Please use this identifier to cite or link to this item:
PIRA download icon_1.1View/Download Full Text
Title: BAG : Behavior-aware group detection in crowded urban spaces using wifi probes
Authors: Shen, J 
Cao, J 
Li,u X
Issue Date: 2019
Source: The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, 2019, p. 1669-1678
Abstract: Group detection is gaining popularity as it enables various applications ranging from marketing to urban planning. The group information is an important social context which could facilitate a more comprehensive behavior analysis. An example is for retailers to determine the right incentive for potential customers. Existing methods use received signal strength indicator (RSSI) to detect co-located people as groups. However, this approach might have difficulties in crowded urban spaces since many strangers with similar mobility patterns could be identified as groups. Moreover, RSSI is vulnerable to many factors like the human body attenuation and thus is unreliable in crowded scenarios. In this work, we propose a behavior-aware group detection system (BaG). BaG fuses people's mobility information and smartphone usage behaviors. We observe that people in a group tend to have similar phone usage patterns. Those patterns could be effectively captured by the proposed feature: number of bursts (NoB). Unlike RSSI, NoB is more resilient to environmental changes as it only cares about receiving packets or not. Besides, both mobility and usage patterns correspond to the same underlying grouping information. The latent associations between them cannot be fully utilized in conventional detection methods like graph clustering. We propose a detection method based on collective matrix factorization to reveal the hidden associations by factorizing mobility information and usage patterns simultaneously. Experimental results indicate BaG outperforms baseline approaches by 3.97% ∼ 15.79% in F-score. The proposed system could also achieve robust and reliable performance in scenarios with different levels of crowdedness.
Keywords: Collective matrix factorization
Group detection
Probe request
Publisher: Association for Computing Machinery, Inc
ISBN: 9781450366748
DOI: 10.1145/3308558.3313590
Description: 2019 World Wide Web Conference, WWW 2019, United States, 13-17 May 2019
Rights: © 2019 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
The following publication Shen, J., Cao, J., & Liu, X. (2019, May). BaG: Behavior-aware Group Detection in Crowded Urban Spaces using WiFi Probes. In The World Wide Web Conference (pp. 1669-1678). ACM is available at
Appears in Collections:Conference Paper

Files in This Item:
File Description SizeFormat 
Shen_Behavior-aware_Group_Detection.pdf2.74 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Last Week
Last month
Citations as of May 28, 2023


Citations as of May 28, 2023


Citations as of May 25, 2023


Citations as of May 25, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.