Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/79732
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Nursing-
dc.creatorXiong, XY-
dc.creatorChen, F-
dc.creatorHuang, PZ-
dc.creatorTian, MM-
dc.creatorHu, XF-
dc.creatorChen, BD-
dc.creatorQin, J-
dc.date.accessioned2018-12-21T07:13:13Z-
dc.date.available2018-12-21T07:13:13Z-
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10397/79732-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.en_US
dc.rightsPosted with permission of the publisher.en_US
dc.rightsThe following publication Xiong, X. Y., Chen, F., Huang, P. Z., Tian, M. M., Hu, X. F., Chen, B. D., & Qin, J. (2018). Frequent itemsets mining with differential privacy over large-scale data. IEEE Access, 6, 28877-28889 is available at https://dx.doi.org/10.1109/ACCESS.2018.2839752en_US
dc.subjectFrequent itemsets miningen_US
dc.subjectDifferential privacyen_US
dc.subjectSamplingen_US
dc.subjectTransaction truncationen_US
dc.subjectString matchingen_US
dc.titleFrequent itemsets mining with differential privacy over large-scale dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage28877en_US
dc.identifier.epage28889en_US
dc.identifier.volume6en_US
dc.identifier.doi10.1109/ACCESS.2018.2839752en_US
dcterms.abstractFrequent itemsets mining with differential privacy refers to the problem of mining all frequent itemsets whose supports are above a given threshold in a given transactional dataset, with the constraint that the mined results should not break the privacy of any single transaction. Current solutions for this problem cannot well balance efficiency, privacy, and data utility over large-scale data. Toward this end, we propose an efficient, differential private frequent itemsets mining algorithm over large-scale data. Based on the ideas of sampling and transaction truncation using length constraints, our algorithm reduces the computation intensity, reduces mining sensitivity, and thus improves data utility given a fixed privacy budget. Experimental results show that our algorithm achieves better performance than prior approaches on multiple datasets.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE access, 2018, v. 6, p. 28877-28889-
dcterms.isPartOfIEEE access-
dcterms.issued2018-
dc.identifier.isiWOS:000435543400001-
dc.identifier.rosgroupid2017004133-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journal-
dc.description.validate201812 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xiong_Itemsets_Mining_Differential.pdf2.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

187
Last Week
1
Last month
Citations as of Nov 10, 2025

Downloads

312
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

16
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.