Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81060
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorWang, Ken_US
dc.creatorLi, Yen_US
dc.creatorSu, Zen_US
dc.creatorGuan, Ren_US
dc.creatorLu, Yen_US
dc.creatorYuan, Sen_US
dc.date.accessioned2019-07-22T01:56:32Z-
dc.date.available2019-07-22T01:56:32Z-
dc.identifier.issn0020-7403en_US
dc.identifier.urihttp://hdl.handle.net/10397/81060-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wang, K., Li, Y., Su, Z., Guan, R., Lu, Y., & Yuan, S. (2019). Nonlinear aspects of “breathing” crack-disturbed plate waves: 3-D analytical modeling with experimental validation. International Journal of Mechanical Sciences, 159, 140-150 is available at https://doi.org/10.1016/j.ijmecsci.2019.05.036en_US
dc.subjectAnalytical modelingen_US
dc.subjectContact acoustic nonlinearityen_US
dc.subjectFatigue cracken_US
dc.subjectGuided ultrasonic wavesen_US
dc.subject“breathing” cracken_US
dc.titleNonlinear aspects of “breathing” crack-disturbed plate waves : 3-D analytical modeling with experimental validationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage140en_US
dc.identifier.epage150en_US
dc.identifier.volume159en_US
dc.identifier.doi10.1016/j.ijmecsci.2019.05.036en_US
dcterms.abstractPreviously, a two-dimensional (2-D)analytical model for interpreting the modulation mechanism of a “breathing” crack on guided ultrasonic waves (GUWs)is developed [1]. Based on the theory of wave propagation in three-dimensional (3-D)waveguides and using an elastodynamic analysis, the 2-D model is extended to a 3-D regime, to shed light on the nonlinear aspects of GUWs disturbed by cracks with “breathing” traits. With the model, generation of contact acoustic nonlinearity (CAN)embodied in GUWs, subjected to the key parameters of a “breathing” crack (e.g., crack length), is scrutinized quantitatively. On this basis, a nonlinearity index is defined to link crack parameters to the quantity of extracted CAN. In virtue of the index, initiation of an undersized fatigue crack in a 3-D waveguide can be delineated at its embryonic stage, and, in particular, the crack severity can be quantitatively depicted. This facilitates prognosis of imminent failure of the monitored structure. Experimental validation is performed in which a hairline fatigue crack is evaluated, and the results well corroborate the crack parameters predicted by the 3-D analytical model.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of mechanical sciences, Aug. 2019, v. 159, p.140-150en_US
dcterms.isPartOfInternational journal of mechanical sciencesen_US
dcterms.issued2019-08-
dc.identifier.isiWOS:000478709600012-
dc.identifier.scopus2-s2.0-85066441662-
dc.identifier.eissn1879-2162en_US
dc.description.ros2018002873en_US
dc.description.validate201907 bcwhen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0423-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14562859-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Nonlinear_Aspects_Breathing.pdfPre-Published version2.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

122
Last Week
0
Last month
Citations as of Mar 24, 2024

Downloads

67
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

38
Citations as of Mar 29, 2024

WEB OF SCIENCETM
Citations

35
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.