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ABSTRACT Frequent itemsets mining with differential privacy refers to the problem of mining all frequent
itemsets whose supports are above a given threshold in a given transactional dataset, with the constraint
that the mined results should not break the privacy of any single transaction. Current solutions for this
problem cannot well balance efficiency, privacy, and data utility over large-scale data. Toward this end,
we propose an efficient, differential private frequent itemsets mining algorithm over large-scale data. Based
on the ideas of sampling and transaction truncation using length constraints, our algorithm reduces the
computation intensity, reduces mining sensitivity, and thus improves data utility given a fixed privacy budget.
Experimental results show that our algorithm achieves better performance than prior approaches on multiple
datasets.

INDEX TERMS Frequent itemsets mining, differential privacy, sampling, transaction truncation, string
matching.

I. INTRODUCTION
In recent years, with the explosive growth of data and the
rapid development of information technology, various indus-
tries have accumulated large amounts of data through various
channels. To discover useful knowledge from large amounts
of data for upper-layer applications (e.g. business decisions,
potential customer analysis, etc.), data mining [1]–[9] has
been developed rapidly. It has produced a positive impact in
many areas such as business and medical care.

Along with the great benefits of these advances, the large
amount of data also contains privacy sensitive information,
which may be leaked if not well managed. For instance, smart
phone applications are recording the whereabouts of users
through GPS sensors and are transferring the data to their
servers. Medical records are also storing potential relation-
ships between diseases and a variety of data. Mining on user
location data or medical record data both provide invalu-
able information; however, they may also leak user privacy.

Thus mining knowledge under confident privacy guarantees
is highly expected.

This paper investigates how to mine frequent itemsets with
privacy guarantee for big data. We consider the following
application scenario. A company (such as information con-
sulting firm) has a large-scale dataset. The company would
like to make the dataset public and therefore allow the pub-
lic to execute frequent itemsets mining for getting coopera-
tion or profits. But due to privacy considerations, the com-
pany cannot provide the original dataset directly. Therefore,
privacy mechanisms are needed to process the data, which is
the focus of this paper.

To ensure privacy of data mining, traditional methods are
based on k-anonymity and its extended models [10]–[16].
These methods require certain assumptions; it is difficult
to protect privacy when the assumptions are violated. The
insufficiency of k-anonymity and its extended models is that
there is no strict definition of the attack model, and that the
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knowledge of the attacker cannot be quantitatively defined.
To pursue strict privacy analysis, Dwork [17] proposed a
strong privacy protection model called differential privacy.
This privacy definition features independence of background
knowledge of the attacker and proves very useful.

Frequent pattern mining with privacy protection has
also received extensive attention. As preliminary methods
[18]–[24], these works have provided a lot of contributions
in this area. But with the advance of research, these privacy
methods have not been able to provide effective privacy.
In order to overcome these difficulties, researches began
to focus on the differential privacy protection framework
[25]–[31]. Although guaranteeing privacy temporary, how-
ever, the balance between privacy and utility of frequent
itemsets mining results needs to be further pursued.

In this paper, we propose a novel differential private fre-
quent itemsets mining algorithm for big data by merging
the ideas of [27] and [30], which has better performance
due to the new sampling and better truncation techniques.
We build our algorithm on FP-Tree for frequent itemsets
mining. In order to solve the problem of building FP-Tree
with large-scale data, we first use the sampling idea to obtain
representative data to mine potential closed frequent item-
sets, which are later used to find the final frequent items
in the large-scale data. In addition, we employ the length
constraint strategy to solve the problem of high global sensi-
tivity. Specifically, we use string matching ideas to discover
the most similar string in the source dataset, and implement
transaction truncation for achieving the lowest information
loss. We finally add the Laplace noise for frequent itemsets
to ensure privacy guarantees.

A few challenges exist: First, how to design a sampling
method to control the sampling error?We use the central limit
theorem to calculate a reasonable sample size to control the
error range. After obtaining the sample size, the dataset is
randomly sampled using a data analysis toolkit. The second
challenge is how to design a good string matching method to
truncate the transaction without losing information as far as
possible? We match the potential itemsets in the sample data
to find the most similar items and then merge them with the
most frequent items until the maximum length constraint is
reached.

As a result, our algorithm reduces the computation
intensity and addresses high sensitivity of frequent item-
sets mining. The performance is also guaranteed. Through
the analysis of privacy, our algorithm achieves ε-differential
privacy. Experiment results using multiple datasets showed
that our algorithm achieves better performance than prior
approaches.

To summarize, we make the following contributions:
• We propose a differentially private big data frequent
itemsets mining algorithm with high utility and low
computational intensity. The algorithm guarantees the
trade-off between data utility and privacy.

• We achieve high data utility by employing the large-
scale data sampling and length constraint strategy,

reducing the number of candidate sets of frequent item-
sets and the global sensitivity. Experimental results
demonstrated the data utility.

• We conduct formal privacy analysis. The proposed algo-
rithm achieves ε-differential privacy.

The rest of this paper is organized as follows: Section II
discusses related works. Section III introduces background
knowledge about differential privacy and basic tools that to be
used. Section IV presents the proposed algorithm to mine top
k frequent itemsets with differential privacy. Section V gives
the analysis. Section VI shows the performance evaluation on
multiple datasets. Section VII finally concludes our work.

II. RELATED WORK
The privacy issue of frequent itemsets mining is a main focus
of research efforts. We categorize relevant work based on
the underlying techniques - from anonymity to differential
privacy.

A. ANONYMITY APPROACHES
For distributed datasets, Kantarcioglu and Clifton [18] pro-
posed a securemulti-party privacy-protecting association rule
mining algorithm. The idea is to transform the problem into
a secure multi-party computation problem under horizontal
distribution. Vaidya and Clifton [19] proposed a privacy-
preserving association rule algorithm that uses secure scalar
calculation method to find all frequent itemsets under vertical
distribution. Teng and Du [20] proposed a hybrid privacy-
preserving algorithm under vertical distribution.

For centralized datasets, Wong et al. [21] proposed to
employ 1-to-n encryption method to change original itemsets
in order to protect data privacy when outsourcing frequent
itemsets mining. Ling et al. [22] proposed an algorithm that
transforms business information into very long binary vector
and a series of random mapping functions based on bloom
filters. Later, Tai et al. [23] proposed a k-support anonymity
based frequent itemsets mining algorithm. All these methods
above sacrifice the precision of mining result.

B. DIFFERENTIAL PRIVACY APPROACHES
Because traditional approaches are based on heuristics,
a solid privacy guarantee is missing. Therefore, researchers
began to investigate frequent itemsets mining with differ-
ential privacy. Bhaskar et al. [25] presented two mining
algorithms, which are representatives of frequent itemsets
mining with differential privacy. Later, in order to solve the
high dimensional challenge of dataset, Li et al. [26] pro-
posed the PrivBasis algorithm that combines θ -basis and
mapping technique to achieve top-k frequent itemsetsmining.
Zeng et al. [27] proposed a greedy method of transaction
truncation approach by limiting themaximum length of trans-
actions of dataset.

Besides researches in the interactive framework, differ-
entially private frequent itemsets mining is also studied in
the non-interactive framework [28]–[30]. Han et al. [28]
focused on the issue of top-k query privacy in MapReduce.
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Chen et al. [29] proposed a method that employs a
context-free classification tree and combines a top-down tree
partitioning method to publish a dataset. Lee and Clifton [30]
proposed amethod of using the prefix tree to privately publish
frequent itemsets. Su et al. [31] proposed a cryptographic
algorithm that divides the dataset based on the high global
sensitivity. Despite all these work, there are still rooms for
balancing utility and privacy, which is our work here.

In addition to the above general researches, domain-
specific frequent itemsets mining with differential pri-
vacy is also studied. Chen et al. [32] proposed the
top-down prefix tree to publish the trajectory dataset.
Chen et al. [33] also proposed a method for publishing
sequence dataset based on variable-length N -gram models.
Bonomi and Xiong [34] analyzed the both above algo-
rithms and proposed a two-phase algorithm to improve
performance. For solving the problem of large fre-
quent sequence candidate sets, Xu et al. [35] pre-
sented to shrink and convert dataset, which reduces
the number of candidate sets to improve data utility.
Shen and Yu [36] focused on the issue of publishing map
dataset. Xu et al. [37] studied mining frequent subgraphs
with differential privacy in a complex large graph based on
constructing directed lattices.

III. PRELIMINARIES
A. DIFFERENTIAL PRIVACY
Differential privacy as a new type of privacy definition
is proposed for the privacy of statistical databases by
Dwork [17]. It defines a very strict attack model, and gives
a rigorous, quantitative representation and proof for the risk
of privacy disclosure.
Definition 1 (ε-Differential Privacy): Let D andD′ denote

any databases which differ by at most one record, Range(K )
represent the range of a random function K. If a random func-
tion K satisfies ε-differential privacy, for any S ⊆ Range(K ),
we have

Pr [K (D) ∈ S] ≤ exp (ε)Pr
[
K
(
D′
)
∈ S

]
(1)

where ε is a real number denoting the privacy budget
parameter.

The smaller the ε is, the higher the degree of privacy
is preserved. The differential privacy protection is achieved
by adding quantitative noise; the amount of required noise
depends on the sensitivity. Intuitively, the sensitivity quanti-
fies the change of the query results caused by deleting any
transaction in the dataset.
Definition 2 (Sensitivity): Given any function: Dn → Rk ,

denote 4f as the sensitivity of f ; it is defined as follows:
for all neighboring databases (i.e., differs only in one row)
D and D′

4f = maxD,D′‖f (D)− f
(
D′
)
‖1 (2)

The sensitivity magnitude of the function is determined by
the function itself; different functions have different sensitiv-
ities. For most query functions f , the value of4f is relatively

small. The sensitivity is then used to control the noise level
in differential privacy. When the noise is too large, it affects
data utility. It is worth noting that sensitivity is independent
of the dataset.

B. NOISE MECHANISM
The main technique of achieving differential privacy
protection is to add noise. Dwork proposed the Laplace
mechanism to achieve differential privacy. For different situ-
ations, the exponent mechanism, geometric mechanism and
Gaussian mechanism were also proposed. The commonly
used noisy addition mechanisms are the Laplace mechanism
and the Exponential mechanism. The Laplace mechanism is
usually for mining algorithms that output numeric result; the
exponential mechanism is mainly applied to algorithms that
output non-numerical results.

The amount of noise is affected by the sensitivity and
the privacy budget. Generally, the privacy budget is set in
advance, then the noise is determined by the sensitivity.
Definition 3 (Laplace Distribution): The probability den-

sity function of the Laplace distribution with scale parameter
λ is defined as:

Pr (x|λ) =
1
2λ
e−|x|/λ (3)

Theorem 1 (Laplace Mechanism): Let f : Dn → R be a
function with image over real number values. The following
mechanism K satisfies ε-differential privacy.

K (D) = f (D)+ Lap
(
4f
ε

)
(4)

where Lap
(
4f
ε

)
is a noise with the Laplace distribution.

The noise size is proportional to 4f and is inversely pro-
portional to ε.
Composability Theorems: In general, a complex privacy-

preserving algorithm requires multiple application of differ-
ent differential privacy mechanisms. In this case, in order to
ensure that the whole process satisfies ε-differential privacy,
it is necessary to allocate the privacy budget reasonably. The
composability theorems of differential privacy guarantee the
overall privacy.
Theorem 2 (Sequential Composition): Given a fixed

dataset, let {A1,A2, . . . ,An} be n mechanisms where each
Ai provides ε-differential privacy. A sequential application of

each mechanism provides
n∑
i=1
εi−differential privacy.

Theorem 3 (Parallel Composition): Given disjoint
datasets, let {A1,A2, . . . ,An} be n mechanisms where each
Ai provides ε-differential privacy. A parallel application of
each mechanism provides max (εi)−differential privacy.

C. FREQUENT ITEMSETS MINING
We now briefly introduce frequent itemsets mining. Let TI =
{t1, t2, . . . , tN } be a transactional dataset consisting of N
transactions, I = {i1, i2, . . . , in} be a set of different items,
and X be a subset of I such that X ⊆ I . If X is contained
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in a transaction and X has k items, X is called a k-itemset.
The support of an itemset is defined as the total number of
transactions that contains the itemset.

The task of frequent itemsets mining is to find all item-
sets that have support greater than a given threshold. Fre-
quent itemsets is employed for finding association rules for
a group of data items. Association rules show correlational
relations of different items, which have numerous practical
application [38], [39]. Association rule generation is usually
split up into two separate steps: 1) a minimum support thresh-
old is applied to find all frequent itemsets in a database;
2) a minimum confidence constraint is applied to these fre-
quent itemsets in order to form rules. While the second step is
straightforward, the first step needs more attention. Finding
all frequent itemsets in a database is challenging because it
involves searching all possible itemsets. The representative
algorithms for mining frequent itemsets include the Apriori
algorithm [38] and the FP-Growth algorithm [39].

We describe the basics of the FP-Growth algorithm [39]
which underlies our proposed privacy-preserving algorithm.
The FP-Growth algorithm features small database scanning
operations: it only has two-pass database scanning. In the first
pass, the algorithm counts occurrence of each item (attribute-
value pairs), and stores them to a header table in descend-
ing order. It also builds the NULL FP-Tree. In the second
pass, it inserts the FP-Tree with data items and stores their
frequency. Items in each instance that do not meet minimum
support threshold are discarded. The final core data structure
‘‘FP-Tree’’ stores all the information for frequent itemsets.
Finally, all frequent itemsets can be mined from the FP-Tree.

D. CENTRAL LIMIT THEOREM
In our scheme, we use the central limit theorem for reasonable
sampling.
Theorem 4: Let {X1,X2, ,Xn} be a sequence of indepen-

dent and identically distributed random variables, whose
expectation is µ and variance is σ 2, a finite value. Let Yn =∑n

k=1 Xk−nµ√
nσ be a random variable. Then, the distribution

function Fn (x) of Yn satisfies the following:

lim
n→∞

Fn (x) = lim
n→∞

P
{∑n

k=1 Xk − nµ
√
nσ

≤ x
}

=
x
∫
−∞

1
√
2π

e−t
2/2dt (5)

That is, when n is sufficiently large, the distribution
approximately follows the normal distribution. For random
sampling, with the increasing of sample size, the distribution
of the sampling average also tends to be the normal distribu-
tion. In our proposed algorithm, we employ this theorem to
determine our sampling strategy.

E. PROBLEM STATEMENT
Finally, we state our problem explicitly. Given a large-scale
dataset, a privacy budget ε, and a minimum threshold σ ,
the task is to design a privacy-preserving algorithm that mines

top k frequent itemsets whose supports are not less than
the threshold σ , where k is an arbitrary given number. The
algorithm should have minimum computational cost and high
mining result utility, besides satisfying ε-differential privacy.

IV. PROPOSED ALGORITHM
A. A STRAWMAN APPROACH
In order to better understand the challenges posed by dif-
ferential privacy, we first discuss a basic approach. That is,
first generate all the candidate itemsets, then add noise to the
support of all candidate itemsets directly, and finally select
the top k frequent itemsets above a given threshold.
We discuss the privacy of the above basic approach.

Assume that Lf is the maximum length of the frequent
itemsets, C i

n is the number of all i-itemset, and n is the
alphabet size. Then the sensitivity of the i-itemset’s support
is C i

n. Assuming the privacy budget is distributed evenly,
the privacy budget for each i-itemset’s support is ε/Lf . Then,

by adding noise Lap
(
C in×Lf
ε

)
, the basic approach satisfies

ε/Lf -differential privacy for each i-itemset, 1 ≤ i ≤ Lf .
Combining the sequential composition properties, the basic
approach satisfies ε-differential privacy.

While achieving ε-differential privacy, the drawback is that
the utility of the basic approach is very low. This is because

the noise Lap
(
C in×Lf
ε

)
is significantly large that it makes the

mining results far from accurate.

B. OVERVIEW
We now describe our newly proposed algorithm, called
DP-FIM, which merges the ideas of [27] and [30], but
employs a different(better) truncation scheme and boosts
computation efficiency using both sampling and truncation.
Compared with previous work using random truncation, our
new string-similarity-matching-based truncation mechanism
has better performance than previous work [27], [30], which
is because string-similarity-matching-based truncation pre-
serves more useful frequent itemset candidates. The exper-
imental results in Section VI-B also confirms the better
performance. The algorithm is differentially private; it takes
a threshold value σ and outputs the frequent itemsets with
support at least σ . The basic idea is as follows: first, compute
a noisy support for the threshold σ̃ = σ+Lap(·), then truncate
the original database noisily, finally construct a noisy FP-Tree
for mining frequent itemsets.

Algorithm 1 describes the high-level process of our pro-
posed algorithm. It consists of three phases: the preprocessing
phase, the mining phase, and the perturbing phase.

1) PREPROCESSING PHASE
Given the large-scale dataset, we first sample the dataset
and then compute the closed frequent itemsets in the smaller
sample using a traditional frequent itemsets mining algo-
rithm.We later estimate the length distribution of the sampled
dataset and obtain the maximum length constraint, which is
later used to shrink the dataset. Some elements out of the
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Algorithm 1 DP-FIM
Input: : databaseD, threshold σ , privacy budget ε = ε1+ε2,

item universe I
Output: frequent item sets F̃ and their noisy frequencies
1: sample a smaller database

D1← TransformDatabase(D)

2: compute the closed frequent itemsets L and a maximal
length constraint

lmax ← FindFrequentItemSets(D1, I , σ, η)

using a parameter η
3: shrink the original database

DS ← TruncateDatabase(D,L, lmax)

4: construct a noisy FP-Tree

T ← BuildNoisyFPTree(DS , ε1, lmax)

5: compute the frequent itemsets F̃ and their noisy frequen-
cies using ε2 by perturbation

6: return F̃ and their noisy frequencies

closed frequent itemsets are removed from the source dataset
if their supports are below the support threshold. We then
employ string matching ideas to cut off the transactions in the
dataset; in this step, the purpose of converting the dataset is
to shrink the data size and simultaneously retain the potential
frequent items.

2) MINING PHASE
We then build a noisy FP-Tree over the shrunken dataset.
We distribute the privacy evenly; we also add noise to the real
count results.

3) PERTURBING PHASE
Add Laplace noise in the candidate frequent itemsets and
output them.

We explain some intuitions behind the proposed algorithm.
To improve mined result utility, it is necessary to reduce
the amount of noise added. The amount of noise depends
on the privacy budget and the sensitivity of the underlying
components of the mining function. Given that the privacy
budget is set in advance, it is key to reduce the sensitivity.
According to the definition of sensitivity, the sensitivity of
k-itemset’s support relates to

∣∣C l
k

∣∣, where C l
k is the set of all

k-itemsets in all transactions with l-length. Thus, we can
reduce the sensitivity by constraining the length of each
transaction. Specifically, we use the string matching and the
longest common subsequence idea to perform transaction
truncation. That is, we find the most similar potential itemsets

in the source dataset, and at the same time achieve the lowest
loss of information, which improves data utility.

In this paper, the privacy budget is mainly allocated to
the mining phase and the perturbing phase. Let ε = µε +

(1− µ) ε = ε1+ε2. The value ofµ affects the performance of
our proposed algorithm. Different privacy budget assignment
strategy may affect the accuracy of the algorithm results.

C. PREPROCESSING PHASE
At this phase, we first sample the dataset to have a rough
estimation of the dataset using the central limit theorem.
We first compute the sample size and then use SAS data
analysis software for random sampling. The samples can
reduce the computational intensity of the constructed FP-Tree
and find the potential frequent itemsets of the source dataset.
Similar to [27], we obtain a maximum length constraint lmax
to shrink the transactions in the dataset.

We deduce the sample size now. Fix an item modeled as a
binomial distribution with occurring probability p. Let q =
1 − p, n be the sample size, and fn be the occurrences of the
item. The normal practice is to make the absolute error | fnn −p|
not more than a small positive δ with its confidence not less
than an α value (0 < α < 1). Then in order to achieve reliable
sampling, the value of n should satisfy that Pr[| fnn − p| ≤
δ] ≥ α. We compute the probability as

Pr
[
|
fn
n
− p| ≤ δ

]
= Pr

[
−

√
n
pq
δ ≤

fn − np
√
npq
≤

√
n
pq
δ

]
≈ 28

(√
n
pq
δ

)
− 1 ≥ a

⇒ 8

(√
n
pq
δ

)
≥
a+ 1
2

(6)

Let Zα be the value such that

8(Zα) ≥
α + 1
2

(7)

where Zα can be directly found on any normal distribution
table. From Equations 6 and 7, we have that n should satisfy√

n
pqδ ≥ Za. Therefore, we have n ≥

Za2

4δ2
.

In practice, the common confidence level is 95% and 99%,
corresponding to the Zα value being 1.96 and 2.58. Therefore,
in the maximum tolerance error of 1% case with confidence
of 95% or 99%, the corresponding sample size calculated is
9604 and 16641. That is, for large-scale datasets, we only
need to deal with the sample, which can achieve the same
accuracy. In the experiments, we confirm the effectiveness
of the above sampling approach. The works [40], [41] also
demonstrated the effectiveness of the sampling approach in
association rule mining.

Using the sampled dataset, we then employ a classical
frequent itemsets mining algorithm (here using the Apriori
algorithm) to obtain the set of closed frequent itemsets L,
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which is a maximal set in the sense that no super set satis-
fies the support threshold requirement. We list the details in
Algorithm 2.

Algorithm 2 FindFrequentItemSets(D1, I , σ, η)
Input: sampled data set D1, threshold σ , item universe I ,

truncation percentage variable η
Output: closed frequent item sets L, and a maximal length

constraint lmax
1: let L = ∅
2: invoke the Apriori algorithm: for all 1-item set L1 in the
D1 do

3: if L1.support ≥ σ then
4: k=2, C1 = L1
5: Ck = all candidate k-item sets from Ck−1
6: for each transaction t in D1 do
7: Ct = all subsets of Ck contained in the transaction

t
8: for each candidate C in Ct do
9: C .support ++
10: end for
11: end for
12: if C .support ≥ σ then
13: add C to Lk
14: L+ = Lk
15: end if
16: k ++
17: end if
18: estimate distribution of D1, getting the distribution
{z1, . . . , zi, . . . , zn}, where zi is the number of transac-
tions with length i in D1

19: lmax = the smallest integer such that (
l∑
i=1

zi)/|D1| ≥ η

20: obtain all closed frequent item sets L and the maximal
length constraint lmax .

21: return L, lmax

In Algorithm 2, we use the sampled dataset to find the
potential itemsets in the source dataset, without paying atten-
tion to the support count. Again, note that the closed frequent
item sets is that if there exists superset of itemset X with
support at least the threshold, then the itemset X is not a
closed frequent itemset.

For the value of maximum length constraint lmax in Algo-
rithm 2, we refer to [27] to estimate the distribution of trans-
action length {z1, . . . , zi, . . . , zn} in a sampled dataset using
a heuristic method. That is, starting from the itemset with
length 1, incrementally calculate zi and summarize until the

formula (
l∑
i=1

zi)/|D1| ≥ η is satisfied. We get the smallest

i value as a maximum length constraint lmax . We note that
the maximum length constraint lmax value affects the per-
formance of the proposed algorithm. Thus the value of η is
also very important. In the experimental evaluation section,
we will discuss the effect of η on our algorithm.

Algorithm 3 TruncateDatabase(D,L, lmax)
Input: database D, closed frequent item sets L, maximal

length constraint lmax
Output: shrunken database DS

1: for all 1-item set L1 with frequencies≥ σ in the alphabet
I do

2: sort L1 in decreasing order according to D
3: end for
4: for each potentially item set X ∈ L do
5: generate the set of contained items S
6: L′+ = decreasing order (X ,L1)
7: end for
8: let DS = ∅
9: for each transaction t ∈ D do
10: add t ′ = TruncateTransaction(lmax , t) to DS

11: end for
12: return shrunken database DS

13: function TruncateTransaction(lmax , t)
14: t ′ = t ∩ S
15: if |t ′| > lmax then
16: truncate each transaction
17: return t ′ = StringMatching(lmax , t ′)
18: else
19: return t ′

20: end if
21: end function

22: function StringMatching(lmax , t ′)
23: given t ′, find the most similar item set Lk from L
24: select t ′′ = Lk ∩ t ′

25: if |t ′′| = lmax then
26: return t ′ = t ′′

27: else
28: add the most frequent (lmax − |t ′′|)-item set to t ′′

29: return t ′ = t ′′

30: end if
31: end function

Algorithm 3 describes the detailed process by which we
get the shrunken dataset. Given the closed frequent itemsets
L and the length constraint lmax , we compute all 1-itemsets
L1 with the support ≥ σ , and sort the itemset in descend-
ing order by support. For each transaction in the original
dataset, each transaction is sorted and transformed according
to the length constraint lmax . The unnecessary elements are
eliminated, finally obtaining the shrunken dataset. Given a
transaction t = {i1, i2, . . . , in} that violates the length con-
straint, we employ the closed frequent itemsets set to find
the most similar string to execute truncation using the idea
of string matching. We keep the frequent itemsets as much as
possible in the truncated transactions. Specifically, we use the
longest common subsequence(LCS) algorithm [42] to find
the most similar truncated transaction. The intuition is that
it can preserve maximal useful information.
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Based on the truncated dataset obtained in the preprocess-
ing phase, the size is greatly reduced. We note that the use
of length constraint to cut off the dataset leads to the loss
of some information. We try to lose the lowest information.
In the experimental section, we further discuss it.

D. MINING PHASE
Algorithm 3 describes the detailed algorithm. After the pre-
processing phase, we get the shrinking dataset which has
smaller number of transactions and smaller dimension to
build a noisy FP-Tree. Because computing support directly
destroys the privacy, we initialize the FP-Tree with count
Lap

(
lmax
ε1

)
on each node, and then iteratively update the

count. In the process of building the tree, the privacy budget
adopts the average allocation strategy, and the privacy budget
ε1 is based on the depth h of the FP-Tree (i.e. the optimal
item set length). Each level is allocated the budget of ε1/lmax ,
adding Laplace noise Lap

(
Mf

ε1/lmax

)
. For the noisy FP-Tree,

each item of the transaction corresponds to a node. Thus,
when a transaction (single path) in a tree is removed or added,
only one path is changed, so the sensitivity at this phase is

M f = max
D,D′ ‖f (D)− f

(
D′
)
‖1 = 1 (8)

Algorithm 4 BuildNoisyFPTree (DS , ε1, lmax)

Input: shrunken database DS , privacy budget ε1, maximal
length constraint lmax

Output: noisy FP-Tree T and F
1: scan the transaction dataset DS ; get the set of frequent

items V and its support for each item; sort all the frequent
items in V in descending order which is denoted as L

2: insert a virtual root R(T ) to FP-Tree T
3: let ε̄ = ε1

lmax
4: for each transaction t in dataset DS do
5: for each item u in t sorted using the order of L do
6: initialize the count of each node with Lap(ε̄)
7: create a possible new node v as u’s child
8: iteratively update the count for v with c̃(v) =

support(v)+ Lap(ε̄)
9: if c̃(v) ≥ σ̃ then
10: add v to T as u’s child
11: end if
12: end for
13: end for
14: obtain the noisy FP-Tree T
15: generate all top k frequent itemsets F by FP-Growth

algorithm
16: return T and F

E. PERTURBING PHASE
This phase is simple, relatively. Based on the noisy FP-Tree,
mine all the frequent itemsets that satisfy the threshold σ̃ ,
select all the top k frequent itemsets, add the noise Lap

(
|C|
ε2n

)

where C contains the final candidates sets and n represents
the size of the dataset. Finally, output the result.

V. ANALYSIS
The algorithm consists of three phases: the preprocessing
phase, the mining phase, and the perturbing phase. For the
preprocessing phase, it is irrelevant with privacy disclosure to
calculate the support in the source dataset. We give the results
of the privacy analysis in the latter two phases. The privacy
guarantee of the entire algorithm is given by the sequential
composition property of differential privacy.
Theorem 5: The proposed scheme achieves ε-differential

privacy.
Proof: In the mining phase, the noisy FP-tree is con-

structed by the truncated dataset. In order to reduce the
amount of noise added in the tree contrunction process,
the length constraint is used to obtain the truncated dataset.
Since an itemset with a length of lmax can get Ck

lmax different
k-itemsets, it is crucial to achieve sensitivity 1 when increas-
ing or deleting a transaction. This is achieved in the noisy
FP-Tree.When removing or adding a transaction (single path)
in the tree, it only changes 1 path for the overall value, then
the sensitivity at this stage is 1.

Therefore, it satisfies ε11-differential privacy to add
Lap

(
Mf
ε11

)
to the support of each node of the noisy FP-Tree,

where ε11 = ε1/lmax . Because the above process repeats lmax
times, the whole process then satisfies ε1/lmax ∗ lmax = ε1-
differential privacy.

In the perturbing phase, the noise is added to the true
support of the selected frequent itemsets to achieve the pur-
pose of privacy protection. In this case, the sensitivity of the
support of

∣∣F ′∣∣ is 4f = ∣∣F ′∣∣. When increasing or deleting
a transaction, it affects most of the support of

∣∣F ′∣∣ frequent
itemsets by 1. Therefore, it satisfies ε2-differential privacy
when adding Lap

(
|F ′|
ε2

)
to the support of

∣∣F ′∣∣.
According to the sequential composition theorem 2,

the DP-FIM algorithm satisfies ε-differential privacy where
ε = ε1 + ε2. �
The DP-FIM algorithm also preserves high utility. Both

sampling and truncation do not hurt the frequent items.
We show the utility in the following experimental evaluations.

VI. EXPERIMENTS
In this section, we evaluate the performance of our algorithm.
To illustrate the effectiveness of the our algorithm, we also
compare it with two state-of-art algorithms SmartTrunca-
tion(ST) [27] and PrivBasis(PB) [26] in the same conditions.
One algorithm is the basis of our algorithm while the other
is totally different; this arrangement is to have a broader
comparison.

A. EXPERIMENT SETUP
1) IMPLEMENTATION
We implement our algorithm using C++ on a PC with CPU
Intel Core i7-4790k, processor base frequency 4.00GHz,
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RAM 8G. In the experiments, we specifically take ε =
0.1, 0.25, 0.5, 0.75, 1.0, η = 0.75, 0.8, 0.85, 0.9, 0.95, and
k = 50, 100 to parameterize our experiments. We run our
algorithm 10 times and report the average values as stable
performance indicators.

2) DATASETS
We use five public datasets in this experiment: Acci-
dents(ACC) [43], Kosarak(KOS), Mushroom(MUS) [44],
BMS-POS (POS) [44], and Retail [43]. The characteristics of
the datasets are summarized in Table 1, where max|t| is the
maximum record size and avg|t| is the average record size.

TABLE 1. Dataset characteristics.

The length of all datasets is shown in Fig. 1. These trans-
action datasets have different data patterns, e.g. Accidents
dataset is a dense dataset while BMS-POS and Retail are
sparse datasets. It can be seen that the Kosarak dataset is
mainly a set of short transactions while the Accidents dataset
is the opposite. For the Mushroom dataset, all transactions
have the same length as in Table 1; thus we do not draw its
length distribution.

FIGURE 1. Transaction length distribution.

3) PERFORMANCE METRICS
In the experiment, we focus on the following two commonly
used data utility performance metrics [26], [27] to measure
the performance of our algorithm. The first is F-Score which
measures accuracy; the second is RE which measures error.
Definition 4 (F-Score): Let F and F ′ be the set of actual

and published frequent itemsets, respectively. The F-Score is

TABLE 2. Experiment parameters.

TABLE 3. F-Score and RE on varying ε’s in different datasets. (a) F-Score
vs. ε in different datasets. (b) RE vs. ε in different datasets.

defined as follows

F-Score = 2×
precision ∗ recall
precision+ recall

(9)

where precision = |F
′
∩F|
F ′ and recall = |F

′
∩F|
F .

Definition 5 (Relative Error): The relative error of pub-
lished frequent item sets F ′ is defined as

RE = medianX∈F ′
sup′X − supX

supX
(10)

where sup′X (supX ) is the noisy(actual) support of itemset X.
For the above two utility measures, the larger F-Score

is, the closer the frequent itemsets to the real itemsets; it
indicates that the utility of the algorithm is higher. The smaller
the RE is, the smaller the error is; it also indicates that the
utility of the algorithm is higher.

B. PERFORMANCE COMPARISON
We compare the performance of our algorithm with state-
of-art algorithms using F-Score and Relative Error. We first
analyze the impact of different privacy budgets over the per-
formance indicators. Then we discuss the mining result errors
with different thresholds. For performance, we note again that
the larger the F-Score is, the higher the data utility is, and that
the smaller the relative error is, the higher the data utility is.

Table 2 gives the description of the parameters and the
default values in the experiment. Unless otherwise specified,
the parameters in the experiment are taken according to
Table 2.

1) EFFECT OF PRIVACY BUDGET
In Figures 2 and 3, we show the performance comparison
of DP-FIM, PB and ST algorithms under different privacy
budget. We allocate the total privacy budget ε as follows:

28884 VOLUME 6, 2018



X. Xiong et al.: Frequent Itemsets Mining With Differential Privacy Over Large-Scale Data

FIGURE 2. Performance vs. privacy budget. (a) Mushroom: F-Score. (b) Mushroom: RE. (c) Retail: F-Score. (d) Retail: RE.

FIGURE 3. F-Score and RE on varying ε’s in different datasets. (a) F-Score vs. ε in different datasets. (b) RE vs. ε in different datasets

ε1 = 1/3ε and ε2 = 2/3ε. In this section, we present the
experimental results when ε varies. The value of frequent
itemset size k is set to be 50 and 100; the maximal length

constraint parameter η is set to be 0.85, which is based on the
best value that can be obtained in the experiment. The detailed
results are also listed in Table 3.
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FIGURE 4. Performance vs. threshold. (a) Accidents: F-Score (b) Accidents: RE (c) Retail: F-Score (d) Retail: RE.

Figures 2 and 3 shows how F-Score and RE changes with
the increasing of ε for the DP-FIM, the PB, and the ST
algorithms. In general, when other parameter values are kept
at their default values, the curve of F-Score rises with the
privacy parameters’ increases; the RE curve on the contrary
goes downward. This indicates that when the privacy budget
increases, the added amount of noise becomes smaller, and
the quality of the frequent itemsets becomes higher.

It can be found that our algorithm obtains high F-Score and
low relative error; thus, our algorithm has high utility.We also
observe that the more the number of output frequent itemsets
have, the poorer the performance becomes. This means that
the more itemsets are outputted, the more budgets are used
for each itemset as well with the more added noise. Thus
the utility of the dataset deteriorates as the output itemsets
increases.

In addition, our algorithm is basically stable; that is,
the curve was in a flat-state shape. This is in line with our
expectation. But when ε is higher than 0.25, the precisions
for Mushroom datasets have reached 90%; while in the Retail
dataset, when ε takes 1.0, the value of the F-Score does not

reach 100%. This shows that our algorithm performance is
different for different datasets. Perhaps this is because the
Mushroom dataset has the same length, which reduces the
amount of information loss in the case of truncated transac-
tions compared to the Retail dataset.

Comparing with state-of-art algorithms, we find that our
algorithm obtains better performance (higher F-Score and
lower relative error) than ST under the same privacy budget
as in Fig. 2. For PB, our algorithm performance better in
F-Score and relative error when more privacy is needed.
In other cases, the two algorithms are roughly comparable in
F-Score and relative error.

2) EFFECT OF THRESHOLD
We also compare the performance of DP-FIM, PB and ST
under different threshold settings using the Accidents and
Retail datasets as examples. The results are shown in Fig. 4.
The threshold in the experiment is set relative to the size
of the entire dataset. We set the privacy budget ε as 1.0,
the maximum length constraint parameter as η = 0.85.
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FIGURE 5. Performance vs. Maximal Length Constraint. (a) F-Score. (b) RE.

FIGURE 6. F-Score and RE on varying k in different datasets. (a) F-Score vs. κ in different datasets. (b) RE vs. κ in different datasets.

It can be seen from the experimental results that with the
threshold increasing, the charts present a trend of growth;
that is, increased threshold results in higher utility. On the
Accidents and Retail datasets, compared with ST, it has better
performance than the ST on the F-Score and RE metrics;
this is because our transaction truncation processing method
can effectively retain the potential frequent information when
truncating the long transactions. Thus the performance is
generally better than ST.
For the PB case, our algorithm again performs better in

F-Score. However, it is alsoworth noting that in some datasets
(i.e. Accidents) our algorithm is slightly less accurate with
regard to RE. This may be because that RE is related to
support. Each frequent item is included in the θ -basis in
the PB algorithm and the amount of noise added is greatly
resisted. Thus PB achieves better results in RE. In addition,
for the trade-off between privacy and data utility, our algo-
rithm and the ST algorithm first truncate the dataset and then
add noise. Taking further account of privacy requirements,
it loses information inevitably. However, our algorithm still

remains potential frequent itemsets as far as possible; the
corresponding F-Score and RE are also reasonable good for
practical uses.

C. MORE DETAILED PERFORMANCE RESULTS
We further report more performance results when varying
other parameters of our algorithm.

1) EFFECT OF MAXIMAL LENGTH CONSTRAINT
Figure 5 shows the performance over the maximum length
constraint. We vary parameter η from 0.75 to 0.95 and keep
other parameters at their default values, i.e., ε = 1 and
k = 50. Figure 5 displays how F-Score and RE vary
under different η values with other parameters at their default
values. We can observe that with the increasing of η, the
F-Score and RE do not increase or decrease monotonically.
Initially, the RE decrease when η increases; this is because
the increment of η allows to retain more information from the
database. However, after a certain threshold, the RE becomes
larger with the increasing of η. This is because when η gets
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TABLE 4. F-Score and RE on varying k in different datasets. (a) F-Score
vs. k in different datasets. (b) RE vs. k in different datasets.

larger, the noise added to each level grows quickly. The same
analysis also applies to F-Score.

We observe that when the constraint parameter η is small,
the quality of frequent itemsets is relatively poor, as expected.
This is because the smaller the η is, the more the lost informa-
tion is. Even in the worst case, RE is still below 0.15, which is
acceptable. For larger η, the performance behaves differently
on different datasets. For example, on the Accidents dataset,
when η breaks through 0.9, the F-Score is becoming smaller.
This is in line with our expectation because achieving dif-
ferential privacy needs to add noise. The larger the length of
a record in the database is, the more noise it is to be added
to the output, which leads to poor performance. From the
experimentation, we empirically find that a good choice for
the parameter η is 0.85.

2) EFFECT OF THE TOTAL NUMBER OF OUTPUT
FREQUENT ITEMSETS
Figure 6 and Table 4 presents the performance of our scheme
when varying the number of output frequent itemsets. For all
datasets, the worst F-Score achieves 0.7. In most cases, the F-
Score is higher than 0.9. For relative error, the worst error is
0.158 while most errors are below 3%. These high F-Score
and low relative error indicate that our algorithm has high
utility.

VII. CONCLUSIONS
In this paper, we propose a novel differentially private algo-
rithm for frequent itemsets mining. The algorithm features
better data utility and better computation efficiency. Various
experimental evaluations validate that the proposed algorithm
has high F-Score and low relative error. A lesson learned is
that fine tuned parameters lead to better differentially pri-
vate frequent itemsets mining algorithms with regard to data
utility.
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