Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/70942
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Wen, B | en_US |
| dc.creator | Chen, X | en_US |
| dc.creator | Pong, TK | en_US |
| dc.date.accessioned | 2017-12-28T06:18:33Z | - |
| dc.date.available | 2017-12-28T06:18:33Z | - |
| dc.identifier.issn | 1052-6234 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/70942 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2017 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Wen, B., Chen, X., & Pong, T. K. (2017). Linear convergence of proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems. SIAM Journal on Optimization, 27(1), 124-145 is available at https://doi.org/10.1137/16M1055323 | en_US |
| dc.subject | Linear convergence | en_US |
| dc.subject | Extrapolation | en_US |
| dc.subject | Error bound | en_US |
| dc.subject | Accelerated gradient method | en_US |
| dc.subject | Nonconvex nonsmooth minimization | en_US |
| dc.subject | Convex minimization | en_US |
| dc.title | Linear convergence of proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 124 | en_US |
| dc.identifier.epage | 145 | en_US |
| dc.identifier.volume | 27 | en_US |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.doi | 10.1137/16M1055323 | en_US |
| dcterms.abstract | In this paper, we study the proximal gradient algorithm with extrapolation for minimizing the sum of a Lipschitz differentiable function and a proper closed convex function. Under the error bound condition used in [Ann. Oper. Res., 46 (1993), pp. 157-178] for analyzing the convergence of the proximal gradient algorithm, we show that there exists a threshold such that if the extrapolation coefficients are chosen below this threshold, then the sequence generated converges R-linearly to a stationary point of the problem. Moreover, the corresponding sequence of objective values is also R-linearly convergent. In addition, the threshold reduces to 1 for convex problems, and as a consequence we obtain the R-linear convergence of the sequence generated by FISTA with fixed restart. Finally, we present some numerical experiments to illustrate our results. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on optimization, 2017, v. 27, no. 1, p. 124-145 | en_US |
| dcterms.isPartOf | SIAM journal on optimization | en_US |
| dcterms.issued | 2017 | - |
| dc.identifier.isi | WOS:000404178500006 | - |
| dc.identifier.ros | 2016000249 | - |
| dc.identifier.eissn | 1095-7189 | en_US |
| dc.identifier.rosgroupid | 2016000248 | - |
| dc.description.ros | 2016-2017 > Academic research: refereed > Publication in refereed journal | en_US |
| dc.description.validate | 202208 bcrc | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0509 | - |
| dc.description.fundingSource | Self-funded | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 6743474 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 16m1055323.pdf | 727.69 kB | Adobe PDF | View/Open |
Page views
140
Last Week
0
0
Last month
Citations as of Oct 6, 2025
Downloads
116
Citations as of Oct 6, 2025
SCOPUSTM
Citations
61
Last Week
0
0
Last month
Citations as of Jun 21, 2024
WEB OF SCIENCETM
Citations
82
Last Week
0
0
Last month
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



