Please use this identifier to cite or link to this item:
PIRA download icon_1.1View/Download Full Text
Title: An approach to evaluating the number of closed paths in an all-one base matrix
Authors: Jiang, S 
Lau, FCM 
Issue Date: 2018
Source: IEEE access, 2018, v. 6, p. 22332-22340
Abstract: Given an all-one base matrix of size M x N, a closed path of different lengths can be formed by starting at an arbitrary element and moving horizontally and vertically alternatively before terminating at the same "starting" element. When the closed-path length is small, say 4 or 6, the total number of combinations can be evaluated easily. When the length increases, the computation becomes non-trivial. In this paper, a novel method is proposed to evaluate the number of closed paths of different lengths in an all-one base matrix. Theoretical results up to closed paths of length 10 have been derived and are verified by the exhaustive search method. Based on the theoretical work, results for closed paths of length larger than 10 can be further derived. Note that each of such closed paths may give rise to one or more cycles in a low-density parity-check (LDPC) code when the LDPC code is constructed by replacing each "1" in the base matrix with a circulant permutation matrix or a random permutation matrix. Since LPDC codes with short cycles are known to give unsatisfactory error correction capability, the results in this paper can be used to estimate the amount of effort required to evaluate the number of potential cycles of an LDPC code or to optimize the code.
Keywords: All-one base matrix
Closed path
Low-density parity-check code
Publisher: Institute of Electrical and Electronics Engineers
Journal: IEEE access 
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2018.2819981
Rights: © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See for more information.
Posted with permission of the publisher.
The following publication Jiang, S., & Lau, F. C. M.(2018). An approach to evaluating the number of closed paths in an all-one base matrix. IEEE Access, 6, - is available at
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Jiang_Evaluating_Number_Closed.pdf5.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Last Week
Last month
Citations as of Sep 24, 2023


Citations as of Sep 24, 2023


Citations as of Sep 21, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.