Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81533
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorMosavi, A-
dc.creatorShamshirband, S-
dc.creatorSalwana, E-
dc.creatorChau, KW-
dc.creatorTah, JHM-
dc.date.accessioned2019-10-28T05:45:57Z-
dc.date.available2019-10-28T05:45:57Z-
dc.identifier.issn1994-2060-
dc.identifier.urihttp://hdl.handle.net/10397/81533-
dc.language.isoenen_US
dc.publisherHong Kong Polytechnic University, Department of Civil and Structural Engineeringen_US
dc.rights© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Amir Mosavi, Shahaboddin Shamshirband, Ely Salwana, Kwok-wing Chau & Joseph H. M. Tah (2019) Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning, Engineering Applications of Computational Fluid Mechanics, 13:1, 482-492, is available at https://doi.org/10.1080/19942060.2019.1613448en_US
dc.subjectAdaptive neuro-fuzzy inference system (ANFIS)en_US
dc.subjectArtificial intelligenceen_US
dc.subjectBig dataen_US
dc.subjectComputational fluid dynamics (CFD)en_US
dc.subjectComputational fluid mechanicsen_US
dc.subjectComputational intelligenceen_US
dc.subjectFluid dynamicsen_US
dc.subjectForecastingen_US
dc.subjectHybrid modelen_US
dc.subjectHydrodynamicsen_US
dc.subjectMachine learningen_US
dc.subjectOptimizationen_US
dc.subjectPredictionen_US
dc.subjectSoft computingen_US
dc.titlePrediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage482-
dc.identifier.epage492-
dc.identifier.volume13-
dc.identifier.issue1-
dc.identifier.doi10.1080/19942060.2019.1613448-
dcterms.abstractThe combination of machine learning and numerical methods has recently become popular in the prediction of macroscopic and microscopic hydrodynamics parameters of bubble column reactors. Such numerical combination can develop a smart multiphase bubble column reactor with the ability of low-cost computational time when considering the big data. However, the accuracy of such models should be improved by optimizing the data parameters. This paper uses an adaptive-network-based fuzzy inference system (ANFIS) to train four big data inputs with a novel integration of computational fluid dynamics (CFD) model of gas. The results show that the increasing number of input variables improves the intelligence of the ANFIS method up to R = 0.99, and the number of rules during the learning process has a significant effect on the accuracy of this type of modeling. Furthermore, the proper selection of model’s parameters results in higher accuracy in the prediction of the flow characteristics in the column structure.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEngineering applications of computational fluid mechanics, 2019, v. 13, no. 1, p. 482-492-
dcterms.isPartOfEngineering applications of computational fluid mechanics-
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85069537510-
dc.identifier.eissn1997-003X-
dc.description.validate201910 bcma-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mosavi_Prediction_multi-inputs_bubble.pdf4.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

150
Last Week
0
Last month
Citations as of Sep 8, 2024

Downloads

148
Citations as of Sep 8, 2024

SCOPUSTM   
Citations

123
Citations as of Sep 19, 2024

WEB OF SCIENCETM
Citations

98
Citations as of Jun 20, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.