Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/67393
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Xen_US
dc.creatorQiao, ZHen_US
dc.creatorZhang, Hen_US
dc.date.accessioned2017-07-13T03:27:12Z-
dc.date.available2017-07-13T03:27:12Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/67393-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2017 Society for Industrial and Applied Mathematicsen_US
dc.rightsPosted with permission of the publisher.en_US
dc.rightsThe following publication Li, X., Qiao, Z., & Zhang, H. (2017). Convergence of a Fast Explicit Operator Splitting Method for the Epitaxial Growth Model with Slope Selection. SIAM Journal on Numerical Analysis, 55(1), 265-285 is available at https://doi.org/10.1137/15M1041122.en_US
dc.subjectEpitaxial growthen_US
dc.subjectFast explicit operator splittingen_US
dc.subjectFinite difference methoden_US
dc.subjectPseudo spectral methoden_US
dc.subjectStabilityen_US
dc.subjectConvergenceen_US
dc.titleConvergence of a fast explicit operator splitting method for the epitaxial growth model with slope selectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage265en_US
dc.identifier.epage285en_US
dc.identifier.volume55en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/15M1041122en_US
dcterms.abstractA fast explicit operator splitting method for the epitaxial growth model with slope selection has been presented in [Cheng et al., T. Comput. Phys., 303 (2015), pp. 45-65]. The original problem is split into linear and nonlinear subproblems. For the linear part, the pseudospectral method is adopted; for the nonlinear part, a 33-point difference scheme is constructed. Here, we give a compact center-difference scheme involving fewer points for the nonlinear subproblem. In addition, we analyze the convergence rate of the algorithm. The global error order O(T-2 + h(4)) in discrete L-2-norm is proved theoretically and verified numerically. Some numerical experiments show the robustness of the algorithm for small coefficients of the fourth-order term for the one-dimensional case. In addition, coarsening dynamics are simulated in large domains and the 1/3 power laws are observed for the two-dimensional case.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2017, v. 55, no. 1, p. 265-285en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2017-
dc.identifier.isiWOS:000396683300012-
dc.identifier.ros2016000264-
dc.source.typeArticle-
dc.identifier.eissn1095-7170en_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0735-n03-
dc.identifier.SubFormID1203-
dc.description.fundingSourceRGCen_US
dc.description.fundingText15302214, 509213en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
a0735-n03_1203_15m1041122.pdf3.64 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

200
Last Week
1
Last month
Citations as of Sep 8, 2024

Downloads

98
Citations as of Sep 8, 2024

SCOPUSTM   
Citations

46
Last Week
0
Last month
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

46
Last Week
0
Last month
Citations as of Sep 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.