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ABSTRACT Given an all-one base matrix of sizeM×N , a closed path of different lengths can be formed by
starting at an arbitrary element and moving horizontally and vertically alternatively before terminating at the
same ‘‘starting’’ element. When the closed-path length is small, say 4 or 6, the total number of combinations
can be evaluated easily. When the length increases, the computation becomes non-trivial. In this paper,
a novel method is proposed to evaluate the number of closed paths of different lengths in an all-one base
matrix. Theoretical results up to closed paths of length 10 have been derived and are verified by the exhaustive
search method. Based on the theoretical work, results for closed paths of length larger than 10 can be further
derived. Note that each of such closed paths may give rise to one or more cycles in a low-density parity-check
(LDPC) code when the LDPC code is constructed by replacing each ‘‘1’’ in the base matrix with a circulant
permutation matrix or a random permutation matrix. Since LPDC codes with short cycles are known to give
unsatisfactory error correction capability, the results in this paper can be used to estimate the amount of effort
required to evaluate the number of potential cycles of an LDPC code or to optimize the code.

INDEX TERMS All-one base matrix, closed path, cycles, low-density parity-check code.

I. INTRODUCTION
Much research has been conducted to construct high per-
formance LDPC codes [1]–[6] where the girth — mini-
mum cycle length — plays an important role. A cycle is a
closed path in the Tanner graph which starts and ends in the
same node. The path alternates between check and variable
nodes [3], [4], [7]. The cycle can also be easily analyzed in the
corresponding parity-check matrix because each check node
in the Tanner graph corresponds to a row in the parity-check
matrix, and each variable node corresponds to a column. If a
variable node is connected to a check node, the corresponding
element in the parity-check matrix will be ‘‘1’’. Similarly,
a ‘‘0’’ in the matrix means the corresponding nodes are not
connected. A cycle can thus be visualized as a path moving
horizontally and vertically in an alternate manner along the
‘‘1’’s in the matrix. Moreover, the path must be closed, that
is to say, it starts and ends at the same ‘‘1’’ in the matrix.
Obviously the length of a cycle must be an even number
because the horizontal and vertical moves always appear in
pairs. It is also easy to see that the minimum cycle length
is 4.

One way to form an LDPC code is to construct a parity-
check matrix of a particular size by assigning ‘‘1’’s randomly

with a certain probability. Such a construction method is
not so desirable because the code is unstructured, making
the encoding and decoding processes rather complicated to
implement in terms of hardware. Another approach is to form
a small-size base matrix first and then to replace each non-
zero element in the base matrix with a circulant permutation
matrix (CPM) or a random permutation matrix (RPM) or a
sum/mix of both types of matrices [8], [9].

In this paper, we consider an all-one base matrix B of size
M ×N . Moreover, we denote the ‘‘1’’ in the (i, j)-th position
of the base matrix by Pi,j (1 ≤ i ≤ M , 1 ≤ j ≤ N ), i.e.,

B =


P1,1 P1,2 P1,3 . . . P1,N
P2,1 P2,2 P2,3 . . . P2,N
...

...
...

. . .
...

PM ,1 PM ,2 PM ,3 . . . PM ,N

. (1)

A closed path of length 2l can therefore be described as
Pi1,j1 → Pi2,j1 → Pi2,j2 → Pi3,j2 → · · · → Pil ,jl →
Pi1,jl → Pi1,j1 where i1 6= i2 6= i3 6= · · · 6= il−1 6= il 6= i1
and j1 6= j2 6= j3 6= · · · 6= jl−1 6= jl 6= j1. In other words,
the closed path starts from the element Pi1,j1 , then moves
vertically to Pi2,j1 , then moves horizontally to Pi2,j2 , . . ., and
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finally goes back to the original element Pi1,j1 .
1 Note that

each of such closed paths may give rise to one or more cycles
in the corresponding LDPC code when each ‘‘1’’ in the base
matrix is replaced with a circulant permutation matrix (CPM)
or a random permutation matrix (RPM). However in practice,
with careful selection of the CPMs or RPMs by code design-
ers, many of such cycles in the LDPC code can be avoided.

One simple way to determine the number of closed paths
in the all-one based matrix is to use the ‘‘tree method’’ [7].
The main idea of the tree method is to construct trees whose
roots are variable nodes. The tree is extended based on the
Tanner graph of the codes. We start from one certain variable
node (i.e., column), and put the check nodes (i.e., rows)
that connect to the root variable node (column) in the next
layer. After that, we add one more variable-node layer where
all variable nodes are connected to the check nodes in the
previous layer. The procedure of adding a layer is actually a
move in the Tanner graph. Once the tree is expanded further
enough, closed cycles of different lengths that start and end
at the same root node can be found. The main drawback
of the tree method is that the trees are always too large to
manipulate. It works well for short closed paths and small
base matrices. However, it takes a huge amount of space
to store the tree and it costs a lot of time to perform the
exhaustive searching for when the base matrix becomes large.
The searching results also contain duplicates, which can only
be eliminated by exhaustive comparisons.

In this paper, we propose a novel method to evaluate the
total number of closed paths of different lengths in an all-one
base matrix. Since LPDC codes with short cycles are known
to give unsatisfactory error correction capability, the results
in this paper can be used to estimate the amount of effort
required to evaluate the number of potential cycles of an
LDPC code or to optimize the code [10], [11]. The results
are also verified by those found by the tree method.

II. TWO PRELIMINARY FUNCTIONS
Theorem 1: Suppose we have to assign v different digits to

u consecutive slots where u ≥ v and u, v ∈ Z+. Moreover,
consecutive slots must contain different digits and all v digits
should be used. Then the total number of combinations equals

G(u, v) = v!
∑
�

v∏
j=2

(j− 1)αj (2)

where

� = {{αj ∈ N : j = 2, 3, . . . , v} :
v∑
j=2

αj = u− v}. (3)

Proof: Supposewefill the slots one-by-one. Considering
the first slot, i.e, slot i = 1, we arbitrarily pick one digit out of
the v digits. As consecutive slots must contain different digits,

1Note that strictly speaking, the definitions of ‘‘cycle’’ and ‘‘close path’’
in this paper do not follow the standard definitions used in graph theory. The
‘‘path’’ and ‘‘cycle’’ defined here are referred to as, respectively, ‘‘walk’’ and
‘‘tailless closed non-reversing walk’’ in graph theory.

FIGURE 1. Illustration of the digit picking procedures.

we can only pick another digit out of the v−1 ‘‘unused’’ digits
for the second slot, i.e, slot i = 2. (We call a digit unused
if the digit never appears in previous slots.) For each of the
remaining slots, i.e, slot i = 3, 4, . . . , u, we always have two
strategies: pick a digit we have used before or pick an unused
digit. The only point we need to consider is to make sure that
by the last slot, i.e, slot i = u, all v digits are used at least
once. For i = 1, 2, 3, ..., u,
• let ηi represent the strategy used to select a digit for slot
i: ηi = 0 means a used digit is selected and ηi = 1
indicates an unused digit is selected;

• yi denote the number of possible digits to pick for slot i
given ηi;

• xi denote the number of distinct digits used up to and
including slot i.

Note that
u∑
i=1

ηi = v (4)

because all the v digits must be used/selected at least once in
the u slots.

Using the above notations, xi−1 distinct digits have been
used up to slot i− 1.
• Supposing ηi = 0 which means a used digit is to be
picked for slot i, the number of possible digits to pick
equals yi = xi−1 − 1 because the digit must different
be from the digit in slot i − 1. Moreover, the num-
ber of distinct digits used remains the same and hence
xi = xi−1.

• Supposing ηi = 1 which means an unused digit is to be
picked for slot i, the number of possible digits to pick
equals yi = v − xi−1 and the number of distinct digits
used is increased by one, i.e., xi = xi−1 + 1.

In both cases described above, we have xi = xi−1 + ηi.
The digit picking procedures are described with a tree shown
in Fig. 1. Further, two different digit selection sequences for
u = 5 and v = 4 are shown in Table 1. The difference between
two selection sequences is the slot number that a used digit is
selected. In sequences #1 and #2, a used digit in selected in
slot 3 and slot 5, respectively.
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TABLE 1. Two different digit selection sequences for u = 5 and v = 4.

Supposing ηi = 0, then yi = xi−1 − 1 = xi − 1 = j − 1
for some j ∈ {2, . . . , v}. Moreover, there are u slots and v
digits and hence reused digits must be selected u − v times,
i.e., ηi = 0 must occur u− v times. Denote αj (j = 2, . . . , v)
as the number of occurrences of the event {ηi = 0, xi = j},
i.e., ηi = 0 AND xi = j, among all i = 1, 2, . . . , u.
Combining the above, we have

v∑
j=2

αj = u− v. (5)

Note that the solution set {αj : j = 2, . . . , v} for (5) is
usually not unique. In the digit selection sequence #1 shown
in Table 1, ηi = 0 only when i = 3. Hence, x3 = 2 and
subsequently α2 = 1, α3 = α4 = 0. In sequence #2, ηi = 0
only when i = 5. Hence, x5 = 4 and subsequently α4 = 1,

α2 = α3 = 0. In both cases, we have
v∑
j=2
αj = u− v = 1.

For a given set 2 = {αj : j = 2, . . . , v} that satisfies (5),
it can be readily shown that the total number of possible digit-
sequence selections for the u − v slots where used digits are
selected equals ∏

{i∈{1,2,...,u}:ηi=0}

yi =
v∏
j=2

(j− 1)αj . (6)

For the remaining v slots where unused digits are selected
(ηi = 1), the number of choices is decreased by one every
time and hence the total number of possible digit-sequence
selections equals∏
{i∈{1,2,...,u}:ηi=1}

yi = v(v− 1)(v− 2) . . .× 2× 1 = v! (7)

Combining all the above results, the total number of combi-
nations is hence given by

G(u, v) =
∑
2∈�

u∏
i=1

yi

=

∑
2∈�

 ∏
{i∈{1,2,...,u}:ηi=1}

yi

 ∏
{i∈{1,2,...,u}:ηi=0}

yi


= v!

∑
2∈�

v∏
j=2

(j− 1)αj (8)

where � = {{αj ∈ N : j = 2, 3, v} :
v∑
j=2
αj = u− v}} denotes

the solution sets of {αj}. �

Theorem 2: If we impose an additional condition on
Theorem 1 that the last slot must contain a different digit from
the first one, the total number of combinations becomes

G′(u, v) = v!
∑
�

(v− 1)αv+1 + (−1)αv

v

v−1∏
j=2

(j− 1)αj (9)

where

� = {{αj ∈ N : j = 2, 3, v} :
v∑
j=2

αj = u− v}}. (10)

Proof: We use the same notations as in the previous
proof. Most of the proof of Theorem 2 is similar to that of
Theorem 1 except when dealing with the last slot, in which
the digit must now be different from the digit in the first slot.

Among the u slots, there are v slots where ηi = 1 because
all the v distinct digits must be used at least once. Let γ denote
the position of the last slot where ηi = 1. Then, ηγ = 1 and
for all subsequent slots, i.e., slots i = γ + 1, γ + 2, . . . , u
(altogether u − γ slots), we always have ηi = 0 and xi = v.
Recall that αj (j = 2, . . . , v) denotes the number of occur-
rences of the event {ηi = 0, xi = j}. Thus, in the case of
j = v, we have αv = u− γ . Also, the last αv slots all contain
used digits.

Denote f (αv) as the total number of choices for the last αv
consecutive slots. Thus

f (αv) =
∏

{i∈{γ+1,...,u}:ηi=0}

yi =
∏

i∈{γ+1,...,u}

yi. (11)

(Note that in Theorem 1, f (αv) = (v−1)αv and equals 1 when
αv = 0.)
• If αv = 1, the (u − 1)-th slot contains an unused digit
and the last (i.e., u-th) slot contains a used digit. Since
the (u − 1)th slot contains an unused digit, this digit is
different from the digit in the first (i.e., i = 1) slot. As the
digit in the last slot must be different from that in the
(u−1)th slot and first slot, it has v−2 choices and hence

f (αv = 1) = v− 2. (12)

• If αv = 2, the (u−2)-th slot contains an unused digit and
the last two slots (i.e., (u− 1)-th and u-th slots) contain
used digits. We use similar arguments as above. Since
the (u − 2)th slot contains an unused digit, this digit
is different from the digit in the first (i.e., i = 1) slot.
We then consider the (u − 1)-th slot. If it contains the
same digit as the one in the first slot (only one choice),
the u-th slot has v− 1 choices; otherwise the digit in the
(u−1)-th slot must be different from that in the first slot
and the u-th slot (v − 2 choices), and then the u-th slot
will have v− 2 choices. The total number of choices for
the last αv = 2 consecutive slots therefore equals

f (αv = 2) = 1× (v− 1)+ (v− 2)× (v− 2)

= v2 − 3v+ 3. (13)
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• We consider the general case where αv ≥ 3. The γ -th
(i.e, (u− αv)-th) is the last slot where an unused digit is
selected.
1) If the (γ + 1)-th slot is the same as the first slot

(1 choice), the (γ + 2)-th slot must be different
from the first slot (v − 1 choices) and from the
(γ + 3)-th to u-th slots, the number of choices is
given by f (αv − 2).

2) If the (γ + 1)-th slot is different from the first slot
(v − 2 choices), the number of choices from the
(γ + 2)-th to u-th slots is given by f (αv − 1).

The total number of choices thus equals

f (αv) = 1× (v− 1)× f (αv − 2)+ (v− 2)× f (αv − 1)
= (v− 1)× f (αv − 2)+ (v− 2)× f (αv − 1).

(14)

Using (12), (13) and (14), it can be readily shown that

f (αv) =
(v− 1)αv+1 + (−1)αv

v
∀ αv = 1, 2, . . . (15)

and hence (11) can be written as∏
{i∈{γ+1,...,u}:ηi=0}

yi=
(v− 1)αv+1+(−1)αv

v
∀ αv=1, 2, . . .

(16)

where γ = u− αv.
For a given set 2 = {αj : j = 2, . . . , v} that satisfies (5)

and the given conditions (particularly that the last slot must
contain a different digit from the first one), the total number
of possible digit-sequence selections for the u−v slots where
used digits are selected equals∏
{i∈{1,2,...,u}:ηi=0}

yi

=

 ∏
{i∈{1,2,...,γ }:ηi=0}

yi

×
 ∏
{i∈{γ+1,...,u}:ηi=0}

yi


=

v−1∏
j=2

(j− 1)αj

× ( (v− 1)αv+1 + (−1)αv

v

)
. (17)

Combining the above results with (7), the total number of
combinations is hence given by

G′(u, v) =
∑
2∈�

u∏
i=1

yi

= v!
∑
�

(v−1)αv+1+(−1)αv
v

v−1∏
j=2

(j−1)αj

. (18)

(Note also that (18) still holds even when αv = 0. It is because
according to (15), f (αv) = 1 when αv = 0.) �

Table 2 and 3 show the values of G(u, v) and G′(u, v),
respectively, for 2 ≤ v ≤ u ≤ l = 7. These values
are sufficient when considering cycles with length no longer
than 14. Note also that a quasi-cyclic LDPC code constructed

TABLE 2. G(u, v ) function.

TABLE 3. G′ function.

from an all-one base matrix has a girth bounded by 12. For a
fixed v ≥ 3, we can see that bothG(u, v) andG′(u, v) increase
exponentially with u.

III. CONFIGURATIONS OF CLOSED PATHS
Referring to Fig. 2, we extract an m× n sub-matrix from the
M ×N all-one base matrix and represent the (i, j)-th element
in the sub-matrix by Qi,j (1 ≤ i ≤ m, 1 ≤ j ≤ n). We define
a closed path (CP) as an (m, n)-CP if it passes m distinct
rows and n distinct columns of an all-one matrix. Denoting an
(m, n)-CP by Qi1,j1 → Qi2,j1 → Qi2,j2 → Qi3,j2 → · · · →
Qil ,jl → Qi1,jl → Qi1,j1 where i1 6= i2 6= i3 6= · · · 6= il−1 6=
il 6= i1 and j1 6= j2 6= j3 6= · · · 6= jl−1 6= jl 6= j1, we represent
the l-tuple row-index vector and column-index vector of the
(m, n)-CP by, respectively, I = (i1, i2, . . . , il−1, il) and J =
(j1, j2, . . . , jl−1, jl). Since an (m, n)-CP passes m rows and n
columns, there are exactly m distinct values in the row-index
vector I and n distinct values in the column-index vector J .

For a given M × N all-one base matrix and a given cycle
length 2l, the values of m and n are constrained by

2 ≤ m ≤ min(M , l) (19)

2 ≤ n ≤ min(N , l). (20)

For every (m, n) satisfying (19) and (20), the numbers of row-
index and column-index combinations can be calculated by
using the G′ function in (9). Denoting R(l,m) as the number
of row-index combinations and C(l, n) as the number of
column-index combinations for an (m, n)-CP configuration
with length 2l, we have

R(l,m) = G′(l,m) (21)

C(l, n) = G′(l, n). (22)
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FIGURE 2. Extracting an m× n sub-matrix from an all-one M × N base
matrix.

FIGURE 3. Illustration of duplicated closed-paths of length 6. CPs starting
from Q2,2, Q3,3, Q1,3, Q3,2 and Q2,1 are duplicates of that starting
from Q1,1.

The total number of (m, n)-CP configurations with length
2l therefore equals R(l,m)C(l, n) = G′(l,m)G′(l, n) when
duplicated CPs such as those shown in Fig. 3 are not
eliminated.

IV. DUPLICATED CLOSED PATHS
Given two different row-index/column-index vector pairs
(I , J ) and (I ′, J ′), they may represent the same CP.
Fig. 3 shows an example where the same CP of length 6
is formed with different starting element and hence differ-
ent row-index/column-index vector pairs. In the following,
we will remove such duplicates in our computation of the
number of CPs.

A. ELIMINATE CLOSED PATHS THAT DO NOT
START FROM THE FIRST ROW
First, we eliminate CPs that do not start from the
first row (e.g., eliminate CPs that start with elements
Q2,2,Q3,3,Q3,2 or Q2,1 in Fig. 3). We therefore add a con-
straint that every CP must start from the first row of the

FIGURE 4. Two different CP configurations each of length 8. (a) No
transform-exact pair exists, and (b) transform-exact pairs exist.

m× n sub-matrix. That is to say, we require i1 = 1 for every
CP configuration.

Denote R′(l,m, t) as the number of row-index combina-
tions with the new constraint where t represents the number
of paths along the first row of the CP configuration. In fact,
t also represents the number of ‘‘1’’s in the row-index vec-
tor I . Since consecutive elements in I must differ, there are
at most b l2c ‘‘1’’s in I and thus 1 ≤ t ≤ b l2c. Moreover, t is
restricted by t ≤ l − m+ 1. To summarize, we have

t ≤ min
(⌊

l
2

⌋
, l − m+ 1

)
. (23)

Figs. 3 and 4 illustrate, respectively, the cases where t = 1
and t = 2. In this paper we only consider CPs with length 2l
ranging from 4 to 10. Thus 2 ≤ l ≤ 5 and 1 ≤ t ≤ 2. For
larger values of l and t , the guiding principles are the same
and the results can be derived in a similar manner.

Since i1 = 1, we only need to assign values to i2, i3, . . . , il .

1) When t = 1, we assign allm−1 digits to the l−1 slots:
i2, i3, . . . , il and make sure i2 6= i3 6= i4 6= · · · 6= il .
According to Theorem 1, we have

R′(l,m, 1) = G(l − 1,m− 1). (24)

2) When t = 2, one and only one element of i3, . . . , il−1
equals 1. Assuming iξ = 1, the row-index vector
becomes I = (1, i2, i3, . . . , iξ−1, 1, iξ+1, . . . ,il).
• If iξ−1 6= iξ+1, it is equivalent to assigning m − 1
different digits to i2, i3, . . . , iξ−1, iξ+1, iξ+2,. . . , il
with different consecutive elements. According to
Theorem 1, there areG(l−2,m−1) combinations.

• If iξ−1 = iξ+1 then it is equivalent to assign m− 1
different digits to i2, i3, . . . , iξ−1, iξ+2, iξ+3, . . . , il
with different consecutive elements. According to
Theorem 1, there areG(l−3,m−1) combinations.
In such a situation, m < l − 1.

Combining the above two scenarios, we have

R′(l,m, 2)

=


0 if m> l−1
G(l−2,m−1) if m= l−1
G(l−2,m−1)+G(l−3,m−1) if m< l−1.

(25)
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B. ELIMINATE DUPLICATED CLOSED PATHS THAT
START FROM THE FIRST ROW
After the new constraint in the previous section has been
applied, most of the duplicated CPs are eliminated. Some
duplicates still remain due to the fact that more than one
elements in the first row can act as the starting element. For
example in Fig. 3(b), the CP Q1,3 → Q3,3 → Q3,2 →

Q2,2 → Q2,1 → Q1,1 is a duplicated version of Q1,1 →

Q2,1→ Q2,2→ Q3,2→ Q3,3→ Q1,3 while both start from
the first row.

Assume that we have an (I , J ) pair denoted by{
I = (i1, i2, . . . , il−1, il)
J = (j1, j2, . . . , jl−1, jl).

(26)

Then the ‘‘reversed’’ version of the (I , J ) pair will always
correspond to the sameCP because it is equivalent to indexing
the same CP from the last element to the first one. Denoting
the reversed pair as (I ′, J ′), we have{

I ′ = (i1, il, il−1, . . . , i3, i2)
J ′ = (jl, jl−1, . . . , j2, j1).

(27)

Moreover, an (m, n)-CP of length 2l can start from any of
the 2l elements. If I and J are cyclically shifted with same
number of positions, the CP that the new pair represents will
be identical to the original one. In the following, we define
an operator that performs transformation on the (I , J ) pair.
Definition 1: For any (I , J ) pair with the form of (26),

we define F(I , J , k) as the transformation of the (I , J ) pair
such as all elements in I and J are cyclically shifted to the left
by k positions (k = 1, 2, . . . , l−1). Let (Ik , Jk ) = F(I , J , k).
Then {

Ik = (ik+1, ik+2, . . . , il, i1, i2, . . . , ik )
Jk = (jk+1, jk+2, . . . , jl, j1, j2, . . . , jk ).

(28)

It can be easily shown that all the transformed pairs represent
the same CP as the original one. Similarly, we have (I ′k , J

′
k ) =

F(I ′, J ′, k) for k = 1, 2, . . . , l − 1. All these l pairs also
represent the same CP as the (I , J ) pair. In summary, for a
given (I , J ) pair, there are another 2l−1 (I ′′, J ′′) transformed
pairs that give rise to the same CP. In the previous section,
we have already eliminated duplicates that do not start from
the first row. So we only need to consider transformed pairs
whose CPs start from the first row. To analyze such cases,
we make use of the following theorem.
Theorem 3: For an (I , J ) pair with t ‘‘1’’s in I , there are

2t − 1 transformed pairs whose CPs start from the first row.
Proof:Obviously (I ′, J ′) is a transformed pair that starts

from the first row. Assume that the t ‘‘1’’s are located at the
1st, n2-th, n3-th, . . ., nt -th positions in I . Then (Ink−1, Jnk−1)
and (I ′l−nk+1, J

′

l−nk+1
) for k = 2, 3, . . . , t are all transformed

pairs that starts from the first row. So altogether there are
2t − 1 such transformed pairs. �

When all the transformed pairs are different from the
original pair, we call the original pair (I , J ) ‘‘transform-
equivalent’’. According to Theorem 3, there are exact 2t − 1

duplicates for each transform-equivalent pair. In some occa-
sions, some of the 2t − 1 transformed pairs are exactly the
same as the original (I , J ) pair. In such cases, we call the
original (I , J ) ‘‘transform-exact’’. To find out the duplicates,
we have to consider each transform-exact pair separately.
Fig. 4 illustrates the CP configurations with and without
transform-exact pair.

Considering the CP configuration shown in Fig. 4(a),
we denote {

I = (1, 2, 1, 2)
J = (1, 3, 1, 2).

(29)

Hence, the 3 transformed pairs are given by{
I ′ = (1, 2, 1, 2)
J ′ = (2, 1, 3, 1)

{
I2 = (1, 2, 1, 2)
J2 = (1, 2, 1, 3)

{
I ′2 = (1, 2, 1, 2)
J ′2 = (3, 1, 2, 1).

(30)

Since all 4 column-index vectors J , J ′, J2, J ′2 are different,
(I , J ) is a transform-equivalent pair and has 3 duplicates.

For the CP configuration shown in Fig. 4(b), we denote{
I = (1, 2, 1, 2)
J = (1, 2, 1, 2)

(31)

The 3 transformed pairs are therefore given by{
I ′ = (1, 2, 1, 2)
J ′ = (2, 1, 2, 1)

{
I2 = (1, 2, 1, 2)
J2 = (1, 2, 1, 2)

{
I ′2 = (1, 2, 1, 2)
J ′2 = (2, 1, 2, 1)

(32)

Since (I , J ) = (I2, J2) and (I ′, J ′) = (I ′2, J
′

2), (I , J ) is a
transform-exact pair and has only 1 duplicate.

We denote Dex(l,m, n, t) and Deq(l,m, n, t), respectively,
as the number of transform-exact and transform-equivalent
pairs for an (m, n)-CP with length 2l. We also denote
Dsum(l,m, n, t) as the total number of distinct (i.e., no dupli-
cates) (m, n)-CPwith length 2l and t ‘‘1’’s in I . Then for t = 1
and 2, we have the following.

1) T = 1
We denote the index vectors as{

I = (1, i2, . . . , il−1, il)
J = (j1, j2, . . . , jl−1, jl).

(33)

According to Theorem 3, there is 1 (= 2t − 1) transformed
pair that may be duplicated. Obviously, the transformed pair
is given by {

I ′ = (1, il, il−1, . . . , i3, i2)
J ′ = (jl, jl−1, jl−2 . . . , j2, j1).

(34)

If l ≡ 0 (mod 2), then

J = (j1, j2, . . . , jl/2, j(l/2)+1, . . . , jl−1, jl) (35)

J ′ = (jl, jl−1, . . . , j(l/2)+1, jl/2, . . . , j2, j1). (36)

The (l/2)-th elements of J and J ′ are jl/2 and j(l/2)+1 respec-
tively. Since jl/2 6= j(l/2)+1, J 6= J ′ and (I , J ) 6= (I ′, J ′).
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If l ≡ 1 (mod 2), it can proved in a similar way that I 6= I ′

and (I , J ) 6= (I ′, J ′).
To sum up, when t = 1, all (I , J ) pairs are transform-

equivalent and there is 1 (= 2t − 1) duplicate for each (I , J )
pair. As a result,

Deq(l,m, n, 1) = R′(l,m, 1)C(l, n) (37)

Dex(l,m, n, 1) = 0 (38)

Dsum(l,m, n, 1) =
Deq(l,m, n, 1)

2
. (39)

2) T = 2
Besides the first element in I , another element among
i3, . . . , il−1 equals 1. Assuming iξ = 1, we denote the index
vectors by{

I = (1, i2, i3, . . . , iξ−1, 1, iξ+1, . . . , il)
J = (j1, j2, . . . , jl).

(40)

According to Theorem 3, there are 3 (= 2t−1) transformed
pairs that may be duplicated. These pairs are given by{
I ′ = (1, il , il−1, . . . , iξ+1, 1, iξ−1, . . . , i3, i2)
J ′ = (jl , jl−1, . . . , j2, j1)

(41){
Iξ−1 = (1, iξ+1, . . . , il , 1, i2, i3, . . . , iξ−1)
Jξ−1 = (jξ , jξ+1, . . . , jl , j1, j2, j3 . . . , jξ−1)

(42){
I ′
ξ−1 = (1, iξ−1, iξ−2, . . . , i3, i2, 1, il , il−1, . . . , iξ+2, iξ+1)
J ′
ξ−1 = (jξ−1, jξ−2, . . . , j2, j1, jl , jl−1, . . . , jξ+1, jξ ).

(43)

1) Using a similar proof as in the case t = 1, it can be
shown that (I , J ) 6= (I ′, J ′).

2) Next we consider (I , J ) and (I ′ξ−1, J
′

ξ−1). If we
assume I = I ′ξ−1, then (i2, i3, . . . , iξ−2, iξ−1) =
(iξ−1, iξ−2, . . . , i3, i2). Since consecutive elements in
the index vectors must be different, the number of
elements in (i2, i3, . . . , iξ−2, iξ−1) must be odd. Thus
ξ − 2 is an odd number and so is ξ . If we further
assume J = J ′ξ−1, then (j1, j2, . . . , jξ−2, jξ−1) =
(jξ−1, jξ−2, . . . , j2, j1). As a result, ξ − 1 should be an
odd number and ξ should be even. This contradicts with
the above requirement that ξ should be odd. Therefore,
I = I ′ξ−1 and J = J ′ξ−1 cannot be true simultaneously
and (I , J ) 6= (I ′ξ−1, J

′

ξ−1).
3) Finally we consider the pairs (I , J ) and (Iξ−1, Jξ−1).

If (I , J ) = (Iξ−1, Jξ−1), it can be easily seen that
(I ′, J ′) = (I ′ξ−1, J

′

ξ−1). Under this circumstance, there
can only be one duplicate.

In the following, we evaluate the exact numbers
of CP-configurations that belong to the transform-
exact category and transform-equivalent category,
respectively.
Transform-Exact Category: Suppose I = Iξ−1, we have

i2 = iξ+1, i3 = iξ+2,· · · , and iξ−1 = il . Obviously
ξ − 1− 2 = l− (ξ + 1) and hence ξ = l+2

2 , which means the
positions of ‘‘1’’s in the row-index vector I are fixed. Since
there are m distinct digits in I , there are m− 1 distinct digits

in the vector (i2, i3, . . . , iξ−1). The number of elements in
the vector equals ξ − 2 = l−2

2 . According to Theorem 1,
we have G( l−22 ,m− 1) such row-index vectors. If J = Jξ−1,
we further have j1 = jξ , j2 = jξ+1, · · · , jξ−1 = jl 6= j1.
We need to assign n distinct digits to the column-index vector
(j1, j2, . . . , jξ−1) which has ξ−1 = l

2 elements.We also need
to make sure j1 6= jξ−1. According to Theorem 2, we have
G′( l2 , n) such column-index vectors. Hence,

Dex(l,m, n, 2) = G
(
l − 2
2
,m− 1

)
G′
(
l
2
, n
)
. (44)

For the transform-exact pairs with the above row-index
vectors and column-index vectors, each pair has only one
duplicate. Therefore, the number of CPs without duplicates
equals Dex (l,m,n,2)

2 .
Transform-Equivalent Category: Since the total number of

transform-exact pairs and transform-equivalent pairs equals
R′(l,m, 2)C(l, n), the number of transform-equivalent pairs
equals

Deq(l,m, n, 2) = R′(l,m, 2)C(l, n)− Dex(l,m, n, 2). (45)

For the transform-equivalent pairs with the above row-index
vectors and column-index vectors, each pair has 3 duplicates.
Therefore, the number of such CPs without duplicates
equals Deq(l,m,n,2)

4 .
To summarize, when t = 2, the total number of distinct

CPs equals

Dsum(l,m, n, 2) =
Deq(l,m, n, 2)

4
+
Dex(l,m, n, 2)

2
. (46)

C. OVERALL RESULTS
When t = 1, 2, the total number of distinct (m, n)-CP with
length 2l is given by

Dsum(l,m, n, t) =
Deq(l,m, n, t)

2t
+
Dex(l,m, n, t)

t

=
R′(l,m, t)C(l, n)+ Dex(l,m, n, t)

2t
(47)

where

Dex(l,m, n, 1) = 0 (48)

Dex(l,m, n, 2)

=

0 if l ≡ 1 (mod 2)

G(
l − 2
2
,m− 1)G′(

l
2
, n) if l ≡ 0 (mod 2)

(49)

and other expressions are defined in (2), (9), (22), (24)
and (25).

V. NUMBER OF CLOSED CYCLES WITH
DIFFERENT LENGTHS
In this section, we will evaluate the number of CPs with
length ranging from 4 to 10. For an M × N all-one base
matrix, we denote Sdup(l,M ,N ) as the number of length-2l
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TABLE 4. Number of CPs of different lengths under different base-matrix sizes.

CPs with duplicates and S(l,M ,N ) as the number of distinct
length-2l CPs. Then we have

Sdup(l,M ,N ) =
min(M ,l)∑
m=2

min(N ,l)∑
n=2

C(l, n)R(l,m)Cm
MC

n
N (50)

S(l,M ,N ) =
min(M ,l)∑
m=2

min(N ,l)∑
n=2

min(b l2 c,l−m+1)∑
t=1

Dsum(l,m, n, t)Cm
MC

n
N (51)

where Ck
K =

K !
(K−k)!k! .

A. LENGTH-4 CPS
For CPs with length 4, we have l = 2, m = n = 2, and t = 1.
Thus for N ≥ M ≥ 2,

Sdup(2,M ,N ) = 4C2
MC

2
N (52)

S(2,M ,N ) = C2
MC

2
N . (53)

B. LENGTH-6 CPS
For CPs with length 6, we have l = 3, 2 ≤ m, n ≤ 3, and
t = 1. Thus for N ≥ M ≥ 3,

Sdup(3,M ,N ) = 36C3
MC

3
N (54)

S(3,M ,N ) = 6C3
MC

3
N . (55)

C. LENGTH-8 CPS
For CPs with length 8, we have l = 4, 2 ≤ m, n ≤ 4, t = 1, 2.
Thus for N ≥ M ≥ 4,

Sdup(4,M ,N ) = C2
M (4C2

N + 24C3
N + 48C4

N )

+C3
M (24C2

N + 144C3
N + 288C4

N )

+C4
M (48C2

N + 288C3
N + 576C4

N )

(56)

S(4,M ,N ) = C2
M (C2

N + 3C3
N + 6C4

N )

+C3
M (3C2

N + 18C3
N + 36C4

N )

+C4
M (6C2

N + 36C3
N + 72C4

N ). (57)

D. LENGTH-10 CPS
For CPs with length 10, we have l = 5, 2 ≤ m, n ≤ 5,
t = 1, 2. Thus for N ≥ M ≥ 5,

Sdup(5,M ,N ) = C3
M (900C3

N + 3600C4
N + 3600C5

N )

+C4
M (3600C3

N + 14400C4
N + 14400C5

N )

+C5
M (3600C3

N + 14400C4
N + 14400C5

N )

(58)

S(5,M ,N ) = C3
M (90C3

N + 360C4
N + 360C5

N )

+C4
M (360C3

N + 1440C4
N + 1440C5

N )

+C5
M (360C3

N + 1440C4
N + 1440C5

N ).(59)

In the above equations, we set Ck
K = 0 for k > K which

occurs when the base matrix is not large enough to generate
the CPs. The above equations also provide the number of
different CP configurations of a given length under a specific
sub-matrix size. For example in (59), the term 360 C4

MC
3
N

implies that for a sub-matrix with size 4 × 3, there are
360 different CP configurations with length 10. Similarly,
the term 1440 C5

MC
4
N indicates that for a sub-matrix with

size 5 × 4, there are 1440 different CP configurations with
length 10.

Table 4 shows the number of CPs evaluated based on our
proposed method for different path lengths under different
base-matrix sizes. For example, with a base matrix of size
5 × 5, the number of CPs of length 10 calculated using our
method equals 104, 040 (= S(5, 5, 5) in (59)). The results are
compared with those obtained by the tree method. It can be
seen that our method produces the exact numbers of CPs as
the tree method.

VI. CONCLUSION
In this paper, we present a new method of evaluating the
number of closed paths in a base matrix. Although we only
give results up to length 10, results for longer paths can
be readily derived and computed using similar principles.
Compared with the traditional ‘‘tree method’’ which uses
exhaustive searching, our method reveals the principle of
closed paths and their duplicates and derives expressions for
computing the number of closed paths. The results are useful
when estimating the time resources required in optimizing
and constructing LDPC codes.
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