here, for

each i = 1, . . . , n, we have also used the following notation: π(k) = (π
(k)
j ; j /∈

{j1, . . . , jk})>, θ(k)(i) = (θj(i); j /∈ {j1, . . . , jk})>, σ(k)(i) = (σjκ(i); j /∈
{j1, . . . , jk}, κ ∈ {1, . . . , d}) and µ(k)(i) = (µj(i); j /∈ {j1, . . . , jk})>.

From the expression of G
(k)
i (t, x) given by (4.9), it can be seen that the solution

ϕ(k)(t) on t ∈ [0, T ] of DPE (4.1) at the default state z = 0j1,...,jk in fact depends on
the solution ϕ(k+1),j(t) on t ∈ [0, T ] of DPE (4.1) at the default state z = 0j1,...,jk,j for
j /∈ {j1, . . . , jk}. In particular, when k = N − 1, the solution ϕ(k+1),j(t) = ϕ(t, e>N )�
0 corresponds to the solution to (4.1) at the default state z = eN (i.e., k = N), which
has been obtained by Lemma 4.2. This suggests that we solve DPE (4.1) backward
recursively in terms of default states z = 0j1,...,jk . Thus, in order to study the existence
and uniqueness of a positive (classical) solution to the dynamical system (4.7), we first
assume that (4.1) admits a positive unique (classical) solution ϕ(k+1),j(t) on t ∈ [0, T ]
for j /∈ {j1, . . . , jk}.

We can first obtain an estimate on G(k)(t, x), which is presented in the following
lemma.

Lemma 4.3. For each k = 0, 1, . . . , N −1, let us assume that DPE (4.1) admits a
positive unique (classical) solution ϕ(k+1),j(t) on t ∈ [0, T ] for j /∈ {j1, . . . , jk}. Then,
for any x, y ∈ Rn satisfying x, y ≥ εen with ε > 0, there exists a positive constant
C = C(ε) which only depends on ε > 0 such that∥∥∥G(k)(t, x)−G(k)(t, y)

∥∥∥ ≤ C ‖x− y‖ .(4.11)

Here ‖ · ‖ denotes the Euclidian norm.

Proof. It suffices to prove that, for each i = 1, . . . , n, |G(k)
i (t, x) − G(k)

i (t, y)| ≤
C(ε)‖x − y‖ for any x, y ∈ Rn satisfying x, y ≥ εen with ε > 0, where C(ε) > 0 is
independent of time t. By the recursive assumption, ϕ(k+1),j(t) on t ∈ [0, T ] is the
unique positive (classical) solution to (4.1) for j /∈ {j1, . . . , jk}. Then, it is continuous
on [0, T ], which implies the existence of a constant C0 > 0 independent of t such
that supt∈[0,T ] ‖ϕ(k+1),j(t)‖ ≤ C0 for j /∈ {j1, . . . , jk}. Thus, by (4.9), and thanks to

H(k)(0; i) = 0 for all i ∈ Dn using (4.10), it follows that, for all (t, x) ∈ [0, T ]× Rn,

G
(k)
i (t, x) ≤

 ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)xi

 ∣∣∣∣∣
π(k)=0
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=
∑

j /∈{j1,...,jk}

ϕ(k+1),j(t, i)λ
(k)
j (i) ≤ C0

∑
j /∈{j1,...,jk}

λ
(k)
j (i).(4.12)

On the other hand, as σ(k)(i)>σ(k)(i) is positive-definite, there exists a positive con-
stant δ > 0 such that

∥∥σ(k)(i)>π(k)‖2 ≥ δ‖π(k)‖2 for all i ∈ Dn. Hence, the following
estimate holds:

H(k)(π(k); i) ≥ θ

4

(
1 +

θ

2

)
δ
∥∥∥π(k)

∥∥∥2

(4.13)

− θ

2

∥∥∥µ(k)(i)− r(i)eN−k
∥∥∥+

∑
j /∈{j1,...,jk}

λ
(k)
j (i)

∥∥∥π(k)
∥∥∥ .

We next take the positive constant defined as

C1 := 2

∥∥µ(k)(i)− r(i)eN−k
∥∥+

∑
j /∈{j1,...,jk} λ

(k)
j (i)

(1 + θ
2 )δ

.

For all π(k) ∈ {π(k) ∈ U (k); ‖π(k)‖ ≥ C1}, it holds that

H(k)(π(k); i) ≥ 0, i ∈ Dn.(4.14)

This yields that, for all π(k) ∈ {π(k) ∈ U (k); ‖π(k)‖ ≥ C1} and all x ≥ εen, we deduce
from (4.13) and (4.14) that

∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)xi ≥ H(k)(π(k); i)xi

≥ H(k)(π(k); i)ε

≥ ε

θ
4

(
1 +

θ

2

)
δ
∥∥∥π(k)

∥∥∥2

− θ

2

∥∥∥µ(k)(i)− r(i)eN−k
∥∥∥+

∑
j /∈{j1,...,jk}

λ
(k)
j (i)

∥∥∥π(k)
∥∥∥
 .

We shall choose another positive constant depending on ε > 0 as

C2(ε) :=
C1

2
+

√√√√C2
1

4
+

8

εθ(2 + θ)δ
C0

∑
j /∈{j1,...,jk}

λ
(k)
j (i).

Then, for all π(k) ∈ {π ∈ U (k); ‖π‖ ≥ C2(ε)} and all x ≥ εen, it holds that

∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)xi ≥ C0

∑
j /∈{j1,...,jk}

λ
(k)
j (i).

(4.15)

By (4.12), we have that G
(k)
i (t, x) ≤ C0

∑
j /∈{j1,...,jk} λ

(k)
j (i) for all(t, x) ∈ [0, T ]×Rn.
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Thus, it follows from (4.15) that

G
(k)
i (t, x)

(4.16)

= inf
π(k)∈U(k)

 ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)xi


= inf
π(k)∈{π∈U(k):
‖π‖≤C2(ε)}

 ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)xi

 .

By virtue of (4.16), it holds that

G
(k)
i (t, x) = inf

π(k)∈{π∈U(k):
‖π‖≤C2(ε)}

{ ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i)

+H(k)(π(k); i)yi +H(k)(π(k); i)(xi − yi)

}

≤ inf
π(k)∈{π∈U(k):
‖π‖≤C2(ε)}

{ ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i)

+H(k)(π(k); i)yi

}
+ C(ε)|xi − yi|

= G
(k)
i (t, y) + C(ε)|xi − yi|.(4.17)

Here, the finite positive constant C(ε) = maxi=1,...,n C
(i)(ε), where for i ∈ Dn,

C(i)(ε) := sup
π(k)∈{π∈U(k):
‖π‖≤C2(ε)}

H(k)(π(k); i).(4.18)

Note that the constant C(i)(ε) given above is nonnegative and finite for each i ∈ Dn.

By (4.17), we get that |G(k)
i (t, x) − G

(k)
i (t, y)| ≤ C(ε)‖x − y‖ for any x, y ∈ Rn

satisfying x, y ≥ εen with ε > 0, which completes the proof of the lemma.

We move on to study the existence and uniqueness of the global (classical) solution
to the dynamical system (4.7). To this end, we prepare the following comparison
results of two types of dynamical systems with the type K condition introduced in
Smith [26].

Lemma 4.4. Let gκ(t) = (gκi(t); i = 1, . . . , n)> with κ = 1, 2 satisfy the following
dynamical systems on [0, T ], respectively:

d

dt
g1(t) = f(t, g1(t)) + f̃(t, g1(t)) in (0, T ];

g1(0) = ξ1,


d

dt
g2(t) = f(t, g2(t)) in (0, T ];

g2(0) = ξ2.

Here, the functions f(t, x), f̃(t, x) : [0, T ] × Rn → Rn are assumed to be Lipschitz
continuous w.r.t. x ∈ Rm uniformly in t ∈ [0, T ]. The function f(t, ·) satisfies the
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type K condition for each t ∈ [0, T ] (i.e., for any x, y ∈ Rn satisfying x ≤ y and
xi = yi for some i = 1, . . . , n, it holds that fi(t, x) ≤ fi(t, y) for each t ∈ [0, T ]). If
f̃(t, x) ≥ 0 for (t, x) ∈ [0, T ]× Rn and ξ1 ≥ ξ2, then g1(t) ≥ g2(t) for all t ∈ [0, T ].

Proof. For p > 0, let g
(p)
1 (t) = (g

(p)
1i (t); i = 1, . . . , n)> be the solution to the

following dynamical system given by

(4.19)


d

dt
g

(p)
1 (t) = f(t, g

(p)
1 (t)) + f̃(t, g

(p)
1 (t)) +

1

p
e>n in (0, T ];

g
(p)
1 (0) = ξ1 +

1

p
e>n .

Then, for all t ∈ (0, T ], it holds that

‖g(p)
1 (t)− g1(t)‖ ≤‖g(p)

1 (0)− g1(0)‖+

∫ t

0

∥∥f(s, g
(p)
1 (s))− f(s, g1(s))

∥∥ds
+

∫ t

0

∥∥f̃(s, g
(p)
1 (s))− f̃(s, g1(s))

∥∥ds+
1

p

∫ t

0

‖en‖ds

≤ 1 + T

p
‖en‖+ (C + C̃)

∫ t

0

∥∥g(p)
1 (s)− g1(s)

∥∥ds.
Here C > 0 and C̃ > 0 are Lipschitz constant coefficients for f(t, x) and f̃(t, x),

respectively. Gronwall’s lemma yields that g
(p)
1 (t)→ g1(t) for all t ∈ [0, T ] as p→∞.

We claim that g
(p)
1 (t)� g2(t) for all t ∈ [0, T ]. Suppose that the claim does not hold.

The fact that g
(p)
1 (0) � g2(0), and g

(p)
1 (t), g2(t) are continuous on [0, T ] implies that

there exists a t0 ∈ (0, T ] such that g
(p)
1 (s) ≥ g2(s) on s ∈ [0, t0] and g

(p)
1i (t0) = g2i(t0)

for some i ∈ {1, . . . , n}. Because for t0 > 0, g
(p)
1 (t), g2(t) are differentiable on (0, T ],

it follows that

d

dt
g

(p)
1i (t)

∣∣
t=t0

= lim
ε→0

g
(p)
1i (t0)− g(p)

1i (t0 − ε)
ε

≤ lim
ε→0

g2i(t0)− g2i(t0 − ε)
ε

=
d

dt
g2i(t)

∣∣
t=t0

.

On the other hand, as f(t, ·) satisfies the type K condition for each t ∈ [0, T ] and
f̃(t, x) ≥ 0 for all (t, x) ∈ [0, T ]× Rn, for the above i, we also have that

d

dt
g

(p)
1i (t)

∣∣
t=t0

=fi(t0, g
(p)
1i (t0)) + f̃i(t0, g

(p)
1 (t0)) +

1

p

>fi(t0, g
(p)
1i (t0)) ≥ fi(t0, g2(t0)) =

d

dt
g2i(t)

∣∣
t=t0

.(4.20)

We obtain a contradiction, and hence g
(p)
1 (t) � g2(t) for all t ∈ [0, T ]. It, therefore,

holds that g1(t) ≥ g2(t) for all t ∈ [0, T ] by passing p to infinity.

Now we are ready to present the following existence and uniqueness result for the
positive (classical) solution of (4.7).

Theorem 4.1. For each k = 0, 1, . . . , N − 1, assume that DPE (4.1) admits a
positive unique (classical) solution ϕ(k+1),j(t) on t ∈ [0, T ] for j /∈ {j1, . . . , jk}. Then,
there exists a unique positive (classical) solution ϕ(k)(t) on t ∈ [0, T ] of (4.1) at the
default state z = 0j1,...,jk (i.e., (4.7) admits a unique positive (classical) solution).

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

58
.1

32
.1

61
.1

85
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFAULT CONTAGION AND REGIME-SWITCHING 381

Proof. For any constant a ∈ (0, 1], let us consider the truncated dynamical system
given by 

d

dt
ϕ(k)
a (t) +A(k)ϕ(k)

a (t) +G(k)
a (t, ϕ(k)

a (t)) = 0 in [0, T );

ϕ(k)
a (T ) = en.

(4.21)

Here ϕ
(k)
a (t) = (ϕ

(k)
a (t, i); i = 1, . . . , n)> is the vector-valued solution, and the n× n-

dimensional matrix A(k) is given by (4.8). The vector-valued function G
(k)
a (t, x) is

defined as

G(k)
a (t, x) := G(k)(t, x ∨ aen), (t, x) ∈ [0, T ]× Rn.(4.22)

Thanks to Lemma 4.3, there exists a positive constant C = C(a) which only depends
on a > 0 such that, for all t ∈ [0, T ],∥∥G(k)

a (t, x)−G(k)
a (t, y)

∥∥ ≤ C‖x− y‖, x, y ∈ Rn,(4.23)

i.e., G
(k)
a (t, x) is globally Lipschitz continuous w.r.t. x ∈ Rm uniformly in t ∈ [0, T ].

By reversing the time, let us consider ϕ̃
(k)
a (t) := ϕ

(k)
a (T − t) for t ∈ [0, T ]. Then,

ϕ̃
(k)
a (t) satisfies the following dynamical system given by

d

dt
ϕ̃(k)
a (t) =A(k)ϕ̃(k)

a (t) +G(k)
a (T − t, ϕ̃(k)

a (t)) in (0, T ];

ϕ̃(k)
a (0) = e>n .

(4.24)

In virtue of the globally Lipschitz continuity condition (4.23), for each a ∈ (0, 1], it

follows that the system (4.24) has a unique (classical) solution ϕ̃
(k)
a (t) on [0, T ]. In

order to apply Lemma 4.4, we rewrite the above system (4.24) in the following form:
d

dt
ϕ̃(k)
a (t) = f (k)(ϕ̃(k)

a (t)) + f̃ (k)
a (t, ϕ̃(k)

a (t)) in (0, T ];

ϕ̃(k)
a (0) = en.

(4.25)

Here, the Lipschitz continuous functions f (k)(x) = (f
(k)
i (x); i = 1, . . . , n)> and

f̃
(k)
a (t, x) = (f̃

(k)
a,i (t, x); i = 1, . . . , n)> on (t, x) ∈ [0, T ] × Rn are given, respectively,

by

f
(k)
i (x) =

n∑
j=1

qijxj −

θ
2
r(i) +

∑
j /∈{j1,...,jk}

h
(k)
j (i)

xi − βi{|xi| ∨ 1},

f̃
(k)
a,i (t, x) = G(k)

a (T − t, x) + βi{|xi| ∨ 1}, i = 1, . . . , n.(4.26)

The positive constants βi for i ∈ Dn are given by

βi =− inf
π(k)∈U(k)

H(k)(π(k); i),(4.27)

where, for i ∈ Dn, H(k)(π(k); i) is defined by (4.10). It is not difficult to see that βi
is a nonnegative and finite constant for each i ∈ Dn using (4.10). By the recursive
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assumption that ϕ(k+1),j(t) � 0 on [0, T ] for j /∈ {j1, . . . , jk}, for any a ∈ (0, 1], we
have that, for each i ∈ Dn and all (t, x) ∈ [0, T ]× Rn,

G
(k)
i (T − t, x ∨ aen)

= inf
π(k)∈U(k)

 ∑
j /∈{j1,...,jk}

ϕ(k+1),j(T − t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)(xi ∨ a)


≥{xi ∨ a} inf

π(k)∈U(k)
H(k)(π(k); i) ≥ −βi{|xi| ∨ 1}.

(4.28)

Thus, from (4.26), it follows that, for all (t, x) ∈ [0, T ]× Rn,

f̃
(k)
a,i (t, x) = G

(k)
i (T − t, x ∨ aen) + βi{|xi| ∨ 1} ≥ 0, i ∈ Dn.(4.29)

We next verify that the vector-valued function f (k)(x) = (f
(k)
i (x); i = 1, . . . , n)>

given by (4.26) is of type K. Namely, we need to verify that, for any x, y ∈ Rn

satisfying x ≤ y and xi0 = yi0 for some i0 = 1, . . . , n, it holds that f
(k)
i0

(x) ≤ f
(k)
i0

(y).
In fact, by (4.26), we have that, for any x, y ∈ Rn satisfying x ≤ y and xi0 = yi0 for
some i0 = 1, . . . , n,

f
(k)
i0

(x) =

n∑
j=1

qi0jxj −

θ
2
r(i0) +

∑
j /∈{j1,...,jk}

λ
(k)
j (i0)

xi0 − βi{|xi0 | ∨ 1}

= qi0i0xi0 −

θ
2
r(i0) +

∑
j /∈{j1,...,jk}

λ
(k)
j (i0)

xi0 − βi0{|xi0 | ∨ 1}+
∑
j 6=i0

qi0jxj

= qi0i0yi0 −

θ
2
r(i0) +

∑
j /∈{j1,...,jk}

λ
(k)
j (i0)

 yi0 − βi0{|yi0 | ∨ 1}+
∑
j 6=i0

qi0jxj

≤ qi0i0yi0 −

θ
2
r(i0) +

∑
j /∈{j1,...,jk}

λ
(k)
j (i0)

 yi0 − βi0{|yi0 | ∨ 1}+
∑
j 6=i0

qi0jyj

= f
(k)
i0

(y),(4.30)

where we used the fact that for all j 6= i0, qi0j ≥ 0 as Qn = (qij)n×n is the generator
of the Markov chain Y and hence

∑
j 6=i0 qi0jxj ≤

∑
j 6=i0 qi0jyj for all x ≤ y. Hence,

using Proposition 1.1 of Chapter 3 in Smith [26] and Lemma 4.1, we deduce that the
following dynamical system

d

dt
ψ(k)(t) = f (k)(ψ(k)(t)) in (0, T ];

ψ(k)(0) = en

(4.31)

admits a unique (classical) solution ψ(k)(t) = (ψ
(k)
i (t); i = 1, . . . , n)> on t ∈ [0, T ],

and, moreover, it holds that ψ(k)(t)� 0 for t ∈ [0, T ]. Let us set

ε(k) := min
i=1,...,n

{
inf

t∈[0,T ]
ψ

(k)
i (t)

}
.(4.32)
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The continuity of ψ(k)(t) in t ∈ [0, T ] and ψ(k)(t) � 0 for all t ∈ [0, T ] leads to
ε(k) > 0. On the other hand, it follows from (4.29) that the vector-valued function

f
(k)
a (t, x) ≥ 0 on [0, T ] × Rn. Because the vector-valued function f (k)(x) is also of

type K proved by (4.30), we can apply Lemma 4.4 to the dynamical systems (4.25)
and (4.31) and derive that

ϕ̃(k)
a (t) ≥ ψ(k)(t) ≥ ε(k)en for all t ∈ [0, T ],(4.33)

as ϕ̃
(k)
a (0) = ψ(k)(0) = en. Note that the positive constant ε(k) given by (4.32) above

is independent of the constant a ∈ (0, 1]. We can, therefore, choose a ∈ (0, ε(k) ∧ 1),

and it holds that G
(k)
a (T − t, ϕ̃(k)

a (t)) = G(k)(T − t, ϕ̃(k)
a (t)∨aen) = G(k)(T − t, ϕ̃(k)

a (t))

on [0, T ]. By (4.24) with a ∈ (0, ε(k) ∧ 1), it follows that ϕ̃
(k)
a (t) ≥ ε(k)en on [0, T ]

is the unique (classical) solution to the dynamical system (4.7), and the proof of the
theorem is complete.

As an important implication of Theorem 4.1, we present one of our major contri-
butions to the existing literature in the next proposition as the characterization of the
optimal strategy π(k) ∈ U (k) at the default state z = 0j1,...,jk where k = 0, 1, . . . , N−1.

Proposition 4.1. For each k = 0, 1, . . . , N − 1, assume that DPE (4.1) admits
a positive unique (classical) solution ϕ(k+1),j(t) on t ∈ [0, T ] for j /∈ {j1, . . . , jk}.
Let ϕ(k)(t) = (ϕ(k)(t, i); i = 1, . . . , n)> be the unique (classical) solution of DPE
(4.7). Then, there exists a unique optimal feedback strategy π(k,∗) = π(k,∗)(t, i) for
(t, i) ∈ [0, T ]×Dn which is given explicitly by

π(k,∗) = π(k,∗)(t, i)

(4.34)

= arg min
π(k)∈U(k)

 ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)
(
1− π(k)

j

)− θ2 λ(k)
j (i) +H(k)(π(k); i)ϕ(k)(t, i)


= arg min
π(k)∈{π∈U(k):
‖π‖≤C}

{ ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)
(
1− π(k)

j

)− θ2 λ(k)
j (i) +H(k)(π(k); i)ϕ(k)(t, i)

}
,

for some positive constant C > 0.

Proof. Let us first recall (4.7), i.e.,
d

dt
ϕ(k)(t) =−A(k)ϕ(k)(t)−G(k)(t, ϕ(k)(t)) in [0, T );

ϕ(k)(T ) = en.

Theorem 4.1 above shows that the above dynamical system admits a unique positive
(classical) solution ϕ(k)(t) on [0, T ], and, moreover, ϕ(k)(t) ≥ ε(k)e>n for all t ∈ [0, T ].
Here ε(k) > 0 is given by (4.32). Thus, by (4.16), we have that there exists a positive
constant C(ε(k)) which depends on ε(k) > 0 such that, for each i ∈ Dn,

G
(k)
i (t, ϕ(k)(t, i))

= inf
π(k)∈{π∈U(k):

‖π‖≤C(ε(k))}

{ ∑
j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)ϕ(k)(t, i)

}
.
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Here, for each i = 1, . . . , n, the function G
(k)
i (t, x) on (t, x) ∈ [0, T ] × Rn is given

by (4.9). Also for each i = 1, . . . , n, ϕ(k+1),j(t, i) on t ∈ [0, T ] is the ith element of
the positive (classical) solution ϕ(k+1),j(t) of (4.1) at the default state z = 0j1,...,jk,j

for j /∈ {j1, . . . , jk}. Recall that the function H(k)(π(k); i) for (π(k), i) ∈ U (k) × Dn

is given by (4.10). Then, it is not difficult to see that, for each i ∈ Dn and fixed
t ∈ [0, T ],

h(k)(π(k), i) :=
∑

j /∈{j1,...,jk}

ϕ(k+1),j(t, i)(1− π(k)
j )−

θ
2 λ

(k)
j (i) +H(k)(π(k); i)ϕ(k)(t, i)

is continuous and strictly convex in π(k) ∈ Ū (k). Also notice that the space {π(k) ∈
Ū (k); ‖π(k)‖ ≤ C(ε(k))} ⊂ RN−k is compact. Hence, there exist a unique optimum
π(k,∗) = π(k,∗)(t, i) ∈ Ū (k). Moreover, it is noted that h(k)(π(k), i) = +∞ when
π(k) ∈ Ū (k) \ U (k), while h(k)(π(k), i) < +∞ for all π(k) ∈ U (k). Consequently, we
in fact obtain the optimum π(k,∗) = π(k,∗)(t, i) ∈ Ū (k) admitting the representation
(4.34) by taking C = C(ε(k)), which completes the proof of the proposition.

As one of our main results, we finally present and prove the verification theorem
for the finite state space of the regime-switching process Y in the next proposition.

Proposition 4.2. Let ϕ(t, z) = (ϕ(t, i, z); i ∈ Dn)> with (t, z) ∈ [0, T ] × S be
the unique solution of DPE (4.1). For (t, i, z) ∈ [0, T ]×Dn × S, define

π∗(t, i, z) := diag((1− zj)Nj=1)arg min
π∈U

H̃
(
π; i, z, (ϕ(t, i, zj); j = 0, 1, . . . , N)

)
,

(4.35)

where H̃(π; i, z, f̄(z)) is given by (3.13). Let π̃∗ = (π̃∗(t))t∈[0,T ] with π̃∗(t) :=

π∗(t, Y (t−), Z(t−)). Then π̃∗ ∈ Ũ , which is the optimal feedback strategy, i.e., it
holds that

−2

θ
logEπ̃

∗,θ
t,i,z

[
exp

(
θ

2

∫ T

t

L(π̃∗(s);Y (s), Z(s))ds

)]
= V̄ (t, i, z) = −2

θ
logϕ(t, i, z).

(4.36)

Proof. From Proposition 4.1, it follows that π̃∗ is a bounded and predictable pro-
cess taking values on U . We next prove that π̃∗ is uniformly away from 1. In fact, for
fixed (i, z, x) ∈ Dn×S× (0,∞)N+1, we have that H̃ (π; i, z, x) is strictly convex w.r.t.
π ∈ U ; thus Φ(i, z, x) := arg min π∈U H̃ (π; i, z, x) is well defined. Notice that Φ(i, z, ·)
maps (0,∞)N+1 to U and satisfies the first-order condition ∂H̃

∂πj
(Φ(i, z, x); i, z, x) = 0

for j = 1, . . . , N . Then, implicit function theorem yields that Φ(i, z, x) is continuous
in x. Further, for j = 1, . . . , N, if Zj(t−) = 0, the first-order condition gives that

(1− π̃∗j (t))−
θ
2−1(4.37)

=

[(
µj(Y (t−))− r(Y (t−))

)
− θ

2

(
1 +

θ

2

) N∑
i=1

(
σ>(Y (t−))σ(Y (t−))

)
ji
π̃∗i (t)

+
θ

2
λj(Y (t−), Z(t−))

]
ϕ(t, Y (t−), Z(t−))

λj(Y (t−), Z(t−))ϕ(t, Y (t−), Zj(t−))
.

For all (i, z) ∈ Dn × S, ϕ(·, i, z) has a strictly positive lower bound using (4.33).
Together with Proposition 4.1, it follows that there exists a constant C > 0 such that
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DEFAULT CONTAGION AND REGIME-SWITCHING 385

supt∈[0,T ](1− π̃∗j (t))−
θ
2−1 ≤ C for all j = 1, . . . , N . Hence, the estimate (4.37) yields

that π̃∗ is uniformly bounded away from 1. Thus, the following generalized Novikov’s
condition holds:

E

[
exp

(
θ2

8

∫ T

0

∣∣σ(Y (t))>π̃∗(t)
∣∣2 dt(4.38)

+

N∑
j=1

∫ T

0

∣∣∣(1− π̃∗j (t))−
θ
2 − 1

∣∣∣2 λj(Y (t), Z(t))dt

)]
< +∞.

The above Novikov’s condition (4.38) implies that π̃∗ is admissible. We next prove
(4.36). Note that ϕ(t, z) = (ϕ(t, i, z); i ∈ Dn)> with (t, z) ∈ [0, T ]× S is the unique
classical solution of (4.1). Note that there exists a constant CL = CL(n, i, z) > 0
such that L(π; i, z) > −CL for (π, i, z) ∈ U ×Dn × S. For m ≥ 1, set Lm(π; i, z) :=
L(π; , i, z)∧m. Then Lm is bounded and Lm(π; i, z) ↑ L(π; i, z) as m→∞. Therefore,
for any admissible strategy π̃ ∈ Ũ , Itô’s formula gives that, for 0 ≤ t < s ≤ T ,

Eπ̃,θt,i,z

[
ϕ(s, Y (s), Z(s)) exp

(
θ

2

∫ s

t

Lm(π̃(u);Y (u), Z(u))du

)](4.39)

= ϕ(t, i, z) + Eπ̃,θt,i,z

[∫ s

t

exp

(
θ

2

∫ u

t

Lm(π̃(v);Y (v), Z(v))dv

)

×

{
∂ϕ(u, Y (u), Z(u))

∂t
+
∑

l 6=Y (u)

qY (u)l (ϕ(u, l, Z(u))− ϕ(u, Y (u), Z(u)))

+ H̃
(
π̃(u);Y (u), Z(u), (ϕ(t, Y (u), Zj(u)); j = 0, 1, . . . , N)

)}
du

]

+ Eπ̃,θt,i,z

[∫ s

t

exp

(
θ

2

∫ u

t

Lm(π̃(v);Y (v), Z(v))dv

)
ϕ(u, Y (u), Z(u))

× (Lm − L)(π̃(u);Y (u), Z(u))du

]

≥ ϕ(t, i, z) + Eπ̃,θt,i,z

[∫ s

t

exp

(
θ

2

∫ u

t

Lm(π̃(v);Y (v), Z(v))dv

)
ϕ(u, Y (u), Z(u))

× (Lm − L)(π̃(u);Y (u), Z(u))du

]
.

In the last inequality above, the integral term in the expectation is negative. On the
other hand, noting that ϕ is bounded and positive, this integral also admits that,
Pπ̃,θt,i,z-a.s., for some constant Cϕ > 0,∫ s

t

exp

(
θ

2

∫ u

t

Lm(π̃(v);Y (v), Z(v))dv

)
ϕ(u, Y (u), Z(u))(Lm − L)(π̃(u);Y (u), Z(u))du

≥ −Cϕ
∫ s

t

exp

(
θ

2

∫ u

t

[L(π̃(v);Y (v), Z(v)) + CL]dv

)
[L(π̃(u);Y (u), Z(u)) + CL]du

=
2Cϕ
θ

[
1− e θ2CL(s−t) exp

(
θ

2

∫ s

t

L(π̃(u);Y (u), Z(u))du

)]
,
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by taking s = T above. Then, from dominated convergence theorem, it follows that

Eπ̃,θt,i,z

[
ϕ(T, Y (T ), Z(T )) exp

(
θ

2

∫ T

t

L(π̃(u);Y (u), Z(u))du

)]
≥ ϕ(t, i, z).(4.40)

Note that ϕ(T, i, z) = 1 in (4.40). We obtain that

inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(u);Y (u), Z(u))du

)]
≥ ϕ(t, i, z).(4.41)

On the other hand, from (4.39) and (4.35), it follows that, for 0 ≤ t < s ≤ T ,

Eπ̃
∗,θ
t,i,z

[
exp

(
θ

2

∫ T

t

L(π̃∗(u);Y (u), Z(u))du

)]
= ϕ(t, i, z).(4.42)

Because π∗ is admissible, i.e., π̃∗ ∈ Ũ , we deduce from (4.42) that

ϕ(t, i, z) ≥ inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(u);Y (u), Z(u))du

)]
.(4.43)

Combining (4.41) and (4.43), we have that

ϕ(t, i, z) = inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(u);Y (u), Z(u))du

)]
.(4.44)

The equality above is equivalent to ϕ(t, i, z) = e−
θ
2 V̄ (t,i,z) due to (3.11). Hence, (4.42)

together with (4.44) imply that (4.36) holds, which ends the proof.

4.2. Countable state case of regime-switching process. This section fo-
cuses on the existence of classical solutions to the original DPE (3.15) and the cor-
responding verification theorem when the state space of the Markov chain Y is the
countably infinite set Z+ = {1, 2, . . .}. The truncation method used in the finite state
case fails to be applicable in the case Z+. Instead, we shall establish a sequence
of appropriately approximating risk sensitive control problems with finite state set
D0
n := Dn ∪ {0} for n ∈ Z+. Building upon the results in the finite state case in

section 4.1, and by establishing valid uniform estimates, we can arrive at the desired
conclusion that the smooth value functions corresponding to the above approximating
control problems converge to the classical solution of (3.15) with countably infinite
set Z+ as n goes to infinity.

Recall Dn = {1, 2, . . . , n} for the fixed n ∈ Z+. We define the truncated counter-
part of the regime-switching process Y as follows: for t ∈ [0, T ],

Y (n)(t) := Y (t)1{τn>t}, τ tn := inf{s ≥ t; Y (s) /∈ Dn},(4.45)

where τn := τ0
n for n ∈ Z+. By convention, we set inf ∅ = +∞. Then, the process

Y (n) = (Y (n)(t))t∈[0,T ] is a continuous-time Markov chain with finite state space D0
n.

Here 0 is understood as an absorbing state. The generator of Y (n) can, therefore, be
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given by the following n+ 1-dimensional square matrix:

An :=


0 0 . . . 0

q
(n)
10 q11 . . . q1n

q
(n)
20 q21 . . . q2n

...
...

...
...

q
(n)
n0 qn1 . . . qnn

 ,(4.46)

where q
(n)
m0 = −

∑n
i=1 qmi =

∑
i 6=m,i>n qmi for all m ∈ Dn. Thus, Y (n) is conservative.

Here qij for i, j = 1, . . . , n are the same as given in subsection 2.1. Since 0 is an
absorbing state, we arrange values for the model coefficients at this state. More
precisely, we set r(0) = 0, µ(0) = 0, λ(0, z) = θ

2e
>
N for all z ∈ S, and σ(0)σ(0)> =

4
2+θ IN . Here IN denotes the N -dimensional identity matrix. Then, it follows from

(3.5) and Taylor’s expansion that L(π; 0, z) = ‖π‖2 +
∑N
j=1(1− zj)[(1− πj)−

θ
2 − 1−

θ
2πj ] ≥ 0 for all (π, z) ∈ U × S.

We next introduce the approximating risk-sensitive control problems where regime-
switching processes take values on D0

n. To this end, define Ũn as the admissi-
ble control set Ũ , but this time the regime-switching process Y is replaced with
Y (n). We then consider the following objective functional given by, for π̃ ∈ Ũn and
(t, i, z) ∈ [0, T ]×D0

n × S,

Jn(π̃; t, i, z) :=Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (s), Z(s))ds

)]

=Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds

)]
.(4.47)

Here, the risk-sensitive cost function L(π; i, z) for (π, i, z) ∈ U × Z+ × S is given by
(3.5). In order to apply the results in the finite state case obtained in section 4.1,
we also need to propose the following objective functional given by, for π̃ ∈ Ũn and
(t, i, z) ∈ [0, T ]×D0

n × S,

J̃n(π̃; t, i, z) :=Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (n)(s), Z(s))ds

)]
.(4.48)

We will consider the auxiliary value function defined by

Vn(t, i, z) := −2

θ
inf
π̃∈Ũn

log J̃n(π̃; t, i, z), (t, i, z) ∈ [0, T ]×D0
n × S.(4.49)

We have the following characterization of the value function Vn, which will play an
important role in the study of the convergence of Vn as n→∞.

Lemma 4.5. It holds that Vn(t, i, z) = − 2
θ inf π̃∈Ũn log Jn(π̃; t, i, z) for (t, i, z) ∈

[0, T ]×D0
n × S.

Proof. Using (4.47) and (4.48), we have that, for all π̃ ∈ Ũn,

log J̃n(π̃; t, i, z)

= logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (n)(s), Z(s))ds

)]D
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= logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds

+
θ

2

∫ T

T∧τtn
L(π̃(s);Y (n)(s), Z(s))ds

)]

= logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds+
θ

2

∫ T

T∧τtn
L(π̃(s); 0, Z(s))ds

)]

≥ logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds

)]
= log Jn(π̃; t, i, z) ≥ inf

π̃∈Ũn
log Jn(π̃; t, i, z),

where we used the positivity of L(π; 0, z) for all (π, z) ∈ U × S. As θ > 0, we obtain
from (4.49) that

Vn(t, i, z) ≤ −2

θ
inf
π̃∈Ũn

log Jn(π̃; t, i, z).(4.50)

On the other hand, for any π̃ ∈ Ũn, define π̂(t) = π̃(t)1{t≤τn} for t ∈ [0, T ]. It is clear

that π̂ ∈ Ũn, and it holds that Γπ̂,θ(t, T ) := Γπ̂,θ(T )
Γπ̂,θ(t)

=
Γπ̃,θ(T∧τtn)

Γπ̃,θ(t)
=: Γπ̃,θ(t, T ∧ τ tn).

Hence

log Jn(π̃; t, i, z)

= logEt,i,z

[
Γπ̃,θ(t, T ) exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds

)]

= logEt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds

)
E
[
Γπ̃,θ(t, T )|FT∧τtn

]]

= logEt,i,z

[
Γπ̃,θ(t, T ∧ τ tn) exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (n)(s), Z(s))ds

)]

= logEπ̂,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̂(s);Y (n)(s), Z(s))ds

)]

= logEπ̂,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̂(s);Y (n)(s), Z(s))ds+
θ

2

∫ T

T∧τtn
L(0; 0, Z(s))ds

)]

= logEπ̂,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̂(s);Y (n)(s), Z(s))ds

)]
= log J̃n(π̂; t, i, z) ≥ inf

π̃∈Ũn
log J̃n(π̃; t, i, z).

The above inequality and the arbitrariness of π̃ jointly give that

−2

θ
inf
π̃∈Ũn

log Jn(π̃; t, i, z) ≤ Vn(t, i, z).(4.51)

Then, the desired result follows by combining (4.50) and (4.51) above.
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Lemma 4.5 together with Theorem 4.1 and Proposition 4.2 in section 4.1 for the
finite state space of Y imply the following conclusion.

Proposition 4.3. Let n ∈ Z+. Recall the value function Vn(t, i, z) defined by
(4.49). We define ϕn(t, i, z) := exp(− θ2Vn(t, i, z)). Then ϕn(t, i, z) is the unique
solution of the recursive system of DPEs given by

0 =
∂ϕn(t, i, z)

∂t
+

∑
l 6=i,1≤l≤n

qil (ϕn(t, l, z)− ϕn(t, i, z)) + q
(n)
i0 (ϕn(t, 0, z)− ϕn(t, i, z))

(4.52)

+ inf
π∈U

H̃
(
π; i, z, (ϕn(t, i, zj); j = 0, 1, . . . , N)

)
,

where (t, i, z) ∈ [0, T )×D0
n×S, and the terminal condition is given by ϕn(T, i, z) = 1

for all (i, z) ∈ D0
n × S. Moreover, it holds that ϕn(t, i, z) ∈ [0, 1], decreasing in n for

all (t, i, z) ∈ [0, T ]×D0
n × S.

Proof. Notice that the state space of Y (n) is given by D0
n, which is a finite set.

By observing the definition of the value function Vn given by (4.49), we have that
ϕn(t, i, z) is the unique solution of the recursive system (4.52) by applying Theorem 4.1
and Proposition 4.2 in section 4.1 for the regime-switching process with the finite state
space. In order to verify that ϕn(t, i, z) ∈ [0, 1], and it is decreasing in n, it is sufficient
to prove that Vn(t, i, z) ≥ 0, and it is nondecreasing in n. Thanks to Lemma 4.5, and
L(0, i, z) = −r(i) ≤ 0 by (3.5), also note that π̃0(t) ≡ 0 is admissible (i.e., π̃0 ∈ Ũn);
then

inf
π̃∈Ũn

log Jn(π̃; t, i, z) ≤ log Jn(π̃0; t, i, z)

= logEπ̃0,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(0;Y (s), Z(s))ds

)]

= logEπ̃0,θ
t,i,z

[
exp

(
−θ

2

∫ T∧τtn

t

r(Y (s))ds

)]
≤ 0

as the interest rate process is nonnegative. This gives that Vn(t, i, z) ≥ 0 for all
(t, i, z) ∈ [0, T ] × D0

n × S. On the other hand, for any π̃ ∈ Ũn, we define π̂(t) :=
π̃(t)1{τn≥t} for t ∈ [0, T ]. It is clear that π̂ ∈ Ũn∩Ũn+1. Recalling the density process

given by (3.6), we have that, for π̃, π̂ ∈ Ũn,

Γπ̃,θ = E(Ππ̃,θ),

Ππ̃,θ = −θ
2

∫ ·
0

π̃(s)>σ(Y (n)(s))dW (s) +

N∑
j=1

∫ ·
0

{(1− π̃j(s))−
θ
2 − 1}dMj(s),

Γπ̂,θ = E(Ππ̂,θ),

Ππ̂,θ = −θ
2

∫ ·
0

π̂(s)>σ(Y (n)(s))dW (s) +

N∑
j=1

∫ ·
0

{(1− π̂j(s))−
θ
2 − 1}dMj(s).

This shows that Γπ̃,θ(t ∧ τn) = Γπ̂,θ(t) for t ∈ [0, T ]. Then, we deduce from (4.47)
that

log Jn(π̃; t, i, z) = logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (s), Z(s))ds

)]D
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≥ logEπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (s), Z(s))ds

+
θ

2

∫ T∧τtn+1

T∧τtn
L(0;Y (s), Z(s))

)]

= logEπ̂,θt,i,z

[
exp

(
θ

2

∫ T∧τtn+1

t

L(π̂(s);Y (s), Z(s))ds

)]
= log Jn+1(π̂; t, i, z) ≥ inf

π̃∈Ũn+1

log Jn+1(π̃; t, i, z).(4.53)

Using (4.49) and Lemma 4.5, it follows that Vn(t, i, z) is nondecreasing in n for fixed
(t, i, z) ∈ [0, T ]×D0

n × S. Thus, the conclusion of the proposition holds.

By virtue of Proposition 4.3, for any (t, i, z) ∈ [0, T ]×Z+×S, we set V ∗(t, i, z) :=
limn→∞ Vn(t, i, z). Then, it holds that

lim
n→∞

ϕn(t, i, z) = exp

(
−θ

2
V ∗(t, i, z)

)
=: ϕ∗(t, i, z).(4.54)

On the other hand, from (4.49), it is easy to see that ϕn(t, 0, z) = 1 for all (t, z) ∈
[0, T ]× S. Then, (4.52) above can be rewritten as

∂ϕn(t, i, z)

∂t
=− qiiϕn(t, i, z)−

∑
l 6=i,1≤l≤n

qilϕn(t, l, z)−
∑
l>n

qil

− inf
π∈U

H̃
(
π; i, z, (ϕn(t, i, zj); j = 0, 1, . . . , N)

)
.(4.55)

In terms of (3.13), we can conclude that, for (π; i, z) ∈ U × Z+ × S, H̃(π; i, z, x)
is concave in every component of x ∈ [0,∞)N+1, and so is infπ∈U H̃(π; i, z, x). We
present the main result in this paper for the case of the countable state space.

Theorem 4.2. Let (t, i, z) ∈ [0, T ]× Z+ × S. Then, the limit function ϕ∗(t, i, z)
given in (4.54) above is a classical solution of the original DPE (3.15), i.e., it holds
that

0 =
∂ϕ∗(t, i, z)

∂t
+
∑
l 6=i

qil [ϕ
∗(t, l, z)− ϕ∗(t, i, z)]

+ inf
π∈U

H̃
(
π; i, z, (ϕ∗(t, i, zj); j = 0, 1, . . . , N)

)
with terminal condition ϕ∗(T, i, z) = 1 for all (i, z) ∈ Z+ × S.

The proof of Theorem 4.2 will be split into proving a sequence of auxiliary lemmas
first. We show the following result as a preparation.

Lemma 4.6. Let (i, z) ∈ Z+ × S. Then (∂ϕn(t,i,z)
∂t )n≥i is uniformly bounded in

t ∈ [0, T ].

Proof. We rewrite (4.55) as in the following form:

∂ϕn(t, i, z)

∂t
= − qiiϕn(t, i, z)−

∑
l 6=i,1≤l≤n

qilϕn(t, l, z)−
∑
l>n

qil

− inf
π∈U

Ĥ
(
π; i, z, (ϕn(t, i, zj); j = 0, 1, . . . , N)

)
+ C(i, z)ϕn(t, i, z),(4.56)
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where, for (i, z) ∈ Z+ × S,

C(i, z) =

∣∣∣∣ inf
π∈U

{
− θ

2
r(i)− θ

2
π>(µ(i)− r(i)en) +

θ

4

(
1 +

θ

2

)∥∥σ(i)>π
∥∥2

+

N∑
j=1

(
−1− θ

2
πj

)
(1− zj)λj(i, z)

}∣∣∣∣,(4.57)

and the nonnegative function

Ĥ(π; i, z, f̄(z)) := H̃(π; i, z, f̄(z)) + C(i, z)f(z).(4.58)

Because Ĥ(π; i, z, x) is concave in every component of x ∈ [0,∞)N+1, Φ(x) :=
infπ∈U Ĥ(π; i, z, x) is also concave in every component of x ∈ [0,∞)N+1. It follows
from Proposition 4.3 that x(n) := (ϕn(t, i, zj); j = 0, 1, . . . , N) ∈ [0, 1]N+1. Using
Lemma A.2, there exits a constant C > 0 which is independent of x(n) such that
0 ≤ Φ(x(n)) ≤ C for all n ∈ Z+. Further, for fixed (i, z) ∈ Z+ × S,∣∣∣∣∣∣−qiiϕn(t, i, z)−

∑
l 6=i,1≤l≤n

qilϕn(t, l, z)−
∑
l>n

qil + C(i, z)ϕn(t, i, z)

∣∣∣∣∣∣ ≤ −2qii + C(i, z).

The desired result follows from (4.56).

Lemma 4.7. Let (i, z) ∈ Z+ × S. Then (ϕn(t, i, z))n≥i (decreasingly) converges
to ϕ∗(t, i, z) uniformly in t ∈ [0, T ] as n→∞.

Proof. By Proposition 4.3, Lemma 4.6, and Azelà–Ascoli’s theorem, we have
that (ϕn(·, i, z))n≥i contains a uniformly convergent subsequence. Moreover, Proposi-
tion 4.3 and (4.54) yield that ϕn(t, i, z) (decreasingly) converges to ϕ∗(t, i, z) uniformly
in t ∈ [0, T ] as n→∞.

Lemma 4.8. Let n ∈ Z+. Consider the following linear system: For (t, i, z) ∈
(0, T ]×D0

n × S,

∂φn(t, i, z)

∂t
= (qii − C(i, z))φn(t, i, z) +

∑
l 6=i,1≤l≤n

qilφn(t, l, z),

φn(0, i, z) = 1,(4.59)

where C(i, z) is given by (4.57). Then, there exists a measurable function φ∗(t, i, z)
such that φn(t, i, z) ↗ φ∗(t, i, z) as n → ∞ for each fixed (t, i, z). Moreover, it holds
that 0 < φn(T − t, i, z) ≤ ϕn(t, i, z) ≤ 1 for (t, i, z) ∈ [0, T ]×D0

n × S.

Proof. Let (t, i, z) ∈ [0, T ] × D0
n × S and define gn(t, i, z) := ϕn(T − t, i, z). It

follows from (4.56) that gn(·, i, z) ∈ C1((0, T ]) ∩ C([0, T ]) for each fixed (i, z), which
satisfies that

∂gn(t, i, z)

∂t
= (qii − C(i, z))gn(t, i, z) +

∑
l 6=i,1≤l≤n

qilgn(t, l, z) +
∑
l>n

qil

+Q(t, i, z, gn(t, i, z)),

gn(0, i, z) =1,(4.60)

where Q(t, i, z, x) := infπ∈U Ĥ
(
π; i, z, x, gn(t, i, z1), . . . , gn(t, i, zN )

)
for x ∈ [0,∞).

We have from (4.58) thatQ(t, i, z, x) ≥ 0 for all (t, x) ∈ [0, T ]×[0,∞). Then
∑
l>n qil+
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Q(t, i, z, x) ≥ 0. Note that the linear part of (4.60) satisfies the K-type condition.
Then, using the comparison result of Lemma 4.4, it shows that gn(t, i, z) ≥ φn(t, i, z),
and hence ϕn(t, i, z) ≥ φn(T − t, i, z). Moreover, we deduce from Lemma 4.1 that
φn(t, i, z) > 0. By virtue of (4.59), we have that φn+1(t, i, z) with (t, i, z) ∈ [0, T ] ×
D0
n+1 × S satisfies that

∂φn+1(t, i, z)

∂t
= (qii − C(i, z))φn+1(t, i, z) +

∑
l 6=i,1≤l≤n

qilφn+1(t, l, z)

+ qi,n+1φn+1(t, n+ 1, z),

φn+1(0, i, z) = 1.

Because qi,n+1φn+1(t, n+ 1, z) ≥ 0 for i ∈ D0
n, Lemma 4.4 shows that φn+1(t, i, z) ≥

φn(t, i, z) for all (t, i, z) ∈ [0, T ] × D0
n × S. Therefore, there exists a measurable

function φ∗(t, i, z) such that φn(t, i, z)↗ φ∗(t, i, z) as n→∞ for each fixed (t, i, z) ∈
[0, T ]× Z+ × S.

Lemma 4.9. Let (i, z) ∈ Z+×S. Then, there exists a positive constant δ = δ(i, z)
such that ϕ∗(t, i, z) > δ for all t ∈ [0, T ].

Proof. From Lemma 4.8, we have that ϕn(t, i, z) ≥ φn(T −t, i, z). Letting n→∞
and using Lemma 4.7, it follows that ϕ∗(t, i, z) ≥ φ∗(T − t, i, z) ≥ φi(T − t, i, z). As
φi(t, i, z) > 0 is continuous in t ∈ [0, T ], there exists a positive constant δ = δ(i, z)
such that inft∈[0,T ] φi(t, i, z) ≥ δ. Therefore, ϕ∗(t, i, z) ≥ δ for all t ∈ [0, T ].

We can finally conclude the proof of Theorem 4.2 using all previous results.

Proof of Theorem 4.2. We first prove that there exists a measurable function

ϕ̃(t, i, z) on (t, i, z) ∈ [0, T ] × Z+ × S such that limn→∞
∂ϕn(t,i,z)

∂t = ϕ̃(t, i, z) for
(t, i, z) ∈ [0, T ] × Z+ × S. In fact, note that for (t, i, z) ∈ [0, T ] × D0

n × S, 0 ≤
ϕn+1(t, i, z) ≤ ϕn(t, i, z) ≤ 1 for n ∈ Z+. Then∑

l 6=i,1≤l≤n

qilϕn(t, l, z) +
∑
l>n

qil ≥
∑

l 6=i,1≤l≤n+1

qilϕn+1(t, l, z) +
∑
l>n+1

qil.

This yields from (4.54) that qiiϕn(t, i, z)↗ qiiϕ
∗(t, i, z) as n→∞, and∑

l 6=i,1≤l≤n

qilϕn(t, l, z) +
∑
l>n

qil ↘
∑

l 6=i,l≥1

qilϕ
∗(t, l, z).(4.61)

On the other hand, let Φ(x) := infπ∈U H̃(π; i, z, x) for x ∈ [0,∞)N+1. Then Φ(x) :
[0,∞)N+1 → R is concave in every component of x. Let x∗(t) := (ϕ∗(t, i, zj); j =
0, 1, . . . , N) and x(n)(t) := (ϕn(t, i, zj); j = 0, 1, . . . , N) for n ∈ Z+. Then 0 ≤ x∗(t) ≤
x(n)(t) for n ∈ Z+ and limn→∞ x(n)(t) = x∗(t) using (4.54). Moreover, Lemma 4.9
gives that δ � x∗ � 2. It follows from Lemma A.1 that limn→∞Φ(x(n)(t)) = x∗(t).
Thus, by virtue of (4.55), as n→∞, one has

∂ϕn(t, i, z)

∂t
→ ϕ̃(t, i, z) := − qiiϕ∗(t, i, z)−

∑
l 6=i,l≥1

qilϕ
∗(t, l, z)− Φ (x∗(t)) .(4.62)

We next prove that for (i, z) ∈ Z+ × S, ∂ϕn(t,i,z)
∂t ⇒ ϕ̃(t, i, z) in t ∈ [0, T ] as

n → ∞. Here ⇒ denotes the uniform convergence. Equation (4.56), together with
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(4.62), first gives that, for (t, i, z) ∈ [0, T ]×D0
n × S,

∂ϕn(t, i, z)

∂t
− ϕ̃(t, i, z) =

3∑
i=1

B
(n)
i (t, i, z),(4.63)

where

B
(n)
1 (t, i, z) := − qii(ϕn(t, i, z)− ϕ∗(t, i, z)) + C(i, z)(ϕn(t, i, z)− ϕ∗(t, i, z)),(4.64)

B
(n)
2 (t, i, z) :=

∑
l 6=i,1≤l≤n

qil(ϕn(t, l, z)− ϕ∗(t, l, z)) +
∑
l>n

qil(1− ϕ∗(t, i, z)),

B
(n)
3 (t, i, z) := Φ(x(n)(t))− Φ(x∗(t)).

Here Φ(x) := infπ∈U H̃(π; i, z, x) for x ∈ [0,∞)N+1, x(n)(t) := (ϕn(t, i, zj); j =
0, 1, . . . , N), and x∗(t) := (ϕ∗(t, i, zj); j = 0, 1, . . . , N).

Lemma 4.7 guarantees that ϕn(t, i, z) ⇒ ϕ∗(t, i, z) in t ∈ [0, T ] as n → ∞, and

hence B
(n)
1 (t, i, z) ⇒ 0 in t ∈ [0, T ] as n → ∞. On the other hand, for any small

ε > 0, since
∑
l 6=i qil <∞, there exists n1 ≥ 1 such that

∑
l>n1,l 6=i qil <

ε
2 . Note that,

for all 1 ≤ l ≤ n1, ϕn(t, l, z) ⇒ ϕ∗(t, l, z) in t ∈ [0, T ] as n → ∞, there exists n2 ≥ 1
such that supt∈[0,T ]

∑
l 6=i,1≤l≤n1

qil(ϕn(t, l, z)− ϕ∗(t, l, z)) ≤ ε
2 for n > n2. Hence, for

all n > n1 ∨ n2, noting that 0 ≤ ϕ∗(t, i, z) ≤ ϕn(t, i, z) ≤ 1, it holds that

|B(n)
2 (t, i, z)| =

∑
l 6=i,1≤l≤n1

qil(ϕn(t, l, z)− ϕ∗(t, l, z))

+
∑

l 6=i,n1<l<n

qil(ϕn(t, l, z)− ϕ∗(t, l, z))

+
∑
l>n

qil(1− ϕ∗(t, i, z)) ≤
ε

2
+
∑
l>n1

qil ≤
ε

2
+
ε

2
= ε.

(4.65)

Thus, we deduce that B
(n)
2 (t, i, z) ⇒ 0 in t ∈ [0, T ] as n → ∞. We can have from

Lemma A.2 that for all x ∈ RN+1 satisfying 0 ≤ x ≤ 2, 0 ≤ Φ(x) ≤ C for some
constant C > 0. As for j = 0, 1, . . . , N , ϕn(t, i, zj) ⇒ ϕ∗(t, i, zj) in t ∈ [0, T ] as n →
∞, Lemma 4.9 yields that there exists a constant δ > 0 such that 1 ≥ ϕn(t, i, zj) ≥
ϕ∗(t, i, zj) ≥ δ > 0 for all t ∈ [0, T ]. Further, there exists λjn(t) ∈ [0, 1] such that

ϕn(t, i, zj) = (1− λjn(t))ϕ∗(t, i, zj) + 2λjn(t). In turn, λjn(t) = ϕn(t,i,zj)−ϕ∗(t,i,zj)
2−ϕ∗(t,i,zj) , and

hence for all j = 0, 1, . . . , N , λjn(t) ⇒ 0 in t ∈ [0, T ] as n→∞. Similarly to what will
be seen in (A.1), we can derive that

Φ(x(n)(t)) ≥ Φ(x∗(t))

N∏
j=0

(1− λjn(t)) + Λ
(n)
1 (t).(4.66)

Similarly to what will be seen in the first term in the right-hand side (r.h.s.) of the

inequality (4.66), every term in Λ
(n)
1 (t) above has N + 1 multipliers and at least one

of these multipliers is of the form λjn(t), while other multipliers are nonnegative and
bounded by 1 ∨ C. Due to the fact that λjn(t) ⇒ 0 in t ∈ [0, T ] as n → ∞, we have

that Λ
(n)
1 (t) ⇒ 0 in t ∈ [0.T ] as n→∞. Moreover, it follows from (4.66) that

1−
N∏
j=0

(1− λjn(t))

Φ(x∗(t))− Λ
(n)
1 (t) ≥ Φ(x∗(t))− Φ(x(n)(t)) = −B(n)

3 (t, i, z).

(4.67)
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It is not difficult to see that the left-hand side (l.h.s.) of the inequality (4.67) tends
to 0 uniformly in t ∈ [0, T ] as n → ∞. On the other hand, there exists λ̃jn(t) ∈
[0, 1] such that ϕ∗(t, i, zj) = (1 − λ̃jn(t))ϕn(t, i, zj) + 0 · λ̃jn(t), and in turn λ̃jn(t) =
ϕn(t,i,zj)−ϕ∗(t,i,zj)

ϕn(t,i,zj) ⇒ 0 in t ∈ [0, T ] as n→∞, since ϕn(t, i, zj) ≥ δ > 0, such that

1−
N∏
j=0

(1− λ̃jn(t))

Φ(x(n)(t))− Λ
(n)
2 (t) ≥ Φ(x(n)(t))− Φ(x∗(t)) = B

(n)
3 (t, i, z),

(4.68)

where the form of Λ
(n)
2 (t) is similar to that of Λ

(n)
1 (t), but it is related to λ̃jn(t) for

j = 0, 1, . . . , N . As in (4.67), the l.h.s. of the inequality (4.68) tends to 0 uniformly in

t ∈ [0, T ] as n→∞. Hence, it follows from (4.67) and (4.68) that B
(n)
3 (t, i, z) ⇒ 0 in

t ∈ [0, T ] as n → ∞. Thus, we proved that for (i, z) ∈ Z+ × S, ∂ϕn(t,i,z)
∂t ⇒ ϕ̃(t, i, z)

in t ∈ [0, T ] as n→∞.

We at last show that, for (i, z) ∈ Z+ ×S, ϕ∗(T, i, z)− ϕ∗(t, i, z) =
∫ T
t
ϕ̃(s, i, z)ds

for t ∈ [0, T ]. For n ∈ Z+, it follows from Proposition 4.3 that ϕn(·, i, z) ∈ C1([0, T ))∩
C([0, T ]) for (i, z) ∈ D0

n × S. This implies that

ϕ∗(T, i, z)− ϕ∗(t, i, z) = ϕ∗(T, i, z)− ϕ∗(t, i, z)− (ϕn(T, i, z)− ϕn(t, i, z))

+

∫ T

t

∂ϕn(s, i, z)

∂t
(s, i, z)ds.

(4.69)

Lemma 4.7 ensures that ϕ(T, i, z)−ϕ(t, i, z)−(ϕn(T, i, z)−ϕn(t, i, z))→ 0 as n→∞.

From Lemma 4.6 and the uniform convergence of ∂ϕn(t,i,z)
∂t to ϕ̃(t, i, z) in t ∈ [0, T ], it

follows that ϕ̃(t, i, z) is continuous in t ∈ [0, T ] and
∫ T
t

∂ϕn(s,i,z)
∂t ds →

∫ T
t
ϕ̃(s, i, z)ds

as n → ∞. Moreover, as ϕ∗(T, i, z) − ϕ∗(t, i, z) =
∫ T
t
ϕ̃(s, i, z)ds for each t ∈ [0, T ],

∂ϕ∗(t,i,z)
∂t = ϕ̃(t, i, z) holds for all t ∈ [0, T ]. Hence, ϕ∗(t, i, z) is indeed a classical

solution of the original DPE (3.15).

The verification argument for the case of countable state space Z+ = {1, 2, . . .} is
presented in the next key proposition. Before it, we provide condition (C.1) on model
coefficients:

(C.1) There exist positive constants c1, c2, δ, andK such that c1‖ξ‖2 ≤ ξ>σ(i)σ(i)>ξ
≤ c2‖ξ‖2 for all ξ ∈ RN and i ∈ Z+, δ ≤ λ(i, z) ≤ K for all (i, z) ∈ Z+ × S,
and r(i) + ‖µ(i)‖ ≤ K for all i ∈ Z+.

The first condition on σ(i) is actually related to the uniformly elliptic property of the
volatility matrix σ(i) of stocks.

Proposition 4.4. Let the condition (C.1) hold. Let ϕ∗(t, i, z) with (t, i, z) ∈
[0, T ]× Z+ × S be given by (4.54). Then, for all (t, i, z) ∈ [0, T ]× Z+ × S,

ϕ∗(t, i, z) = inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (s), Z(s))ds

)]
.(4.70)

Proof. From Proposition 4.2 and Lemma 4.5, it follows that, for n ∈ Z+,

ϕn(t, i, z) = inf
π̃∈Ũn

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (n)(s), Z(s))ds

)]D
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= inf
π̃∈Ũn

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(s);Y (s), Z(s))ds

)]
.

Then, for any ε > 0, there exists π̃ε ∈ Ũn such that

ϕn(t, i, z) + ε > Eπ
ε,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃ε(s);Y (s), Z(s))ds

)]
.(4.71)

Define π̂ε(t) := π̃ε(t)1{t≤τn} for t ∈ [0, T ]. Then, it holds that π̂ε ∈ Ũ , and

Γπ̂
ε,θ(t, T ) = Γπ̃

ε,θ(t, T ∧ τ tn) for t ∈ [0, T ]. Also note that L(0, i, z) = −r(i) ≤ 0
for all (i, z) ∈ Z+ × S. Then, the inequality (4.71) becomes

ϕn(t, i, z) + ε >Eπ̃
ε,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃ε(s);Y (s), Z(s))ds

)]

=Eπ̂
ε,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̂ε(s);Y (s), Z(s))ds

)]

≥Eπ̂
ε,θ
t,i,z

[
exp

(
θ

2

∫ T

t

L(π̂ε(s);Y (s), Z(s))ds

)]

≥ inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃ε(s);Y (s), Z(s))ds

)]
.(4.72)

By passing n→∞ and then ε→ 0, we get

ϕ∗(t, i, z) ≥ inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (s), Z(s))ds

)]
.(4.73)

On the other hand, using Theorem 4.2 and Proposition 4.2, ϕ∗(t, i, z) is strictly pos-
itive and ϕ∗(t, i, z) ≤ ϕn(t, i, z) ≤ 1 for all n ≥ 1. Then, under the condition (C.1),
by applying a similar argument of the proof of (4.40), we have that, for any π̃ ∈ Ũ ,

Eπ̃,θt,i,z

[
ϕ∗(T, Y (T ), Z(T )) exp

(
θ

2

∫ T

t

L(π̃(u);Y (u), Z(u))du

)]
≥ ϕ∗(t, i, z).

Because ϕ(T, i, z) = 1 for all (i, z) ∈ Z+ × S, we deduce that

inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (s), Z(s))ds

)]
≥ ϕ∗(t, i, z).(4.74)

The equality (4.70) therefore follows by combining (4.73) and (4.74), and the validity
of the proposition is checked.

As in Proposition 4.2, we can construct a candidate optimal G-predictable feed-
back strategy π̃∗ by, for t ∈ [0, T ],

π̃∗(t) := diag
(
(1− Zj(t−))Nj=1

)
× arg min

π∈U
H̃
(
π;Y (t−), Z(t−), (ϕ∗(t, Y (t−), Zj(t−)); j = 0, 1, . . . , N)

)
.(4.75)

We first prove that π̃∗ can be characterized as an approximation limit by a sequence
of well defined admissible strategies.
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Lemma 4.10. Let the condition (C.1) hold. There exists a sequence of strategies
(π̃(n,∗))n∈Z+

⊂ Ũ such that limn→∞ π̃(n,∗)(t) = π̃∗(t) for t ∈ [0, T ], P-a.s., and further,

limn→∞ J(π̃(n,∗); t, i, z) = ϕ∗(t, i, z) for (t, i, z) ∈ [0, T ] × Z+ × S, P-a.s. Here, the
objective functional J is defined in (3.11).

Proof. For fixed (i, z, x) ∈ Z+ × S × (0,∞)N+1, we have that H̃ (π; i, z, x) is
strictly concave w.r.t. π ∈ U , and hence Φ(i, z, x) := arg min π∈U H̃ (π; i, z, x) is well
defined. Note that Φ(i, z, ·) maps (0,∞)N+1 to U and satisfies the first-order con-

dition ∂H̃
∂πj

(Φ(i, z, x); i, z, x) = 0 for j = 1, . . . , N . Then, implicit function theorem

yields that Φ(i, z, x) is continuous in x. Let x(n)(t) := (ϕn(t, Y (n)(t−), Zj(t−)); j =
0, 1, . . . , N). It follows from Proposition 4.2 and Lemma 4.5 that, for t ∈ [0, T ],

π̃(n,∗)(t) := diag((1− Zj(t−))Nj=1)Φ(Y (t−), Z(t−), x(n)(t))1{t≤τn}

belongs to Ũn ∩ Ũ , and further it satisfies that

ϕn(t, i, z) = Eπ̃
(n,∗),θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(n,∗)(s);Y (s), Z(s))ds

)]
.(4.76)

Lemma 4.7 gives that limn→∞ ‖x(n)(t) − x∗(t)‖ = 0 for t ∈ [0, T ], P-a.s., where
x∗(t) := (ϕ∗(t, Y (t−), Zj(t−)); j = 0, 1, . . . , N). We define the predictable process
π̃∗(t) := diag((1 − Zj(t−))Nj=1)Φ(Y (t−), Z(t−), x∗(t)) for t ∈ [0, T ]. By Lemma 4.9

and the continuity of Φ(i, z, ·), we obtain limn→∞ π̃(n,∗)(t) = π̃∗(t) for t ∈ [0, T ], a.s.
Moreover, it holds that

J(π̃(n,∗); t, i, z)

= Eπ̃
(n,∗),θ
t,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(n,∗)(s);Y (s), Z(s))ds

)]

= Eπ̃
(n,∗),θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(n,∗)(s);Y (s), Z(s))ds+
θ

2

∫ T

T∧τtn
L(0;Y (s), Z(s))ds

)]

≤ Eπ̃
(n,∗),θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃(n,∗)(s);Y (s), Z(s))ds

)]
= ϕn(t, i, z).

Proposition 4.4 then yields that ϕ∗(t, i, z) ≤ J(π̃(n,∗); t, i, z) ≤ ϕn(t, i, z) for n ∈ Z+.
This verifies that limn→∞ J(π̃(n,∗); t, i, z) = ϕ∗(t, i, z) for (t, i, z) ∈ [0, T ] × Z+ × S,
a.s.using Lemma 4.7.

Proposition 4.5. Let the condition (C.1) hold. Then, the optimal feedback strat-
egy π̃∗ given by (4.75) is admissible, i.e., π̃∗ ∈ Ũ .

Proof. Under the condition (C.1), it is not difficult to verify that there exists a
constant C > 0 such that L(π; i, z) ≥ −C for all (π, i, z) ∈ U × Z+ × S. Thanks to
Proposition 4.4, we have that

ϕ∗(t, i, z) = inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
θ

2

∫ T

t

L(π̃(s);Y (s), Z(s))ds

)]

≥ inf
π̃∈Ũ

Eπ̃,θt,i,z

[
exp

(
−θ

2

∫ T

t

Cds

)]
= exp

(
−θ

2
C(T − t)

)
,

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

58
.1

32
.1

61
.1

85
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFAULT CONTAGION AND REGIME-SWITCHING 397

for (t, i, z) ∈ [0, T ]× Z+ × S. Hence, for t ∈ [0, T ],

x∗(t) = (ϕ∗(t, Y (t−), Zj(t−)); j = 0, 1, . . . , N) ∈ [e−
θ
2C(T−t), 1]N+1.(4.77)

The continuity of Φ(i, z, x) := arg min π∈U H̃ (π; i, z, x) gives that π̃∗(t) for t ∈ [0, T ]
is uniformly bounded by some constant C1 > 0. Moreover, the first-order condition
yields that, for all j = 1, . . . , N , if Zj(t−) = 0, then

(1− π̃∗j (t))−
θ
2−1

=

[
(µj(Y (t−))− r(Y (t−)))− θ

2

(
1 +

θ

2

) N∑
i=1

(σ(Y (t−))>σ(Y (t−)))jiπ̃
∗
i (t)

+
θ

2
λj(Y (t−), Z(t−))

]
ϕ∗(t, Y (t−), Z(t−))

λj(Y (t−), Z(t−))ϕ∗(t, Y (t−), Zj(t−))

≤ C2,(4.78)

where we used the condition (C.1) and (4.77). Note that π̃∗j (t) = 0 if Zj(t−) = 1; then
π̃∗ is also uniformly bounded away from 1. This implies that the generalized Novikov’s
condition holds in the countably infinite state case, and hence π̃∗ is admissible.

The above verification results (Propositions 4.4 and 4.5) can be seen as a unique-
ness result for the DPE. Under the condition (C.1), we can also establish an error
estimate on the approximation of the sequence of strategies π̃(n,∗) to the optimal
strategy π∗ in terms of the objective functional J (see (3.11)), which is given by the
following lemma.

Lemma 4.11. Let n ∈ Z+. Under the condition (C.1), for (t, i, z) ∈ [0, T ]×Dn×S,
there exists a constant C > 0 which is independent of n such that

∣∣∣J(π̃(n,∗); t, i, z)− J(π̃(∗); t, i, z)
∣∣∣ ≤ C

1−
n∑
j=1

a
(n)
ij (T − t)

 .

Here a
(n)
ij (T − t) = δij + (T − t)qij +

∑∞
k=1

∑
1≤l1,...,lk≤n

(T−t)k+1

(k+1)! qil1ql1l2 . . . qlkj.

Proof. By Proposition 4.5, J(π̃(n,∗); t, i, z)→ ϕ∗(t, i, z) = J(π̃∗; t, i, z) as n→∞.
On the other hand, it can be verified that there exists constants γ ∈ (0, 1) and C1 > 0
such that π̃∗(t) ∈ [−C1, 1−γ]N for all t ∈ [0, T ], a.s. Then, using (3.5), it follows that
L(π̃∗(t);Y (t), Z(t)) ≤ C2, a.s. for t ∈ [0, T ]. Here C2 is a positive constant. Therefore,
by noting π̃∗ ∈ Ũn, we have that

ϕ∗(t, i, z) = Eπ̃
∗,θ
t,i,z

[
exp

(
θ

2

∫ T

t

L(π̃∗(s);Y (s), Z(s))ds

)]

≥ Eπ̃
∗,θ
t,i,z

[
exp

(
θ

2

∫ T

t

L(π̃∗(s);Y (s), Z(s))ds

)
1{τtn>T}

]

= Eπ̃
∗,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃∗(s);Y (s), Z(s))ds

)
1{τtn>T}

]

= Eπ̃
∗,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃∗(s);Y (s), Z(s))ds

)]D
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− Eπ̃
∗,θ
t,i,z

[
exp

(
θ

2

∫ T∧τtn

t

L(π̃∗(s);Y (s), Z(s))ds

)
1{τtn≤T}

]
≥ ϕn(t, i, z)− Eπ̃

∗,θ
t,i,z

[
e
θC2
2 (T∧τtn−t)1{τtn≤T}

]
≥ ϕn(t, i, z)− C3Pπ̃

∗,θ
t,i,z (τ tn ≤ T ),

where C3 := e
θC2T

2 , and ϕn(t, i, z) is defined in Proposition 4.3. Using the given
inequality ϕ∗(t, i, z) ≤ J(π̃(n,∗); t, i, z) ≤ ϕn(t, i, z) in the proof of Lemma 4.10, under
the condition (C.1), we arrive at∣∣∣J(π̃(n,∗); t, i, z)− J(π̃(∗); t, i, z)

∣∣∣ = J(π̃(n,∗); t, i, z)− ϕ∗(t, i, z) ≤ ϕn(t, i, z)− ϕ∗(t, i, z)

≤ C3Pπ̃
∗,θ
t,i,z (τ tn ≤ T ).

Note that by Proposition 4.5, Y is also a Markov chain with the generator Q = (qij)

under Pπ̃
∗,θ
t,i,z . Then Pπ̃

∗,θ
t,i,z (τ tn ≤ T ) → 0 as n → ∞. On the other hand, τ tn is the

absorption time of (Y (n)(s))s∈[t,T ] whose generator is given as An given by (4.46).

Hence, using section 11.2.3 in Chapter 11 in [7], we also have that Pπ̃
∗,θ
t,i,z (τ tn ≤ T ) =

1−
∑n
j=1 a

(n)
ij (T − t). This completes the proof.

We next provide an example in which the error estimate 1 −
∑n
j=1 a

(n)
ij (T − t)

in Lemma 4.11 admits a closed form representation. Let us consider the following
specific generator given by

Q =



−1 1
2

1
4 . . . 1

2n−1
1

2n . . .
1
2 −1 1

4 . . . 1
2n−1

1
2n . . .

1
2

1
4 −1 . . . 1

2n−1
1

2n . . .
...

...
...

...
...

1
2

1
4

1
8 . . . 1

2n−1 −1 . . .
...

...
...

...
...

...


.

Then, for any l ≤ n,
∑n
j=1 qlj =

∑n−1
j=1

1
2j − 1 = −1

2n−1 . Therefore, for any i ≤ n,

n∑
j=1

a
(n)
ij (T − t) =

∞∑
k=0

(T − t)k

k!

(
−1

2n−1

)k
= e−

T−t
2n−1 .

It follows that, for (t, i, z) ∈ [0, T ]×Dn × S, we have the explicit error estimate∣∣∣J(π̃(n,∗); t, i, z)− J(π̃(∗); t, i, z)
∣∣∣ ≤ C (1− e−

T−t
2n−1

)
,

where C > 0 is independent of n.

Remark 4.1. It is also worth mentioning here that our method used in the
paper can be applied to treat the case where the regime-switching process Y is a
time-inhomogeneous Markov chain with a time-dependent generator given by Q(t) =
(qij(t))i,j∈Z+

for t ∈ [0, T ]. Here, for t ∈ [0, T ], qii(t) ≤ 0 for i ∈ Z+, qij(t) ≥ 0 for
i 6= j, and

∑∞
j=1 qij(t) = 0 for i ∈ Z+ (i.e.,

∑
j 6=i qij(t) = −qii(t) for i ∈ Z+). Also for

i, j ∈ Z+, t→ qij(t) is continuous on [0, T ], and the infinite summation
∑
j∈Z+

qij(t)

is uniformly convergent in t ∈ [0, T ].
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Appendix A. Auxiliary lemmas.

Lemma A.1. Let the function Φ(x) : [0,∞)N+1 → R be concave in every com-
ponent of x. Assume that there exists x, x∗, x ∈ [0,∞)N+1 such that x � x∗ � x.
Let {x(n)}n≥1 ⊂ [0,∞)N+1 satisfy x∗ ≤ x(n) for n ≥ 1 and limn→∞ x(n) = x∗. Then
limn→∞Φ(x(n)) = Φ(x∗).

Proof. Due to the given conditions in the lemma, there exists n0 ≥ 1 such that
x∗ ≤ x(n) ≤ x for all n ≥ n0. For each n ≥ n0, there exists a vector λ(n) ∈ [0, 1]N+1

satisfying limn→∞ λ(n) = 0 such that x
(n)
k = λ

(n)
k xk+(1−λ(n)

k )x∗k for k = 1, . . . , N+1.
Therefore, it follows that

Φ(x(n)) = Φ
(
λ

(n)
1 x1 + (1− λ(n)

1 )x∗1, λ
(n)
2 x2

(A.1)

+ (1− λ(n)
2 )x∗2, . . . , λ

(k)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
≥λ(n)

1 Φ
(
x1, λ

(n)
2 x2 + (1− λ(n)

2 )x∗2, . . . , λ
(k)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
+ (1− λ(n)

1 )Φ
(
x∗1, λ

(n)
2 x2 + (1− λ(n)

2 )x∗2, . . . , λ
(k)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
≥λ(n)

1 λ
(n)
2 Φ

(
x1, x2, . . . , λ

(n)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
+ λ

(n)
1 (1− λ(n)

2 )Φ
(
x1, x

∗
2, . . . , λ

(k)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
+ (1− λ(n)

1 )λ
(n)
2 Φ

(
x1, x

∗
2, . . . , λ

(k)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
+ (1− λ(n)

1 )(1− λ(n)
2 )Φ

(
x∗1, x

∗
2, . . . , λ

(k)
N+1xN+1 + (1− λ(n)

N+1)x∗N+1

)
≥Φ(x∗)

N+1∏
k=1

(1− λ(n)
k ) + Σ

(n)
1 .

We observe that every term in Σ
(n)
1 above has one or more multipliers of the

form λ
(n)
k for k = 1, . . . , N + 1. As limn→∞ λ

(n)
k = 0 for k = 1, . . . , N + 1 and hence

Σ
(n)
1 → 0 as n→∞, it follows from (A.1) that lim infn→∞ Φ(x(n)) ≥ Φ(x∗). Similarly,

as x(n) ≥ x∗ � x for all n ∈ N, there exists a vector λ̃(n) ∈ [0, 1]N+1 satisfying

limn→∞ λ̃(n) = 0 such that x∗k = λ̃
(n)
k xk + (1− λ̃(n)

k )x
(n)
k for k = 1, . . . , N + 1. Using

the similar argument in the proof of (A.1), we deduce that

Φ(x∗) ≥ Φ(x(n))

N+1∏
k=1

(1− λ̃(n)
k ) + Σ

(n)
2 ,(A.2)

where every term in Σ
(n)
2 above has one or more multipliers of the form λ

(n)
k , k =

1, . . . , N + 1. The inequality (A.2) gives that Φ(x∗) ≥ lim supn→∞Φ(x(n)). Putting
the above two inequalities together, we obtain limn→∞ Φ(x(n)) = Φ(x∗), which com-
pletes the proof.

Lemma A.2. Let the function Φ(x) : [0,∞)N+1 → [0,∞) be concave in every
component of x. Then, for any α, β ∈ [0,∞)N+1 satisfying α ≤ β, there exists a
constant C = C(α, β) > 0 such that 0 ≤ Φ(x) ≤ C for all α ≤ x ≤ β.
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Proof. For any α ≤ x ≤ β where α, β ∈ [0,∞)N+1, there exists a vector ν ∈
(0,∞)N+1 such that β � ν. This implies that there exists λ ∈ [0, 1]N+1 such that
βk = λkxk + (1−λk)νk, k = 1, . . . , N + 1. As α ≤ x ≤ β � ν, there exists δ > 0 such
that 1 ≥ λk = νk−βk

νk−xk ≥
νk−βk
νk−αk ≥ δ. Using the concave property of Φ(x), we have that

Φ(β) = Φ(λ1x1 + (1− λ1)ν1, λ2x2 + (1− λ2)ν2, . . . , λN+1xN+1 + (1− λN+1)νN+1)

≥Φ(x)

N+1∏
k=1

λk

+
∑

1≤j1<j2<···<jk<N+1
1≤k≤N+1

(1− λj1)× · · · × (1− λjk)λjk+1
× · · · × λjNΦ(Cj1...jk)

≥ δN+1Φ(x),

(A.3)

for some Cj1...jk ∈ [0,∞)N+1, and {jk+1, . . . , jN+1} = {1, . . . , N + 1} \ {j1, . . . , jk}.
We therefore have shown that the claim of the lemma holds.

Acknowledgments. The authors would like to thank two anonymous referees
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