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ABSTRACT
Group detection is gaining popularity as it enables various ap-
plications ranging from marketing to urban planning. The group
information is an important social context which could facilitate a
more comprehensive behavior analysis. An example is for retailers
to determine the right incentive for potential customers. Existing
methods use received signal strength indicator (RSSI) to detect
co-located people as groups. However, this approach might have
difficulties in crowded urban spaces since many strangers with sim-
ilar mobility patterns could be identified as groups. Moreover, RSSI
is vulnerable to many factors like the human body attenuation and
thus is unreliable in crowded scenarios. In this work, we propose a
behavior-aware group detection system (BaG). BaG fuses people’s
mobility information and smartphone usage behaviors. We observe
that people in a group tend to have similar phone usage patterns.
Those patterns could be effectively captured by the proposed fea-
ture: number of bursts (NoB). Unlike RSSI, NoB is more resilient
to environmental changes as it only cares about receiving packets
or not. Besides, both mobility and usage patterns correspond to
the same underlying grouping information. The latent associations
between them cannot be fully utilized in conventional detection
methods like graph clustering. We propose a detection method
based on collective matrix factorization to reveal the hidden as-
sociations by factorizing mobility information and usage patterns
simultaneously. Experimental results indicate BaG outperforms
baseline approaches by 3.97% ∼ 15.79% in F-score. The proposed
system could also achieve robust and reliable performance in sce-
narios with different levels of crowdedness.
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1 INTRODUCTION
Group detection plays an important role in many applications in-
cluding marketing [29], healthcare [22, 35], and urban planning
[3, 39]. The grouping information is an essential contextual feature
in multi-target tracking [26] and behavior analysis [12]. This so-
cial context facilitates better interpretation of observed events and
detection of abnormal behaviors [13]. A typical scenario is for re-
tailers to determine the right incentive for potential customers. For
example, “Buy X get Y free” promotions would be more attractive
to group customers than individual customers [29]. It is commonly
assumed a group could be discerned by people’s physical locations
and behaviors [6, 23, 29, 34]. Therefore, group detection is defined
as a task of clustering a set of people into disjoint subsets based on
their locations and behaviors.

Existing works exploit probe requests1 to detect co-located peo-
ple as a group [12, 19]. Co-location is achieved through received
signal strength indicator (RSSI) contained in probe requests. Be-
sides, those probes could be collected without difficulty since they
are broadcast automatically to seek information about nearby ac-
cess points (APs). Compared with other approaches, this method
requires neither high deployment cost (e.g., deploy cameras [9, 34])
nor user intervention (e.g., carry wearable devices or install apps
[18, 24, 29]). The probe-based methods are thus capable of detecting
large-scale spontaneous groups in naturalistic environments.

However, current probe-based methods might have some diffi-
culties in crowded environments. First, many strangers are close to
each other in crowded spaces [29]. For example, two strangersmight
walk closely along an aisle. This indicates detecting co-located peo-
ple as a group in crowded areas is error-prone. Second, RSSI is
vulnerable to many factors like device diversity, multipath fading,
and body attenuation [30]. It is unreliable to use RSSI to detect
groups in dynamic environments crowded with people moving
around.

We ask the following question: can we reliably detect groups with
WiFi probes in crowded urban spaces? In this paper, we provide an
affirmative answer by proposing a Behavior-aware Group detection
(BaG) system that integrates both mobility information and phone
usage behaviors. We have a key observation that people in the same
group tend to have similar phone usage patterns. The observation is
closely related to the concept of “phubbing” that is rife throughout
the world. “Phubbing” is defined as the act of snubbing others in
social interactions and instead focusing on one’s smartphone [11].

1Probe request, WiFi probe, and probe are used interchangeably
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According to a survey of 276 participants, the correlation of “phub-
bing” and “being phubbed” is 0.6 [4], which indicates individuals in
a group would have similar phone usage patterns. The authors [4]
explained this phenomenon occurs might due to false-consensus
effects. Individuals assume that others think and do the same as
themselves. Besides, we contribute a new feature (number of bursts,
NoB) extracted from WiFi probes that could effectively capture
phone usage patterns. A burst is a set of probes sent over a very
short period of time (less than 1 second) [8]. The higher frequency
a phone is used, the more NoB is generated. Unlike RSSI, NoB is
resilient to crowded environments since it only cares about whether
there are probes or not.

The vision of BaG, however, entails sparsity and fusing chal-
lenges when applied to real conditions.
1) How to handle spatiotemporal sparsity ofWiFi data? First,
an area is usually covered by a limited number of APs (spatial spar-
sity). Second, the probing frequency of a smartphone is affected
by many factors like operating systems and users’ usage patterns
[8] (temporal sparsity). The data in common of two users could be
much sparser. Measuring user similarity with such data could lead
to highly biased and unreliable results.
2) How to cluster users fusing mobility and behaviors? The
integration of mobility and behaviors remains an open issue. Mo-
bility and behaviors have latent associations since both of them
are different perspectives of the real grouping information. Simply
combing them like calculating their arithmetic mean might limit
the potential of hidden associations and thus derive unsatisfactory
results.

For the sparsity challenge, we first represent mobility and be-
havior information into two matrices respectively. Then we apply
matrix factorization (MF) to handle data sparsity by decomposing
an input matrix into the product of several factor matrices. For
the fusing challenge, we consider sparsity-constrained collective
nonnegative MF (SCNMF). The advantages are two-fold. First, col-
lective MF (CMF) takes the correlation of both input matrices into
consideration by factorizing them simultaneously. Second, the spar-
sity constraint of CMF makes it an alternative for clustering so that
grouping results could be derived directly without extra clustering
processes.

According to our experimental evaluation with 82 volunteer
groups in a large shopping mall, BaG achieves robust and reli-
able performance in scenarios with different levels of crowdedness.
Compared with baseline approaches, BaG improves F-score of de-
tection by 3.97% ∼ 15.79% in labeled data and 6.67% ∼ 20.69% in
synthetically labeled data, respectively.

Our main contributions are summarized as follows.

• We introduce a new improvement of group detection in
crowded environments: phone usage behaviors.
• A new feature (NoB) is extracted fromWiFi probes that could
effectively capture phone usage behaviors.
• We propose a new group detection method (SCNMF) that
fusesmobility and behaviors and derives the grouping results
without extra clustering processes.

The remainder of this paper is organized as follows. We present
preliminaries in Section 2. Section 3 introduces design details of
BaG, followed by experimental evaluation of the system in Section
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Figure 1: Average number of people in a day in the mall.

4. Related work is introduced in Section 5. We conclude this paper
and introduce the future work in the last section.

2 PRELIMINARIES
First of all, we use a two-day pilot study to illustrate relationships of
the following variables in crowded environments: 1) RSS difference
vs. groups 2) Phone usage behaviors vs. groups ; 3) Phone usage
behaviors vs. NoB.

Experiments are conducted in a large shopping mall where we
have deployed 20 APs to sniff WiFi probes. More detailed settings
could be found in Section 4. Although it is difficult to define crowd-
edness directly, different numbers of onsite people could reflect
different levels of crowdedness. Figure 1 highlights selected times
of the experiment and the average number of people in the mall.
The order of crowdedness is 12:00 > 16:00 > 7:00.

In each experiment, we recruit around 10 volunteer groups (each
group consists of 2 ∼ 5 people) and record their grouping informa-
tion and MAC addresses. We install an app on their smartphones
to record screen on-off states as phone usage events. To ensure
the authenticity, volunteers are only told to keep WiFi enabled and
behave as normal without knowing the purposes of the experiment.

2.1 RSS Difference vs. Groups
RSSI methods calculate RSS (received signal strength) difference of
two users. To this end, we first process users’ WiFi data with an
interval of 60 seconds, as probes are sent in a granularity of minutes
[12]. Then user i’s WiFi data in the t-th minute is represented as a
vector:

vti = [rss1, rss2, · · · , rssN ], (1)
where rssn represents received signal strength of the n-th AP, N is
the number of total APs. If no RSS is available for AP n, then rssn
is set to 0. According to [37], RSS difference of users i and j at time
t could be calculated with Eq. 2 and 3:

d (vti , v
t
j ) =

1
|Ai ∩Aj |

·
∑

a∈Ai∩Aj

���rss
i
a − rss

j
a
��� (2)

Ai =
{
k ���rss

i
k , 0,k ∈ [1,N ]

}
(3)

The averaged RSS difference D (i, j ) over all common time slots is
calculated with Eq. 4, whereT is a set of common time slots of user
i and j.

D (i, j ) =
1
|T |

∑
t ∈T

d (vti , v
t
j ), (4)

Then we derive a distribution Xд (k ) of D (i, j ) for all group pairs
appear in time slot k ∈

{
7 : 00, 12 : 00, 16 : 00

}
. Formal definition
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(b) Behavior difference

Figure 2: ROC curves of different features at selected times.
(a) With RSS difference; (b) With behavior difference.

of Xд (k ) is shown in Eq. 5, where boolean function д(i, j ) returns
‘True’ when user i and j are from the same group andUk is a set of
users appear in time slot k . Similarly, for all non-group pairs, we
have another distribution Xд̃ (k ).

Xд (k ) =
{
D (i, j )���д(i, j ) = True; i, j ∈ Uk

}

Xд̃ (k ) =
{
D (i, j )���д(i, j ) = False; i, j ∈ Uk

} (5)

Usually, Xд (k ) and Xд̃ (k ) overlap to some extent, so we cannot eas-
ily find a cut-off point that completely separates both distributions.
However, the smaller the overlap, the better the separation perfor-
mance. To compare the effectiveness of using RSS difference more
objectively, we exploit Receiver Operating Characteristic (ROC)
curve, which is usually used to illustrate the diagnostic ability of a
binary classifier system as its discrimination threshold varies. The
curve is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings.

Figure 2a shows the comparison of ROC curves using RSS dif-
ference at selected times. It is clear that the effectiveness of dif-
ferent times varies significantly, indicating RSS difference is not a
consistent feature in crowded environments. Besides, the order of
effectiveness is 7:00 > 16:00 > 12:00, which is exactly the opposite
order of the crowdedness. This implies crowded environment might
have a significant negative impact on RSSI methods.

2.2 Smartphone Usage Behaviors vs. Groups
To represent phone usage behaviors, we use a straightforward
way. If a smartphone is in use, the screen must be on. Otherwise,
the screen is off. To represent user i’s usage behaviors, we use a
behavior vector bi :

bi =
[ s1
60 ,

s2
60 , · · · ,

st
60 , · · ·

]
, (6)

where st is a total number of seconds when the screen is on in the
t-th minute. Behavior difference D ′(i, j ) of user i and j is measured
with Euclidean distance in Eq. 7.

D ′(i, j ) =
1
60

√∑
t=1

(sit − s
j
t )
2 (7)

The behavior difference distributions Yд (k ) and Yд̃ (k ) at time k
are defined as:

Yд (k ) =
{
D ′(i, j )���д(i, j ) = True; i, j ∈ Uk

}

Yд̃ (k ) =
{
D ′(i, j )���д(i, j ) = False; i, j ∈ Uk

} (8)
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Figure 3: (a) Boxplot of the correlation for all users at
selected times; (b) An example of correlation analysis of
screen-on ratio and normalized NoB for a single user.

Similarly, we draw ROC curves for Yд (k ) and Yд̃ (k ). As shown in
Figure 2b, the ROC curves at different times are close to each other,
indicating behavior difference is stable in different crowdedness
settings. Besides, the performance (AUC, area under curve, are all
over 0.85) proves behavior difference is effective for group detection.

2.3 Smartphone Usage Behaviors vs. NoB
Although different smartphones have different probing patterns,
it is reported that a smartphone will send more probes when the
screen is on [8]. Therefore, the more frequently a smartphone is
used, the more NoB is generated. A recent research work [15] uses
the number of wireless packets to predict the screen on-off states
and achieves an accuracy ranging from 93% to 100%. NoB is different
from the work in two aspects. First, only WiFi probes are used here.
Second, we use the number of bursts instead of the number of
packets.

We represent user i’s NoB feature with a NoB vector:

ni = [n1,n2, · · · ,nt , · · · ], (9)

where nt is the number of bursts in the t-th minute. To handle the
impact of device diversity, we further calculate a normalized NoB
vector with Eq. 10, where max (.) find the largest element of an
input vector.

n̂i = ni/max (ni ) (10)

To analyze the correlation between smartphone usage behaviors
and NoB, we calculate the Pearson Correlation Coefficient of the
normalized NoB vector (n̂i ) and the behavior vector (bi ) for users in
all experiments. Figure 3a shows the boxplot of the correlation from
all users. It is clear that smartphone usage behaviors and NoB are
closely correlated in different crowdedness settings. Furthermore,
an example of correlation analysis for a single user is illustrated in
Figure 3b. The correlation coefficient and the p-value are 0.88 and
2.1e−31, respectively, which shows it is significant that screen-on
ratio is positively correlated with NoB for the user. Furthermore,
we could find that the correlation is higher when both variables
are small. This means if the screen is on, it is more likely that the
smartphone will send probes.
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Figure 4: System overview of BaG.
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3 SYSTEM DESIGN
In this section, we elaborate on design details of BaG. The overview
of the proposed system is illustrated in Figure 4. First, we passively
sniff WiFi probes from different devices (Data Collection). Then we
filter out data from non-mobile users (Data filtering) and separate
the filtered data into several crowds (User Partition). Besides, mo-
bility and behavior related features are extracted and represented
in matrices (Feature Extraction). Last, we use collective matrix fac-
torization to fuse two matrices and derive grouping results (Group
Detection) without extra clustering processes.

3.1 Data Collection
We exploit off-the-shelf WiFi APs to sniff WiFi probes from nearby
devices and upload the data to a server. The AP configurations
are as follows: AR9341 (WLAN chip), 64M (RAM), and 8M (Flash
Memory). We use those APs for collecting probe requests only since
they have limited computational and storage capacity.

Each APworks under OpenWrt2 with a virtual network interface
enabled in monitor mode. We use Tcpdump (a utility for capturing
network traffic) to sniff WiFi probes and upload the collected data
to the server at 2:00 AM when the bandwidth is fully available.
Once the upload process is complete, local WiFi data will be deleted
to make space for the new coming data.

3.2 Data Filtering
Data filtering services as a preprocessing of the raw WiFi data
including three steps: combat with MAC randomization, filter out
data from non-mobile users, and extract useful data fields.

To prevent third parties from tracking devices with MAC (Media
Access Control) address, several vendors have implemented MAC

2OpenWrt is a highly extensible GNU/Linux distribution for embedded devices (typi-
cally wireless routers).

address randomization which implies that probe requests no longer
use the real MAC address of the device. However, this mechanism
may not work as expected in reality since it is reported defeated
in several recent works [8, 21, 38]. Besides, this randomization
mechanism is not activated in the majority of old devices, especially
for Android systems. We follow the practice described in [21] to
defeat MAC randomization.

As the collected data may come from stationary devices (like
desktops and IP cameras) and mobile devices, we remove the data
of non-mobile users devices with a simple decision-tree classifier
as illustrated in Figure 5. If a MAC is not in OUI (Organizationally
Unique Identifier) list, it might be a forged MAC or from unreg-
istered companies which makes no sense to us. Then we use the
routine of human activities to filter out stationary devices as during
2:00 ∼ 4:00, most public places are closed, and most of the people
are in sleep. Last, with the help of two scenario-dependent parame-
ters τmin and τmax which represent the minimum and maximum
dwell time, we could filter out data from staffs and passersby. In our
system, we empirically set τmin = 10 and τmax = 240which means
people stay for at least 10 minutes and up to 4 hours. This setting
is based on our observation and is intended to identify customer
groups. If we want to detect staff groups, both parameters should
be relatively larger. More details could be found in Reference [32].

Lastly, we extract desired fields from WiFi probes. For each WiFi
probe, we can get the following data entry:

< Timestamp, Device_MAC, AP_MAC >,

where Timestamp indicates the time of receiving a probe, MAC is
MAC address which uniquely represents a smartphone or an AP.

3.3 User Partition
Instead of detecting groups out of all mobile users in a whole day,
we first utilize temporal constraint of groups to separate users into
different crowds and then identify groups out of each crowd. The
main advantage of user partition is that the efficiency of group
detection can be greatly improved since it breaks down the original
problem intomany subproblemswhich can be solved independently.

The idea of the temporal constraint is very simple. The time gap
of the appearance of groups members would never be too large. An
illustration is shown in Figure 6. For an extreme example, group
members would not appear separately in the morning and in the
night. Formally, the temporal constraint is defined as

max ( |tai − taj |) ≤ ψ , (11)
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where tai means the appearance time of user i andψ is a threshold.
The physical meaning of parameterψ is the dwell time of the most
people. The selection ofψ is discussed in Section 4.

Then we equally partition the daytime into non-overlapping
fragments usingψ . The partition process is depicted in Figure 6. For
any two sequential fragments fi and fi+1, we take out WiFi data
entries of users whose start time falls in both fragments. Those users
are regarded as a crowd and their WiFi data entries are denoted as
crowdi . If a person appears in fi , his/her group mate may appear
in the same fragment or the next fragment, but it is barely possible
to appear in fi+2 sinceψ restricts the dwell time of most people.

3.4 Feature Extraction
Given data entries of a crowd, we represent two features as two
feature matrices. The first feature is NoB that indicates a user’s
phone usage behaviors. The other isAP connectivity which indicates
a user’s mobility information.

As introduced in Section 1, NoB refers to how many times a
device has sentWiFi probes. AP connectivity means how long a user
has been in the coverage area of an AP. It reflects where a user has
been to and how long they have stayed. Compared to RSSI, although
AP connectivity is more coarse-grained, it is also more robust and
reliable. Both AP connectivity and NoB are insensitive to crowded
environments as they only care about whether a smartphone sends
WiFi probes or not which cannot be readily affected.

We first group WiFi data entries by users’ MAC addresses. For
each user, we raise the granularity of the data from seconds to min-
utes, as this practice reduces the impact of sparse WiFi probes. To
eliminate the negative impact of device diversity, we normalize con-
nectivity vector and NoB vector for each user. Lastly, we combine
all users’ connectivity and NoB vectors and generate corresponding
matrices.

3.5 Group Detection
Group detection is essentially a hard clustering problem which
means each user can only belong to a cluster or not. Previous
works [12, 29] need to measure pairwise user similarity and then
construct a user graph with nodes representing users and the edge
between nodes indicating their similarity. After that, an explicit
graph clustering process like Markov Cluster Algorithm is applied
to the graph to detect groups.

However, it would be inefficient and cumbersome to construct
the graph by measuring pairwise user similarity. Instead, we use
nonnegative matrix factorization (NMF) to derive the group results
directly without extra clustering processes. We choose NMF rather
than other matrix factorization like singular value decomposition
(SVD) as entries in both original matrices have physical meaning
(number of bursts and duration time). Positive factors facilitate
direct physical connections. Besides, collective nonnegative ma-
trix factorization (CNMF) is used to jointly factorize connectivity
and NoB matrices to get better results as both matrices share the
same latent feature: the grouping information. An illustration of the
whole process is shown in Figure 7. We have two relation matrices
A (user-mobility matrix) and B (user-behavior matrix) as input.
After collective matrix factorization, there are three factors corre-
sponding to three entities. The user entity matrixH contains the
group results. Each row ofH indicates a potential group withHi j
representing the strength that user i belongs to group j. FromH
we can see clearly that the group results are (u1,u2) and (u3,u4).

In the following subsections, we first briefly review the rationale
of using NMF for clustering. Then we focus on solving the group
detection problem using CNMF.

3.5.1 NMF and k-means. Given an input matrix A ∈ IRm×n
and an integer k < min(m,n), NMF aims to find two nonnegative
factorsW ∈ IRm×k ,H ∈ IRn×k such that A ≈WHT .W andH
can be found by solving the optimization problem:

min
W,H

Fk (W,H ) =
1
2
A −WH

T 
2
F
s .t . W,H ≥ 0, (12)

where Fk (·) is the loss function and k is the reduced dimension.
∥A∥F means Frobenius Norm of matrix A. The reasons of using
Frobenius Norm are that it has a Guassian noise interpretation and
the objective function can be easily transformed to a matrix trace
version.

Existing works [17] provide evidence that sparsity constrained
NMF is a viable alternative as a clustering method. The objective of
k-means is to minimize the sum of squared distances from each data
point to its centroid. With A = [a1, ...,an] ∈ IRm×n , the objective
function Jk with given integer k can be written as:

Jk =
k∑
j=1

∑
ai ∈Cj

ai − c j

2
=
A − CB

T 
2
F
, (13)

where B ∈ IRn×k denotes the clustering assignment. If the i-th
observation is assigned to the j-th cluster Bi j = 1, otherwise Bi j =
0. C = [c1, ..., ck ] ∈ IRn×k is the centroid matrix where c j is the
cluster centroid of cluster Cj . C can also be written as C = ABD−1
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Algorithm 1 Alternating nonnegative least squares
Require: InitializeH and P with random nonnegative values.
1: while the convergence criterion is not satisfied do

2: W ← argminW


(√
αH
√
ηIk

)
WT −

(√
αAT

0k×m

)
2

F

3: P ← argminP


(√
1 − αH
√
ηIk

)
PT −

(√
1 − αAT

0k×l

)
2

F

4: H ← argminH



*..
,

√
αW

√
1 − αP√
βe1×k

+//
-
HT −

*..
,

√
αA

√
1 − αB
01×n

+//
-



2

F
5: end while

where D−1 is a diagonal matrix defined in:

D−1 = diaд(
1
|C1 |
,

1
|C2 |
, ...,

1
|Ck |

) ∈ IRk×k (14)

|Cj | denotes the number of data points in cluster j . Since a diagonal
matrix can be factored as any two diagonal matricesD−1 = D1D2.
Defining F = BD1 andH = BD2, the objective function Jk can
be rephrased as:

Jk =
A −ABD1D2B

T 
2
F
=
A −AFH

T 
2
F

(15)

where F and H have exactly one positive element in each row.
FactorH has exactly one nonzero element for each row which rep-
resents a hard clustering result of the corresponding data point. If
we letW = AF , Jk is similar to objective function Fk of NMF. The
difference is that NMF formulation does not have the constraints
thatHT is a sparse matrix. To this end, sparse NMF (SNMF) is pro-
posed. The idea is to use ℓ1-norm regularization to achieve sparsity
of the factorization [36].

3.5.2 SCNMF for Group Detection. Now we provide our for-
mulation and solution to the group detection problem. Given two
input matrices: connectivity matrix A ∈ IRm×n and NoB matrix
B ∈ IRl×n , and an integer k < min{m,n, l }, sparsity-constrained
collective nonnegative matrix factorization (SCNMF) aims to find
three nonnegative factorsW ∈ IRm×k ,H ∈ IRn×k (sparse matrix),
and P ∈ IRl×k such that:{

A ≈WHT

B ≈ PHT (16)

The solutionsW ,H , P can be found by solving the optimization
problem:

min
W,H ,P

1
2

[
α A −WH

T 
2
F
+ (1 − α ) B − PH

T 
2
F
+

β
n∑
j=1

Hj

2
1 + η(∥W∥

2
F + ∥P∥

2
F )

]
s.t.W,H ,P ≥ 0,

(17)

where Hj is the j-th row vector of H . Parameter α ∈ [0, 1] is
scenario-dependent which weights the relative importance of two
input matrices. Parameter β > 0 balances the trade-off between
the accuracy of approximation and the sparseness ofH . Parameter
η > 0 controls the size of the elements ofW and P respectively. It
is usually determined by the largest element of input matrices [17].

120
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Figure 8: Distribution and CDF of dwell time in the mall.

Although solving Eq. 17 is a non-convex problem [10], it is con-
vex separately in each factor, i.e., finding the optimal factorW
corresponding to fixed factorsH and P reduce to a convex opti-
mization problem. Algorithms based alternating nonnegative least
squares (ANLS) are often used for sparse NMF. Then we use Algo-
rithm 1 to iterate the ANLS until a convergence criterion, which is
set to iterate for 200 times [16], is satisfied. In the algorithm, Ik is
an identity matrix of size k × k , 0k×m is a zero matrix of size k ×m,
and e1×k is a row vector with all components equal to one. More
details can be found in [16].

3.5.3 Determine the correct number of k . Parameter k is an
input of the system which corresponds to the potential number
of groups. In [17], consistency of clustering algorithms is used to
determine the correct number of k from data. Consistency means
the consistency clustering results under random initializations. To
measure consistency, we construct a matrix Ck ∈ IRn×n where
n is the number of all users and k is the number of clusters. For
pairwise users i and j, Ck (i, j ) = 1 if they are assigned to the same
cluster, otherwise Ck (i, j ) = 0. Then we calculate the averaged
Ĉk over trails. Ĉk (i, j ) represents the possibility user i and user j
being assigned to the same cluster. If the clustering results were
consistent throughout all trails, each element in Ĉk would be close
to either 0 or 1. A general quality of consistency is proposed by
dispersion coefficient:

ρk =
1
n2

n∑
i=1

n∑
j=1

4
[
Ĉk (i, j ) −

1
2
]2 (18)

where ρk ∈ [0, 1] and ρk = 1 indicates the perfect consistent
clustering results. After obtaining the values of ρk for various k ,
the number of clusters could be determined by the point k ′ where
ρk ′ drops. More detailed information can be found in [17].

4 EXPERIMENTAL EVALUATION
4.1 Settings
4.1.1 Setup. We conduct experiments in a large shopping mall
with 4 floors covering an area of 4890m2. The experiments here
and the experiments conducted in Section 2 are different in terms
of purposes and scales.

There are originally 20 APs installed in the mall for customers
to access the Internet. We use those APs to collect the WiFi data.
Within one week, we recruit 82 volunteer groups including 294
volunteers during 28 experiments at different times of a day. For
each experiment, we recruit 2 ∼ 4 volunteer groups with each
group containing 2 ∼ 5 people and record their MAC addresses
and grouping information. The majority of experiments last from
0.5 hour to 1.5 hours. To ensure authenticity, volunteers are only
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told to keep their WiFi enabled without knowing the purpose of
experiments.

4.1.2 Collected data. During the week, 4, 184, 778WiFi probes
are received from 59, 282 devices a day on average. According to
our data filtering (Section 3.2), only 6.66% (3, 951) of them are from
customers’ mobile devices.

Figure 8 depicts the distribution of customers’ dwell time which
obeys the power law distribution. We also draw cumulative distri-
bution function (CDF) of dwell time in Figure 8. It shows that 95%
customers stay in the mall for less than 2 hours. This finding is
useful because it helps to determine the value of parameterψ (in
Section 3.3).

4.1.3 Ground truth. BaG takes the collected data of each day
as input and output the detected groups. We have no ways of
knowing the grouping information for everyone in the collected
data. However, we could know the relationships of a subset of those
people.

Based on the information of our volunteers, we have prepared
two evaluation datasets. The difference between two datasets is
the number of non-group pairs. We call the first dataset as labeled
dataset as it is entirely contributed by volunteers. In other words,
we know the relation (group and non-group) of every pair of users.
This dataset consists of 438 group pairs (positive samples) and 1, 135
non-group pairs (negative samples).

The second dataset is synthetically labeled dataset which includes
some non-volunteers. When recruiting volunteer groups, we en-
gage all group members in the experiment. Therefore, user pairs
consisting of volunteer and non-volunteers must be non-group.
Eventually, we get a dataset of 438 positive samples, and 2, 311
negative samples.

Even though we could find significantly more negative samples,
we carefully control such negative samples. One reason is that such
synthetic negative sample should also obey the temporal constraint
as mentioned in Section 3.3, otherwise it could be too easy to detect.
Another reason is that the difference of numbers between posi-
tive and negative samples should not be too large, otherwise the
evaluation metrics might be affected.

4.1.4 Metrics. There is no consensus on which metrics should
be used to evaluate groups detection [34]. Here we use Precision,
Recall and F-score to measure the performance of group detection,
which are defined as follows.

MCL
MCL

SCNMF

MCL

MethodCode

RSSI

Mobility + NoB
Mobility + NoB

R-M
RN-M RSSI + NoB

Features

BaG
MN-M

verify NoB

verify CMF

G MGraph Approach Matrix Approach 

G

M

G

G

verify Mobility

Figure 9: Illustration of baseline approaches.

4.1.2 Collected data. During the week, 4,184,778 WiFi probes
are received from 59,282 devices a day on average. According to
our data filtering (Section 3.2), only 6.66% (3,951) of them are from
customers’ mobile devices.

Figure 8 depicts the distribution of customers’ dwell time which
obeys the power law distribution. We also draw cumulative distri-
bution function (CDF) of dwell time in Figure 8. It shows that 95%
customers stay in the mall for less than 2 hours. This finding is
useful because it helps to determine the value of parameterψ (in
Section 3.3).

4.1.3 Ground truth. BaG takes the collected data of each day
as input and output the detected groups. We have no ways of
knowing the grouping information for everyone in the collected
data. However, we could know the relationships of a subset of those
people.

Based on the information of our volunteers, we have prepared
two evaluation datasets. The difference between two datasets is
the number of non-group pairs. We call the first dataset as labeled
dataset as it is entirely contributed by volunteers. In other words,
we know the relation (group and non-group) of every pair of users.
This dataset consists of 438 group pairs (positive samples) and 1,135
non-group pairs (negative samples).

The second dataset is synthetically labeled dataset which includes
some non-volunteers. When recruiting volunteer groups, we en-
gage all group members in the experiment. Therefore, user pairs
consisting of volunteer and non-volunteers must be non-group.
Eventually, we get a dataset of 438 positive samples, and 2,311
negative samples.

Even though we could find significantly more negative samples,
we carefully control such negative samples. One reason is that such
synthetic negative sample should also obey the temporal constraint
as mentioned in Section 3.3, otherwise it could be too easy to detect.
Another reason is that the difference of numbers between posi-
tive and negative samples should not be too large, otherwise the
evaluation metrics might be affected.

4.1.4 Metrics. There is no consensus on which metrics should
be used to evaluate groups detection [34]. Here we use Precision,
Recall and F-score to measure the performance of group detection,
which are defined as follows.
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Table 1: Detailed results of different α when β = 0.2.

α precision recall F-score
.1 .861 .887 .874
.3 .897 .898 .897
.5 .822 .914 .866
.7 .743 .884 .807
.9 .690 .847 .760

Table 2: Detailed results of different β when α = 0.5.

β precision recall F-score
.1 .815 .912 .861
.2 .822 .918 .867
.3 .829 .915 .870
.4 .813 .905 .857
.5 .817 .896 .855

4.1.5 Baseline approaches. As mentioned in Introduction, two
of our contributions are an effective feature (NoB) and a clustering
method (CMF) for detecting groups. To verify the effectiveness of
both NoB and CMF, we set three baselines R-M, RN-M, and MN-M.
A baseline has two important components: feature(s) and method.
Figure 9 shows detailed configurations of all approaches. According
to the clustering methods used, those approaches can be further
classified as graph approach (usingMarkov Cluster algorithm,MCL)
and matrix approach (using SCNMF). Steps of graph approaches: 1)
Measure user similarity based on some features. 2) Construct a user
graph with users as nodes and their similarities as edge weights. 3)
Run graph clustering algorithms to derive clusters or groups.

For different graph approaches, different feature combinations
are used to measure user similarity. For multiple features, we com-
bine them with arithmetic mean to measure similarity. Finally, MCL
is applied to the constructed graph to detect groups. MCL is a popu-
lar graph clustering algorithm used by many existing works [12, 29].
It works well when the cluster size is small and it does not require
the number of clusters as an input.

For matrix approach, BaG is a typical one. Therefore, it is un-
necessary to repeat the steps again here. The precondition of this
approach is to have matrices as input. That is why we do not have
a matrix approach with RSSI and NoB since it is non-trivial to find
an appropriate way of representing RSSI in the matrix format.

Table 1: Detailed results of different α when β = 0.2.

α precision recall F-score
.1 .861 .887 .874
.3 .897 .898 .897
.5 .822 .914 .866
.7 .743 .884 .807
.9 .690 .847 .760

Table 2: Detailed results of different β when α = 0.5.

β precision recall F-score
.1 .815 .912 .861
.2 .822 .918 .867
.3 .829 .915 .870
.4 .813 .905 .857
.5 .817 .896 .855

4.1.5 Baseline approaches. As mentioned in Introduction, two
of our contributions are an effective feature (NoB) and a clustering
method (CMF) for detecting groups. To verify the effectiveness of
both NoB and CMF, we set three baselines R-M, RN-M, and MN-M.
A baseline has two important components: feature(s) and method.
Figure 9 shows detailed configurations of all approaches. According
to the clustering methods used, those approaches can be further
classified as graph approach (usingMarkov Cluster algorithm,MCL)
and matrix approach (using SCNMF). Steps of graph approaches: 1)
Measure user similarity based on some features. 2) Construct a user
graph with users as nodes and their similarities as edge weights. 3)
Run graph clustering algorithms to derive clusters or groups.

For different graph approaches, different feature combinations
are used to measure user similarity. For multiple features, we com-
bine them with arithmetic mean to measure similarity. Finally, MCL
is applied to the constructed graph to detect groups. MCL is a popu-
lar graph clustering algorithm used by many existing works [12, 29].
It works well when the cluster size is small and it does not require
the number of clusters as an input.

For matrix approach, BaG is a typical one. Therefore, it is un-
necessary to repeat the steps again here. The precondition of this
approach is to have matrices as input. That is why we do not have
a matrix approach with RSSI and NoB since it is non-trivial to find
an appropriate way of representing RSSI in the matrix format.
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Table 3: Performance in labeled dataset.

Codes 7:00 16:00 12:00
P1 R2 F3 P R F P R F

R-M .874 .886 .880 .755 .788 .771 .700 .720 .710
RN-M .920 .935 .927 .848 .876 .862 .815 .799 .807
MN-M .905 .922 .914 .856 .886 .871 .817 .849 .832
BaG .934 .954 .944 .887 .915 .901 .859 .892 .875

1 Precision 2 Recall 3 F-score

Table 4: Performance in synthetically labeled dataset.

Codes 7:00 16:00 12:00
P R F P R F P R F

R-M .751 .806 .778 .652 .715 .682 .618 .655 .636
RN-M .821 .886 .852 .757 .832 .793 .729 .756 .742
MN-M .806 .850 .827 .758 .810 .783 .727 .779 .752
BaG .849 .905 .876 .804 .868 .835 .777 .842 .808

7:00 16:00 12:00
Labeled dataset

R-M

RN-M

MN-M

7.3% 16.9% 23.2%

1.8% 4.5% 8.4%

3.3% 3.4% 5.2%

7:00 16:00 12:00
Synthetically labeled dataset

R-M

RN-M

MN-M

12.6% 22.4% 27.0%

2.8% 5.3% 8.9%

5.9% 6.6% 7.4%
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Figure 10: Performance gain ratios of BaG.

4.1.6 Parameter selection. In this system, there are 3 parame-
ters to determine: ψ for user partition (Section 3.3) and α , β for
group detection (Section 3.5).

In user partition, ψ represents the maximum duration time of
onsite customers. As discussed in Section 3.3, the physical meaning
ofψ is the dwell time of customers. While Figure 8 shows that 95%
customers stay in the mall for less than 2 hours. Therefore, we set
ψ to 120 minutes in our system.

For group detection, parameter α controls the relative impor-
tance of connectivity matrix over NoB matrix. According to the
results shown in Table 1, we set α to 0.3. Generally, small α is pre-
ferred since connectivity matrix contains coarse-grained mobility
information that has limited capacity to detect groups in crowded
environments. Parameter β balances the trade-off between accuracy
of approximation and sparseness. The performance of different β
is illustrated in Table 2. Even though the performance is not that
sensitive to β , too big β is undesirable since that might lead to
worse approximation [17], so β is set to 0.2.

4.2 Evaluation
As explained in Section 2.1, we use the number of onsite people
to represent different crowdedness settings. To have a comprehen-
sive understanding of the performance of BaG, the evaluation is

further explained with two datasets, four approaches, three feature
combinations, and two clustering methods.

4.2.1 Two datasets. According to Figure 1, the order crowded-
ness for selected hours is 12:00 > 16:00 > 7:00. Detailed performance
of all approaches on labeled and synthetically labeled datasets are
shown in Table 3 and 4, respectively.

Compared with labeled dataset, all approaches have worse per-
formance on the synthetically labeled dataset. This is reasonable
since changes of the number of people to be detected might alter
the clustering results. Besides, the probability that strangers are
close to each other or have similar smartphones usage patterns are
likely to increases with the number of people.

Interestingly, the average change of precision (−11.1%) is more
significant than that of recall (−0.7%) over all approaches and times.
One possible reason is the boost of negative samples increases
false detections especially false positive detections (non-groups are
detected as groups) and leads to a significant decline in precision.

4.2.2 Four approaches. Averaging the performance over all times,
BaG improves F-score by 3.97% ∼ 15.79% and 6.67% ∼ 20.69% in
labeled and synthetically labeled datasets, respectively.

We further demonstrate the performance of BaG by showing
the F-score gain ratio over baselines. The ratio is defined in Eq. 19
where bl represents a baseline approach.

F-score gain ratio =
FBaG − Fbl

Fbl
, (19)

As shown in Figure 10, the ratio increases with the crowdedness
indicating BaG is more accurate and reliable in crowded environ-
ments. Besides, the improvement is slightly higher in synthetically
labeled data.

4.2.3 Three feature combinations. R-M, RN-M, and MN-M are
all based on the same clustering method, so we could match them
to compare the performance of different feature combinations.

From the performance tables, we have identified two issues on
both datasets. First, the performance of feature combinations with
NoB (RN-M and MN-M) are consistently higher than the other
approach (R-M) over all times. The reasons might be two-fold. On
one hand, the additional feature NoB has been used. On the other,
it also proves NoB has the capability to capture the underlying
grouping information in different crowdedness settings.

The second issue is that in the least crowded setting RN-M
slightly outperforms MN-M, but the situation is just the opposite
in the most crowded setting. This phenomenon results from differ-
ent recall declining rates. When the crowdedness increases, both
methods become worse, but recall of RN-M declines faster than
that of MN-M. Potential reasons for different declining rates might
be as follows. RSSI is more fine-grained than mobility but it is also
more unreliable when the environment gets crowded since people
frequently move around and hold their smartphones in different
ways. In crowded environments, group users might have low simi-
larity based on RSSI distance measurement and thus generate more
false negative detections (groups are detected as non-groups) that
degrade recall.

To support this, in Figure 11 we show an example of similarity
matrices from a single experiment in 12:00 with 3 groups. As we can
see in Figure 11a, some group users (like e and f ) have low similarity
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1a 1b 2c 2d 3e 3f 3g 3h

3h

3g

3f

3e

2d

2c

1b

1a

0.05 0.12 0.39 0.22 0.51 0.8 0.7 1

0.2 0.55 0.35 0.47 0.61 0.72 1 0.7

0.31 0.52 0.26 0.44 0.49 1 0.72 0.8

0.74 0.42 0.12 0.35 1 0.49 0.61 0.51

0.49 0.56 0.78 1 0.35 0.44 0.47 0.22

0.24 0.44 1 0.78 0.12 0.26 0.35 0.39

0.54 1 0.44 0.56 0.42 0.52 0.55 0.12

1 0.54 0.24 0.49 0.74 0.31 0.2 0.05

(a) RSSI

1a 1b 2c 2d 3e 3f 3g 3h

3h

3g

3f

3e

2d

2c

1b

1a

0.25 0.12 0.46 0.35 0.65 0.64 0.92 1

0.12 0.45 0.35 0.38 0.66 0.81 1 0.92

0.33 0.45 0.38 0.49 0.57 1 0.81 0.64

0.6 0.36 0.23 0.41 1 0.57 0.66 0.65

0.2 0.46 0.83 1 0.41 0.49 0.38 0.35

0.44 0.43 1 0.83 0.23 0.38 0.35 0.46

0.58 1 0.43 0.46 0.36 0.45 0.45 0.12

1 0.58 0.44 0.2 0.6 0.33 0.12 0.25

(b) RSSI+NoB

1a 1b 2c 2d 3e 3f 3g 3h

3h

3g

3f

3e

2d

2c

1b

1a

0.15 0.04 0.45 0.32 0.62 0.79 0.87 1

0.03 0.47 0.35 0.48 0.81 1 1 0.87

0.03 0.47 0.35 0.48 0.72 1 1 0.79

0.5 0.38 0.13 0.19 1 0.72 0.81 0.62

0.31 0.5 0.92 1 0.19 0.48 0.48 0.32

0.36 0.43 1 0.92 0.13 0.35 0.35 0.45

0.77 1 0.43 0.5 0.38 0.47 0.47 0.04

1 0.77 0.36 0.31 0.25 0.03 0.03 0.15

(c) Mobility+NoB

Figure 11: User similarity matrix from a single experiment in 12:00 using different feature combinations. Alphabets represent
people, numbers reveal their grouping information. For example, 1a means user a is in group 1.

using RSSI. Although NoB has a certain effect, the improvement is
quite limited as illustrated in Figure 11b. As a contrast in Figure 11c,
the combination of mobility and NoB measures user similarity in a
better way as mobility is more coarse-grained and thus insensitive
to environmental changes.

4.2.4 Two clustering methods. Two clustering methods refer
to graph approach and matrix approach. We could compare them
by matching the performance of BaG and MN-M from performance
tables and Figure 10. Overall, BaG slightly outperforms MN-M in
all situations ranging from 3.3% ∼ 7.4%.

The main advantage of the matrix approach relies on the fusion
of mobility and NoB. Mobility and NoB are two different perspec-
tives of the real grouping information and thus have some hidden
associations. With collective matrix factorization, we could simul-
taneously factorize them to reveal their hidden associations. While
in the graph approach mobility and NoB are simply combined us-
ing arithmetic mean which might have limited the potential of the
latent association.

5 RELATEDWORK
Group detection can be classified as vision-based approaches, sensor-
based approaches, and WiFi-based approaches according to differ-
ent means.

Vision-based approaches regard group detection as a task of
clustering set of users’ trajectories into disjoint subsets [9, 34].
However, this kind of methods have some apparent limitations. First
of all, the biggest issue is privacy erosion. Besides, video surveillance
suffers from environmental issues such as non-line-of-sight, and
low brightness.

Sensor-based approaches use wearable devices or install apps
on smartphones to collect users’ behavioral data. Groups are de-
tected through correlation analysis of multiple sensor data. For
instance, MIT researchers use specially designed wearable devices
called “Sociometric Badges” [24, 25, 33] to measure group behavior
through face-to-face interaction and physical proximity. Some re-
search works [18, 20, 29] combine several sensor modalities (WiFi,
accelerometer, compass, etc) to measures users similarity. However,
these methods might be difficult to collect data on a scale, as they
require user intervention which would be cumbersome in some
scenarios. Besides, engaging multiple sensors drains smartphone
battery more quickly.

WiFi-based approaches utilize the information contained in
probe request to detect groups. Compared to other approaches,
WiFi-based approaches do not require high deployment cost or
user intervention. The probe contains significant information like
time stamp, smartphone MAC address, RSSI, and SSID, which en-
ables a wide range of applications like passive tracking [7], crowd
counting[28, 40], and facility utilization analysis [27]. SSID and
RSSI are two frequently used information to detect groups. Cunche
et. al. [1, 2, 5] link different smartphones through SSID similar-
ity. However, 80% of the devices reply with empty SSID list [14],
approaches that rely on SSID may not work well anymore. Then
researchers’ focus transfer to RSSI which indicate users’ mobility.
Kjærgaard et. al. [19] extract spatial features, signal-strength fea-
tures, and pseudo-spatial features from signal strength to detect
social groups which they call pedestrian flocks. It is found that the
performance of spatial features is unreliable, since mapping RSSI
into locations is not accurate enough. Besides, the mapping process
itself is usually time-consuming and labor-intensive. To avoid the
cumbersome mapping process, directly measure the similarity of
RSSI fingerprints to detect co-located mobile users. These meth-
ods get rid of absolute locations, thus eliminate labor-intensive
calibration and protect users’ privacy. SocialProbe [12] considers
the hardware diversity and uses the normalized RSSI vector to
achieve co-location detection. However, hardware difference is not
the only factor, other factors like body attenuation, environmental
disturbance, and multipath fading can also significantly affect RSSI.
Therefore, RSSI based approach may not achieve reliable perfor-
mance in some scenarios, especially in crowded urban spaces like
shopping malls. SNOW [31] focuses on a certain type of group in
shopping malls using WiFi data from associated devices rather than
WiFi probes.

6 CONCLUSION
In this paper, we present a group detection system (BaG) that is
verified reliable and accurate in different crowdedness settings. One
of our main contributions is a new feature (NoB) extracted from
WiFi probes. NoB could effectively capture phone usage patterns
which is a new perspective for detecting groups. The second con-
tribution is a new detection method (SCNMF) that fuses mobility
information and usage behaviors. SCNMF could reveal the hidden
associations between mobility and behaviors by decomposing them
simultaneously. The experimental evaluation in a large shopping
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mall demonstrates the effectiveness and robustness of BaG in sce-
narios with different levels of crowdedness. Compare to baseline
approaches, BaG shows a significant improvement by increasing
F-score of detection by 3.97% ∼ 15.79% in labeled dataset and
6.67% ∼ 20.69% in synthetically labeled dataset respectively.
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