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CONVERGENCE OF A FAST EXPLICIT OPERATOR
SPLITTING METHOD FOR THE EPITAXIAL GROWTH MODEL

WITH SLOPE SELECTION∗

XIAO LI† , ZHONGHUA QIAO‡ , AND HUI ZHANG§

Abstract. A fast explicit operator splitting method for the epitaxial growth model with slope
selection has been presented in [Cheng et al., J. Comput. Phys., 303 (2015), pp. 45–65]. The original
problem is split into linear and nonlinear subproblems. For the linear part, the pseudospectral
method is adopted; for the nonlinear part, a 33-point difference scheme is constructed. Here, we
give a compact center-difference scheme involving fewer points for the nonlinear subproblem. In
addition, we analyze the convergence rate of the algorithm. The global error order O(τ2 + h4) in
discrete L2-norm is proved theoretically and verified numerically. Some numerical experiments show
the robustness of the algorithm for small coefficients of the fourth-order term for the one-dimensional
case. In addition, coarsening dynamics are simulated in large domains and the 1/3 power laws are
observed for the two-dimensional case.
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spectral method, stability, convergence
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1. Introduction. Recently, epitaxial growth has become an important tech-
nique for the growth of thin films. By using the epitaxial growth technique, it is
possible to grow high-quality crystalline materials and form structures with high pre-
cision in the vertical direction [10]. There has been a large amount of research interest
in the dynamics of epitaxial growth. Different kinds of models have been developed to
describe the growth evolution, including atomistic models, continuum models, and hy-
brid models [6]. In our work, we are interested in continuum models for the evolution
of epitaxial growth with slope selection [15]. Evolution is governed by the following
nonlinear partial differential equation:

(1.1) ut = ∇ · [(|∇u|2 − 1)∇u]− δ∆2u, (x, y) ∈ Ω, t ∈ (0, T ],

where δ > 0 is a constant, Ω = (0, 2L)2 with L > 0, and u : R2 × (0,∞) → R is an
Ω-periodic scaled height function equipped with the initial data

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.
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266 XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

The fourth-order term models the surface diffusion and the nonlinear second-order
term models the Ehrlich–Schwoebel effect [5, 18, 23]. Equation (1.1) is the gradient
flow with respect to the L2(Ω) inner product of the energy functional

(1.2) E(u) =

∫
Ω

(
1

4
(|∇u|2 − 1)2 +

δ

2
|∆u|2

)
dxdy.

With the periodic boundary condition, it is easy to show that the energy E decreases
with respect to the time. For the coarsening dynamics governed by (1.1), the expo-
nents measured experimentally are 1/3, which is observed in numerical simulations of
the epitaxial growth [1, 22, 26, 33] and analyzed quantitively by introducing a kinetic
scaling theory [15].

There have been many theoretical and numerical studies on the epitaxial growth
model with slope selection. The well-posedness and regularity of the initial-boundary-
value problem of the model (1.1) are studied in [15] using the Galerkin approximation
method. For the growth simulations, a large computational domain is necessary in
order to make the effect of periodicity assumption as small as possible and to collect
enough statistical information such as mean surface height and width of the pyramid-
like structures. In addition, a sufficiently long integration time is necessary in order
to detect the growth behaviors and to reach the physical scaling regime. To carry out
numerical simulations with large time and large computational domain, highly stable
and accurate numerical schemes are required. Equation (1.1) is highly nonlinear with
a small surface diffusion parameter δ, which makes it difficult to design an effective
numerical scheme. In [20], two stable and convergent linearized difference schemes
are derived by using the method of reduction of order [28]. The convergence rates
are O(τ + h2) and O(τ2 + h2) in discrete L2-norm, respectively. Both the nonlinear
part and the diffusion term are treated explicitly there. In [22], two unconditionally
energy stable difference schemes are presented. These two schemes are second-order
convergent in time and nonlinear. Because of the unconditional stability, an adaptive
time-stepping strategy is proposed there. In [26, 30], the first- and second-order (in
time) convex splitting schemes are constructed under the framework exploited by
Eyre [7]. Still, both schemes are nonlinear and unconditionally energy stable. The
similar technique has been used extensively on different phase field models, e.g., the
phase field crystal models [31, 32], a diffusive interface model with the Peng–Robinson
equation of state [19], etc. In [33], the authors introduce an implicit-explicit scheme
combined with a Fourier pseudospectral approach, where the nonlinear term is treated
explicitly and the fourth-order term implicitly. To guarantee the stability, they add
an extra artificial term consistent with the truncated errors in time. However, the
condition, under which the energy stability can be obtained without any restriction
on time step, depends on the unknown numerical solutions. In a recent work [16],
this assumption on the boundedness of the numerical solution has been removed. In
[21], a mixed finite element method with the Crank–Nicolson time-stepping scheme
is presented and the energy laws are proved for both semi- and fully discrete forms of
the scheme.

In [1], a fast explicit operator splitting (FEOS) method based on the Strang
splitting schemes [27] is constructed to simulate the model (1.1) for both one- and
two-dimensional cases. The main idea of the method is to split the original equation
(1.1) into nonlinear and linear parts whose exact solution operators are denoted by
SN and SL, and then to evolve one splitting step (from t to t+ τ) via three substeps:

u(x, y, t+ τ) = SL
(τ

2

)
SN (τ)SL

(τ
2

)
u(x, y, t).
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A similar strategy has also been used to solve the phase field crystal equation in [14].
In [1], the nonlinear part is solved by the 33-point center-difference scheme combined
with the large stability domain explicit Runge–Kutta solver, and the linear one by
the pseudospectral method. Their numerical experiments indicate that the proper
constant time step should be τ = δ/100. In addition, the FEOS method has also
been successfully utilized on the convection-diffusion equations [2, 3, 4] and the mod-
ified Buckley–Leverett equations [11]. It is capable of achieving a reliable numerical
solutions in an efficient manner, that is, only a few splitting steps are performed [4].

In our work, we concentrate mainly on the error estimate of the FEOS method
for the model (1.1) in the two-dimensional case. The main issue, which is different
from that in [1], consists of three aspects. First, we discretize the nonlinear part by a
25-point center-difference scheme in space and the explicit strong stability preserving
Runge–Kutta method in time and combine the so-called frozen coefficients technique
with the Fourier analysis method to derive a constraint on the time step for the
stability. Second, we analyze the convergence of the entire algorithm. The global
discrete L2-error consists of the truncation errors from the splitting and the nonlinear
and linear schemes, respectively. Third, we carry out numerical experiments to verify
the convergence rate and test the robustness of the algorithm with small δ in the one-
dimensional case. Numerical experiments suggest that the time step can be set as
τ = δ/10, a little better than that in [1], because the difference scheme for nonlinear
part involves fewer points, which may loosen the restriction on the time step. In
addition, we simulate the two-dimensional coarsening dynamics to observe the −1/3
power law of the energy and the 1/3 power law of the mean height.

The organization of this paper is as follows. In section 2, we present the FEOS
method for the two-dimensional epitaxial growth model with slope selection and give
a sufficient condition for the stability of the algorithm here. In section 3, the discrete
L2-error estimate of the FEOS method is shown both theoretically and numerically.
Further numerical experiments are carried out and the power law for the coarsening
dynamics is observed in section 4. Some concluding remarks are given in section 5.

2. Fast explicit operator splitting method. Here we present the algorithm
developed in [1], where the nonlinear and linear parts are approximated by different
methods, and construct a more compact difference scheme for the nonlinear part.

2.1. Splitting strategy. In [1], the model (1.1) is split into the nonlinear part

(2.1) ut = ∇ · (|∇u|2∇u)=: N (u)

and the linear part

(2.2) ut = −∆u− δ∆2u,

whose exact solution operators are denoted by SN and SL, respectively. Introducing
a splitting time step τ , the solution of (1.1) is resolved from t to t+ τ via the Strang
splitting method [27] consisting of three substeps:

(2.3) u(x, y, t+ τ) = SL
(τ

2

)
SN (τ)SL

(τ
2

)
u(x, y, t).

In general, if all the solutions involved in the three-step splitting scheme (2.3) are
smooth, the operator splitting method is second-order accurate [27].

For the nonlinear subproblem (2.1), the solution is L2-stable with respect to the
initial data, which is described precisely by the following proposition.
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Proposition 2.1. Assuming that u0, v0 ∈ H2
per(Ω), we have

‖SN (t)u0 − SN (t)v0‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω) ∀t > 0,

where Hm
per(Ω) = {u|Ω : u ∈ Hm

loc(R2) and u is Ω-periodic}.
Proof. Set u(x, y, t) and v(x, y, t) to be the solutions of (2.1) with the initial data

u(·, ·, 0) = u0 and v(·, ·, 0) = v0, respectively. Noting that H2(Ω) ↪→ W 1,4(Ω) and
using the standard Galerkin method, one could show that the solution u belongs to
C([0, T ];W 1,4

per(Ω)) with ut ∈ L2(0, T ;L2
per(Ω)), and so does v. Let w = u− v; then

1

2

d

dt
‖w‖2L2(Ω) =

∫
Ω

wtw dxdy = −
∫

Ω

(|∇u|2∇u− |∇v|2∇v) · ∇w dxdy

= −1

2

∫
Ω

(|∇u|2 + |∇v|2 + |∇u+∇v|2)|∇w|2 dxdy ≤ 0,

which leads to ‖w(t)‖L2(Ω) ≤ ‖w(0)‖L2(Ω), that is,

‖u(t)− v(t)‖L2(Ω) ≤ ‖u(0)− v(0)‖L2(Ω) ∀t > 0,

which completes the proof.

In practice, the exact solution operators SN and SL are to be replaced by their
numerical approximations. In the following two subsections, we present the numerical
methods given in [1], while the algorithm for the nonlinear part is a little different.

2.2. Compact center-difference scheme for the nonlinear subproblem.
Using the method of lines, the nonlinear subproblem (2.1) can be reduced to a system
of ODEs, which can be efficiently integrated by a stable explicit ODE solver. Here we
adopt the fourth-order difference to discretize the space and choose the third-order
strong stability preserving Runge–Kutta (SSP-RK3) method [8] as the ODE solver.

Introducing a spatial scale h = 2L/J , where J = 2N is a positive even integer,
the grid nodes are defined as (xj , yk) = (jh, kh), j, k = 1, 2, . . . , J . The fourth-order
semidiscrete scheme for (2.1) can be written as [13]

duj,k(t)

dt
=
−Fj+2,j,k + 8Fj+1,j,k − 8Fj−1,j,k + Fj−2,j,k

12h
(2.4)

+
−Gj,k,k+2 + 8Gj,k,k+1 − 8Gj,k,k−1 +Gj,k,k−2

12h
=: [Nh(u)]j,k,

where

Fj+`,j,k = F (D`
xuj+`,k, D

0
yuj+`,k), Gj,k,k+` = G(D0

xuj,k+`, D
`
yuj,k+`), ` = ±1,±2,

here F (p, q) = (p2 + q2)p, G(p, q) = (p2 + q2)q, and

D+2
x uj+2,k =

25uj+2,k − 48uj+1,k + 36uj,k − 16uj−1,k + 3uj−2,k

12h
,(2.5a)

D+1
x uj+1,k =

3uj+2,k + 10uj+1,k − 18uj,k + 6uj−1,k − uj−2,k

12h
,(2.5b)

D−1
x uj−1,k =

uj+2,k − 6uj+1,k + 18uj,k − 10uj−1,k − 3uj−2,k

12h
,(2.5c)

D−2
x uj−2,k =

−3uj+2,k + 16uj+1,k − 36uj,k + 48uj−1,k − 25uj−2,k

12h
,(2.5d)

D0
yuj+`,k =

−uj+`,k+2 + 8uj+`,k+1 − 8uj+`,k−1 + uj+`,k−2

12h
, ` = ±1,±2,(2.5e)

D
ow

nl
oa

de
d 

09
/2

3/
21

 to
 1

58
.1

32
.1

61
.5

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN OPERATOR SPLITTING METHOD FOR THE MBE 269

D0
xuj,k+` =

−uj+2,k+` + 8uj+1,k+` − 8uj−1,k+` + uj−2,k+`

12h
, ` = ±1,±2,(2.5f)

D+2
y uj,k+2 =

25uj,k+2 − 48uj,k+1 + 36uj,k − 16uj,k−1 + 3uj,k−2

12h
,(2.5g)

D+1
y uj,k+1 =

3uj,k+2 + 10uj,k+1 − 18uj,k + 6uj,k−1 − uj,k−2

12h
,(2.5h)

D−1
y uj,k−1 =

uj,k+2 − 6uj,k+1 + 18uj,k − 10uj,k−1 − 3uj,k−2

12h
,(2.5i)

D−2
y uj,k−2 =

−3uj,k+2 + 16uj,k+1 − 36uj,k + 48uj,k−1 − 25uj,k−2

12h
.(2.5j)

The fully discrete scheme for (2.1) is obtained by applying the SSP-RK3 method [8]

u(1) = un + τNh(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
τNh(u(1)),(2.6)

un+1 =
1

3
un +

2

3
u(2) +

2

3
τNh(u(2)).

This completes the numerical approximation of the operator SN . We notice that our
scheme (2.4)–(2.5) is fourth-order in space, which is the same as the scheme (2.7)–
(2.9) given in [1]. In addition, our scheme is more compact than the scheme in [1],
since the former utilizes 25 points while the latter uses 33, as proposed in Figure 1.

(a) The scheme (2.4)–(2.5) here. (b) The scheme (2.7)–(2.9) in [1].

Fig. 1. The “×” represents the point involved in the scheme expanded at the “◦” point.

According to the property of strong stability preserving, the stability restriction
of the SSP-RK3 method is identical to that of the forward Euler scheme. We use the
“frozen coefficients” method (see, e.g., [17]) to analyze the stability of the forward
Euler scheme

un+1
j,k − unj,k

τ
=
−Fnj+2,j,k + 8Fnj+1,j,k − 8Fnj−1,j,k + Fnj−2,j,k

12h
(2.7)

+
−Gnj,k,k+2 + 8Gnj,k,k+1 − 8Gnj,k,k−1 +Gnj,k,k−2

12h
,
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where Fnj+`,j,k = Fj+`,j,k(tn), Gnj,k,k+` = Gj,k,k+`(tn), ` = ±1,±2, that is,

un+1
j,k − unj,k

τ
= (|∇hu|2)nj+2,j,k ·

[
−
D+2
x unj+2,k

12h

]
+ (|∇hu|2)nj+1,j,k ·

[
2D+1

x unj+1,k

3h

]
+ (|∇hu|2)nj−1,j,k ·

[
−

2D−1
x unj−1,k

3h

]
+ (|∇hu|2)nj−2,j,k ·

[
D−2
x unj−2,k

12h

]
+ (|∇hu|2)nj,k,k+2 ·

[
−
D+2
y unj,k+2

12h

]
+ (|∇hu|2)nj,k,k+1 ·

[
2D+1

y unj,k+1

3h

]
+ (|∇hu|2)nj,k,k−1 ·

[
−

2D−1
y unj,k−1

3h

]
+ (|∇hu|2)nj,k,k−2 ·

[
D−2
y unj,k−2

12h

]
,

where

(|∇hu|2)nj+`,j,k = (D`
xu

n
j+`,k)2 + (D0

yu
n
j+`,k)2,

(|∇hu|2)nj,k,k+` = (D0
xu

n
j,k+`)

2 + (D`
yu
n
j,k+`)

2.

The terms D`
xu

n
j+`,k, D0

yu
n
j+`,k, D0

xu
n
j,k+`, D

`
yu
n
j,k+` approximate the values ux(xj+`,

yk, tn), uy(xj+`, yk, tn), ux(xj , yk+`, tn), uy(xj , yk+`, tn) with the error O(h4), respec-
tively. Freezing the prefactors of the square bracket terms by the constant

A := max
j,k
{(|∇hu|2)nj+`,j,k, (|∇hu|2)nj,k,k+` : ` = ±1,±2},

we obtain the following linear scheme:

un+1
j,k − unj,k

τ
= A ·

(−unj+2,k + 16unj+1,k − 30unj,k + 16unj−1,k − unj−2,k

12h2

+
−unj,k+2 + 16unj,k+1 − 30unj,k + 16unj,k−1 − unj,k−2

12h2

)
,

which can be transformed into the following form:

un+1
j,k = (1− 5r)unj,k +

4r

3
(unj+1,k + unj−1,k + unj,k+1 + unj,k−1)(2.8)

− r

12
(unj+2,k + unj−2,k + unj,k+2 + unj,k−2),

where r = Aτ/h2. The “frozen coefficients” method says that (2.7) is (locally) discrete
L2-stable as long as (2.8) is discrete L2-stable. Using the Fourier analysis method,
the symbol of the difference scheme (2.8) is

ρ(σ1, σ2) = 1− r

3
[(1− cosσ1h)(7− cosσ1h) + (1− cosσ2h)(7− cosσ2h)].

Therefore, |ρ(σ1, σ2)| ≤ 1 if and only if

0 ≤ r ≤ 6

(1− cosσ1h)(7− cosσ1h) + (1− cosσ2h)(7− cosσ2h)
.

As (1− c)(7− c) ∈ [0, 16] when c ∈ [−1, 1], we obtain r ≤ 3
16 , namely,

(2.9) τ ≤ 3

16A
h2.

Obviously, this is a sufficient but not necessary condition for the stability of the Euler
scheme (2.7) and thus of the scheme (2.4) combined with the SSP-RK3 solver.
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2.3. Pseudospectral method for the linear subproblem. In [1], (2.2) is
solved by the pseudospectral method via the following procedure. They first use the
FFT algorithm to compute the discrete Fourier coefficients {ũpq(t)} from the point
values {uj,k(t)}. Then they calculate ũpq(t+ τ) = eλpqτ ũpq(t), where

λpq =
π2(p2 + q2)

L2
− δ

(
π2(p2 + q2)

L2

)2

.

Finally they recover the point values of the solution at the new time level, {uj,k(t+τ)},
from the discrete Fourier coefficients {ũpq(t+ τ)} using the inverse FFT algorithm.

For the continuous and Ω-periodic function u(x, y, t), there exists the Fourier
series in the complex form at time t:

(2.10) u(x, y, t) =

∞∑
p=−∞

∞∑
q=−∞

ûpq(t)e
iπ
L (px+qy),

where the Fourier coefficients are given by

(2.11) ûpq(t) =
1

4L2

∫
Ω

u(x, y, t)e−
iπ
L (px+qy) dxdy, p, q = 0,±1,±2, . . . .

It is easy to see that the Fourier coefficients satisfy the following ODEs:

d

dt
ûpq(t) = λpqûpq(t), λpq =

π2(p2 + q2)

L2
− δ

(
π2(p2 + q2)

L2

)2

.

The exact solution is

ûpq(t+ τ) = eλpqτ ûpq(t), p, q = 0,±1,±2, . . . ,

and then

(2.12) u(x, y, t+ τ) =

∞∑
p=−∞

∞∑
q=−∞

ûpq(t+ τ)e
iπ
L (px+qy).

It is easy to see that the pseudospectral method proposed in [1] is the discrete form
of the procedure above.

In the theory of the spectral method [24, 25], the FFT and the inverse FFT
algorithm can be expressed as

(2.13) ũpq(t) =
1

J2cpcq

J∑
j=1

J∑
k=1

u(xj , yk, t)e
− iπ
L (pxj+qyk), p, q = 0,±1,±2, . . . ,±N,

and

(2.14) uj,k(t) =

N∑
p=−N

N∑
q=−N

ũpq(t)e
iπ
L (pxj+qyk), j, k = 1, 2, . . . , J,

where cp and cq are defined as

(2.15) cr =

{
2, |r| = N,

1, |r| < N.
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The pseudospectral procedure can be expressed as

u(t+ τ) = F−1
d {e

λpqτFd[u(t)](p, q)},

where u(t) is the matrix with the elements {uj,k(t) : j, k = 1, 2, . . . , J}, and Fd and
F−1
d are the discrete Fourier transform and the inverse transform, respectively. Using

the Parseval’s formula and the fact that |eλpqτ | ≤ e
τ
4δ (for any p, q), we obtain

(2.16) ‖u(t+ τ)‖ ≤ e
τ
4δ ‖u(t)‖,

where ‖ · ‖ represents the discrete L2-norm, that is,

‖u‖ =

√√√√h2

J∑
j=1

J∑
k=1

(uj,k)2.

The inequality (2.16) implies the stability of the pseudospectral procedure.

Remark 2.2. We point out that we just consider the L2-stability rather than en-
ergy stability of the numerical solutions. In fact, such a splitting scheme as (2.3)
cannot preserve the energy stability as the original problem (1.1).

3. Error analysis and accuracy tests. Here we investigate the convergence
rate of the FEOS method given above, and then conduct some numerical accuracy
tests to verify our results. It is well-known that the spatial size h is usually controlled
as orderO(

√
δ) in order to capture the interfaces, that is, h ≤ C11

√
δ for some C11 > 0.

Combining with the stability condition (2.9), we have

(3.1) τ ≤ 3C2
11

16A
δ.

3.1. Error estimate. We denote by ũ(x, y, t) the splitting solution satisfying

exactly the scheme (2.3) and write Unjk := u(xj , yk, tn), ũn := ũ(·, ·, tn), and Ũnjk :=

ũ(xj , yk, tn). We denote by ShN and ShL the discrete approximations of the operators

SN and SL, respectively, and by unjk the numerical approximation of Ũnjk, satisfying

un+1 = ShL
(τ

2

)
ShN (τ)ShL

(τ
2

)
un.

Defining a sample operator Ih : C0
per(Ω) → RJ×J as Ihu = (u(xj , yk))jk, we have

Ũn = Ihũn, where Cmper(Ω) = {u|Ω : u ∈ Cm(R2) and u is Ω-periodic}. For simple

notation, we omit the τ
2 or τ following the symbols SN , SL, ShN , or ShL below.

To estimate the error, we need some lemmas. For simplicity, we write SNu to
mean SN (u) and ShN v to mean ShN (v), though the operators SN and ShN are actually
nonlinear. We state the accuracy of ShN obtained in section 2.2.

Lemma 3.1. Assume that the solution to the nonlinear subproblem (2.1) belongs
to H5(0, T ;H8

per(Ω)). Under the condition (3.1), there exists a positive constant C1,
independent on τ and h, such that

‖IhSNu− ShN Ihu‖ ≤ C1τ(τ3 + h4) ∀u ∈ H8
per(Ω).

Proof. To avoid confusing notation, we denote by V (x, y, t) the exact solution
to the subproblem (2.1) and by vnj,k the numerical solution approximating
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AN OPERATOR SPLITTING METHOD FOR THE MBE 273

V nj,k := V (xj , yk, tn). Our purpose is to estimate ‖V n+1 − vn+1‖ provided V nj,k =

vnj,k = u(xj , yk) for given u ∈ C6
per(Ω). Recall that the numerical solution vn+1

satisfies

v(1) = vn + τNh(vn),

v(2) =
3

4
vn +

1

4
v(1) +

1

4
τNh(v(1)),

vn+1 =
1

3
vn +

2

3
v(2) +

2

3
τNh(v(2)),

and correspondingly, the exact solution V n+1 satisfies

V (1) = V n + τ(Nh(V n) +Rnh),

V (2) =
3

4
V n +

1

4
V (1) +

1

4
τ(Nh(V (1)) +R

(1)
h ),

V n+1 =
1

3
V n +

2

3
V (2) +

2

3
τ(Nh(V (2)) +R

(2)
h ) +Rn+1

τ ,

where Rn+1
τ is the truncated error generated by using the SSP-RK3 solver, and

Rnh := N (V n)−Nh(V n), R
(1)
h := N (V (1))−Nh(V (1)), R

(2)
h := N (V (2))−Nh(V (2)).

Generally, we denote Rh = N (V )−Nh(V ). Using the Taylor formula, we have

Rh = −2h4

5
(|∇V |2V (5)

x )x +
h4

15
(VxVyV

(5)
y )x +

h4

30
(|∇V |2Vx)(5)

x

− 2h4

5
(|∇V |2V (5)

y )y +
h4

15
(VxVyV

(5)
x )y +

h4

30
(|∇V |2Vy)(5)

y + h.o.t.

If V ∈ C4([0, T ];C6
per(Ω)), we have ‖Rh‖ ≤ C ′h4 and ‖Rn+1

τ ‖ ≤ C ′′τ4. By noting

that the mapping Nh : RJ×J → RJ×J is an elementary function, we know that the
Jacobian of Nh is bounded by a constant, denoted by K, and then Nh is Lipschitz
continuous with K the Lipschitz constant. Since

V (1) − v(1) = τRnh ,

V (2) − v(2) =
1

4
(V (1) − v(1)) +

1

4
τ(Nh(V (1))−Nh(v(1))) +

1

4
τR

(1)
h ,

V n+1 − vn+1 =
2

3
(V (2) − v(2)) +

2

3
τ(Nh(V (2))−Nh(v(2))) +

2

3
τR

(2)
h +Rn+1

τ ,

we obtain

‖V (1) − v(1)‖ = τ‖Rnh‖ ≤ C ′τh4,

‖V (2) − v(2)‖ ≤ 1

4
(1 +Kτ)‖V (1) − v(1)‖+

1

4
τ‖R(1)

h ‖

≤ 1

4
C ′(1 +Kτ)τh4 +

1

4
C ′τh4 =

1

4
C ′(2 +Kτ)τh4,

‖V n+1 − vn+1‖ ≤ 2

3
(1 +Kτ)‖V (2) − v(2)‖+

2

3
τ‖R(2)

h ‖+ ‖Rn+1
τ ‖

≤ 1

6
C ′(1 +Kτ)(2 +Kτ)τh4 +

2

3
C ′τh4 + C ′′τ4.
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Under the condition (3.1), we have

‖V n+1 − vn+1‖ ≤ C1(τh4 + τ4).

According to the Sobolev embedding theorem, we have

H8
per(Ω) ↪→ C6

per(Ω), H5(0, T ;H8
per(Ω)) ↪→ C4([0, T ];C6

per(Ω)),

which completes the proof.

We can derive the stability of ShN by using the result of SN .

Lemma 3.2. Given m ≥ 8. Under the condition (3.1), there exists a positive
constant C2, independent on τ and h, such that

‖ShN v − ShNw‖ ≤ ‖v − w‖+ 2C1τ(τ3 + h4) + C2h
m ∀v, w ∈ RJ×J .

Proof. Let v be some function, belonging to Hm
per(Ω), such that Ihv = v, for

example, the two-dimensional trigonometric interpolation of v in Ω. Similarly, let
w ∈ Hm

per(Ω) such that Ihw = w. Using Lemma 3.1, we obtain

‖ShN v − ShNw‖ ≤ ‖ShN v − IhSN v‖+ ‖IhSN v − IhSNw‖+ ‖IhSNw − ShNw‖
≤ C1τ(τ3 + h4) + ‖Ih(SN v − SNw)‖+ C1τ(τ3 + h4).

Since the L2-norm of an Ω-periodic function on Ω can be approximated by the discrete
L2-norm with spectral accuracy [29], using Proposition 2.1, we have

‖Ih(SN v − SNw)‖ ≤ ‖SN v − SNw‖L2(Ω) + Chm

≤ ‖v − w‖L2(Ω) + Chm ≤ ‖v − w‖+ C2h
m.

Therefore, we obtain

‖ShN v − ShNw‖ ≤ ‖v − w‖+ 2C1τ(τ3 + h4) + C2h
m,

which completes the proof.

The stability inequality (2.16) can be rewritten in the following form.

Lemma 3.3. ‖ShLv‖ ≤ e
τ
4δ ‖v‖ ∀v ∈ RJ×J .

The error estimate of the operator ShL defined in section 2.3 can be proved in the
framework of a spectral method [25] (see also [9]).

Lemma 3.4. Given m ∈ N and m > 1, there exists a positive constant C3, inde-
pendent on τ and h, such that

‖IhSLu− ShLIhu‖ ≤ C3|u|me
τ
4δ hm ∀u ∈ Hm

per(Ω).

Proof. We use the notation w, w, ŵ, and w̃, representing

w(x, y, t) =

∞∑
p=−∞

∞∑
q=−∞

ûpq(t)e
iπ
L (px+qy), w(x, y, t) =

∞∑
p=−∞

N∑
q=−N

ûpq(t)e
iπ
L (px+qy),

ŵ(x, y, t) =

N∑
p=−N

N∑
q=−N

ûpq(t)e
iπ
L (px+qy), w̃(x, y, t) =

N∑
p=−N

N∑
q=−N

ũpq(t)e
iπ
L (px+qy),
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where ûpq(t) and ũpq(t) are given by (2.11) and (2.13), respectively, Assuming that
w(·, ·, 0) = w(·, ·, 0) = ŵ(·, ·, 0) = w̃(·, ·, 0) = u, we know that

‖IhSLu− ShLIhu‖2 = h2
2N∑
j=1

2N∑
k=1

|w(xj , yk, τ)− w̃(xj , yk, τ)|2 ≤ 4A1 + 4A2 + 2B,

where

A1 = h2
2N∑
j=1

2N∑
k=1

|w(xj , yk, τ)− w(xj , yk, τ)|2,

A2 = h2
2N∑
j=1

2N∑
k=1

|w(xj , yk, τ)− ŵ(xj , yk, τ)|2,

B = h2
2N∑
j=1

2N∑
k=1

|ŵ(xj , yk, τ)− w̃(xj , yk, τ)|2.

We first estimate the terms A1 and A2. Since

A1 = h2
2N∑
j=1

2N∑
k=1

∣∣∣∣∣
∞∑

p=−∞

∑
|q|>N

ûpq(τ)e
iπ
L (pxj+qyk)

∣∣∣∣∣
2

= 4L2
∞∑

p=−∞

∑
|q|>N

|ûpq(τ)|2

≤ 4L2e
τ
2δ

∞∑
p=−∞

∑
|q|>N

|ûpq(0)|2

≤ 4L2e
τ
2δ

∞∑
p=−∞

N−2m
∑
|q|>N

q2m|ûpq(0)|2


= 4L2e
τ
2δN−2m

∞∑
p=−∞

∑
|q|>N

q2m|ûpq(0)|2,

and, similarly,

A2 = h2
2N∑
j=1

2N∑
k=1

∣∣∣∣∣
N∑

q=−N

∑
|p|>N

ûpq(τ)e
iπ
L (pxj+qyk)

∣∣∣∣∣
2

≤ 4L2e
τ
2δN−2m

N∑
q=−N

∑
|p|>N

p2m|ûpq(0)|2,

we obtain

A1 +A2 ≤ 4L2e
τ
2δN−2m

 ∞∑
p=−∞

∑
|q|>N

q2m|ûpq(0)|2 +

N∑
q=−N

∑
|p|>N

p2m|ûpq(0)|2


≤ 4L2e
τ
2δN−2m

∞∑
p=−∞

∞∑
q=−∞

(p2m + q2m)|ûpq(0)|2
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≤ 4L2e
τ
2δN−2m

∞∑
p=−∞

∞∑
q=−∞

(p2 + q2)m|ûpq(0)|2

= 4L2e
τ
2δN−2m|u|2m,

where | · |m represents the seminorm of Hm
per(Ω).

We next estimate the term B. It is easy to obtain

B = h2
2N∑
j=1

2N∑
k=1

∣∣∣∣ N∑
p=−N

N∑
q=−N

(ûpq(τ)− ũpq(τ))e
iπ
L (px+qy)

∣∣∣∣2

= 4L2
N∑

p=−N

N∑
q=−N

|ûpq(τ)− ũpq(τ)|2

≤ 4L2e
τ
2δ

N∑
p=−N

N∑
q=−N

|ûpq(0)− ũpq(0)|2.

Now we look for the upper bound of B via the following four steps.
(i) Magnify the sum

D :=

N∑
p=−N

N∑
q=−N

|ûpq − ũpq|2.

A direct calculation leads to

D =

N∑
p=−N

 N−1∑
q=−N+1

|ûpq − ũpq|2 +
1

4

∑
q=±N

|2ûpq − 2ũpq|2


≤
N∑

p=−N

 N−1∑
q=−N+1

|ûpq − ũpq|2 +
1

2

∑
q=±N

|ûpq − 2ũpq|2 +
1

2

∑
q=±N

|ûpq|2


≤
N∑

p=−N

 N∑
q=−N

|ûpq − cqũpq|2 +
1

2

∑
q=±N

|ûpq|2


=

N∑
q=−N

 N∑
p=−N

|ûpq − cqũpq|2
+

1

2

N∑
p=−N

∑
q=±N

|ûpq|2

≤
N∑

q=−N

 N∑
p=−N

|ûpq − cpcqũpq|2 +
1

2

∑
p=±N

|ûpq|2
+

1

2

N∑
p=−N

∑
q=±N

|ûpq|2

=

N∑
p=−N

N∑
q=−N

|ûpq − cpcqũpq|2 +
1

2

N∑
q=−N

∑
p=±N

|ûpq|2 +
1

2

N∑
p=−N

∑
q=±N

|ûpq|2

=: D1 +D2 +D3,

where cp and cq are defined as in (2.15).
(ii) Estimate the term D2 +D3. Since

D2 =
1

2

N∑
q=−N

∑
p=±N

|ûpq|2 ≤
1

2

N∑
q=−N

N−2m
∑
|p|≥N

p2m|ûpq|2
D
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=
1

2
N−2m

N∑
q=−N

∑
|p|≥N

p2m|ûpq|2 ≤
1

2
N−2m

∞∑
q=−∞

∞∑
p=−∞

p2m|ûpq|2,

and, similarly,

D3 ≤
1

2
N−2m

∞∑
p=−∞

∞∑
q=−∞

q2m|ûpq|2,

we obtain

D2 +D3 ≤
1

2
N−2m

∞∑
q=−∞

∞∑
p=−∞

(p2 + q2)m|ûpq|2 =
1

2
N−2m|u|2m.

(iii) To estimate the term D1, we first prove that

(3.2) cpcqũpq = ûpq +
∑

r2+s2 6=0

ûp+2rN,q+2sN .

In fact, substituting (2.10) into (2.13), we have

cpcqũpq =
1

4N2

2N∑
j=1

2N∑
k=1

( ∞∑
r=−∞

∞∑
s=−∞

ûrse
iπ
L (rxj+syk)

)
e−

iπ
L (pxj+qyk)

=
1

4N2

2N∑
j=1

2N∑
k=1

∞∑
r=−∞

∞∑
s=−∞

ûrse
iπ
L ((r−p)xj+(s−q)yk)

=
1

4N2

∞∑
r=−∞

∞∑
s=−∞

ûrs

2N∑
j=1

e
iπ
L (r−p)xj

2N∑
k=1

e
iπ
L (s−q)yk

=

∞∑
r=−∞

∞∑
s=−∞

ûp+2rN,q+2sN

= ûpq +
∑

r2+s2 6=0

ûp+2rN,q+2sN ,

since
2N∑
j=1

e
iπ
L (r−p)xj =

{
2N, r − p = 2lN,

0, r − p 6= 2lN,
here l is an integer.

(iv) Estimate the term D1. Using the formula (3.2) and the Cauchy–Schwarz
inequality, we have

D1 =

N∑
p=−N

N∑
q=−N

∣∣∣∣ ∑
r2+s2 6=0

ûp+2rN,q+2sN

∣∣∣∣2

≤
N∑

p=−N

N∑
q=−N


 ∑
r2+s2 6=0

[
(p+ 2rN)2 + (q + 2sN)2

]−m ·
 ∑
r2+s2 6=0

[
(p+ 2rN)2 + (q + 2sN)2

]m |ûp+2rN,q+2sN |2

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≤ max
|p|,|q|≤N

 ∑
r2+s2 6=0

[
(p+ 2rN)2 + (q + 2sN)2

]−m ·
 N∑
p=−N

N∑
q=−N

∑
r2+s2 6=0

[
(p+ 2rN)2 + (q + 2sN)2

]m |ûp+2rN,q+2sN |2


≤

 ∑
r2+s2 6=0

[
(2rN −N)2 + (2sN −N)2

]−m · 2|u|2m
= 2N−2m|u|2m

∑
r2+s2 6=0

1

[(2r − 1)2 + (2s− 1)2]
m .

The series∑
r2+s2 6=0

1

[(2r − 1)2 + (2s− 1)2]
m ≤

∑
r2+s2 6=0

1

(2r − 1)2m + (2s− 1)2m

≤ 1

2

∑
r2+s2 6=0

1

|2r − 1|m|2s− 1|m
<∞, if m > 1,

so we obtain D1 ≤ 2SN−2m|u|2m, where S is the sum of the series above.
As a result of (i)–(iv), we obtain

B ≤ 2(1 + 4S)L2e
τ
2δN−2m|u|2m.

So we obtain

‖IhSLu− ShLIhu‖2 ≤ 4(5 + 4S)L2|u|2me
τ
2δN−2m,

which leads to the expected result.

Now we write the discrete L2-error estimate as the following theorem.

Theorem 3.5. Assume that u0 ∈ Hm
per(Ω) with m ≥ 8 and the solution to the

problem (1.1) belongs to H5(0, T ;Hm
per(Ω)). If we set u0 = Ũ0 = Ihu0 and the condi-

tion (3.1) holds, then the discrete L2-error at T = nτ is

(3.3) ‖Un − un‖ ≤ C
(
τ2 + h4 +

hm

τ

)
.

Furthermore, for the case τ ∼ h2, we have

(3.4) ‖Un − un‖ ≤ C(τ2 + h4).

Proof. Assume that un−1, the numerical solution at tn−1-level, is given; then the
discrete L2-error at the tn-level should be

(3.5) ‖Un − un‖ ≤ ‖Un − Ũn‖+ ‖Ũn − un‖.

The Strang splitting scheme (2.3) is second-order [27], which means that

‖Un − Ũn‖ ≤ C0τ
2.
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The second term in the right-hand side of (3.5) can be bounded as follows:

‖Ũn − un‖ = ‖IhSLSNSLũn−1 − ShLShNShLun−1‖
≤ ‖IhSLSNSLũn−1 − ShLIhSNSLũn−1‖

+ ‖ShLIhSNSLũn−1 − ShLShNShLun−1‖
= ‖(IhSL − ShLIh)SNSLũn−1‖+ ‖ShL(IhSNSLũn−1 − ShNShLun−1)‖
≤ C3|SNSLũn−1|me

τ
4δ hm + e

τ
4δ ‖IhSNSLũn−1 − ShNShLun−1‖,

where the last inequality is the consequence of Lemmas 3.3 and 3.4. In addition,

‖IhSNSLũn−1 − ShNShLun−1‖ ≤ ‖IhSNSLũn−1 − ShN IhSLũn−1‖
+ ‖ShN IhSLũn−1 − ShNShLun−1‖

= ‖(IhSN − ShN Ih)SLũn−1‖
+ ‖ShN (IhSLũn−1)− ShN (ShLun−1)‖
≤ 3C1τ(τ3 + h4) + C2h

m + ‖IhSLũn−1 − ShLun−1‖,

where the last inequality is the consequence of Lemmas 3.1 and 3.2. Furthermore,

‖IhSLũn−1 − ShLun−1‖ ≤ ‖IhSLũn−1 − ShLIhũn−1‖+ ‖ShLIhũn−1 − ShLun−1‖

= ‖(IhSL − ShLIh)ũn−1‖+ ‖ShL(Ũn−1 − un−1)‖

≤ C3|ũn−1|me
τ
4δ hm + e

τ
4δ ‖Ũn−1 − un−1‖,

where we use the fact Ũn−1 = Ihũn−1. Then we obtain

‖Ũn − un‖ ≤ e
τ
2δ ‖Ũn−1 − un−1‖+ 3C1e

τ
4δ τ(τ3 + h4) +

(
C2 + C3CT (1 + e

τ
4δ )
)
e
τ
4δ hm,

where CT = max{|SNSLũk|m, |ũk|m : 0 ≤ k ≤ n}. Setting Fn = ‖Ũn − un‖ and

G = 3C1e
τ
4δ (τ3 + h4) +

(
C2 + C3CT (1 + e

τ
4δ )
)
e
τ
4δ
hm

τ
,

we have
Fn ≤ e

τ
2δFn−1 + τG, n = 1, 2, . . . .

Using the Gronwall’s lemma and the fact ex − 1 ≥ x (x > 0), we obtain

Fn ≤ e
T
2δF 0 +

τ(e
T
2δ − 1)

e
τ
2δ − 1

G ≤ e
T
2δF 0 + 2δe

T
2δG.

Since F 0 = ‖Ũ0 − u0‖ = 0, we obtain

‖Ũn − un‖ ≤ 2δe
T
2δ

(
3C1e

τ
4δ (τ3 + h4) +

(
C2 + C3CT (1 + e

τ
4δ )
)
e
τ
4δ
hm

τ

)
,

and thus

‖Un − un‖ ≤ C0τ
2 + 2δe

T
2δ

(
3C1e

τ
4δ (τ3 + h4) +

(
C2 + C3CT (1 + e

τ
4δ )
)
e
τ
4δ
hm

τ

)
.

For τ ≤ min{ 3C2
11

16A δ, 1}, we have e
τ
4δ ≤ e

3C2
11

64A =: C22; then we obtain

‖Un−un‖ ≤ (C0+6δe
T
2δC1C22)τ

2+(6δe
T
2δC1C22)h

4+2δe
T
2δC22

(
C2+C3CT (1+C22)

)hm
τ
,
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which implies the estimate (3.3). Furthermore, we set the step τ ∼ h2 to obtain

hm

τ
∼ hm−2 ∼ τ

1
2m−1.

Since m ≥ 8, we obtain the error estimate (3.4).

3.2. Accuracy tests. Now we carry out the accuracy tests on (1.1) with δ = 0.1,
T = 1, Ω = (0, 2π)× (0, 2π), and

u0(x, y) = 0.1(sin 3x sin 2y + sin 5x sin 5y),

which is a classical example studied either theoretically or numerically [15, 20, 22, 33].
We take the numerical solution obtained with τ = 5 × 10−5 and J = 2048 as the
“exact” solution. The tests are conducted with different spatial scales, and the time
step is set to be τ = C0h

2, where the constant C0 is chosen to render τ = 0.005 when
J = 128. Table 1 shows the discrete L2-errors implying an accuracy nearly O(τ2+h4),
which is consistent with Theorem 3.5.

Table 1
The discrete L2-errors with different spatial scales and time steps.

J τ ‖e(J)‖
‖e(J/2)‖
‖e(J)‖

log2

‖e(J/2)‖
‖e(J)‖

128 5× 10−3 1.0278× 10−5 ∗ ∗
256 1.25× 10−3 9.5361× 10−7 10.7779 3.4300

512 3.125× 10−4 6.5869× 10−8 14.4774 3.8557

1024 7.8125× 10−5 2.4026× 10−9 27.4156 4.7769

4. Numerical experiments. As mentioned in section 3, a reasonable time step
size τ should be controlled as order O(δ). We will set τ = δ/10 in the following
numerical experiments.

Example 4.1. We consider the one-dimensional epitaxial growth model

ut = (u3
x)x − uxx − δuxxxx, (x, t) ∈ (0, 12)× (0, T ],

u(·, t) is 12-periodic, t ∈ [0, T ],

u(x, 0) = 0.1

(
sin

πx

2
+ sin

2πx

3
+ sinπx

)
, x ∈ [0, 12].

The evolution of this initial-boundary-value problem is studied theoretically via
the perturbation analysis [15] to observe the morphological instability due to the
nonlinear interaction. It is also a classical example for the numerical experiments in
the case δ = 1. Here we will present the results obtained by the operator splitting
method given in section 2. Figure 2 shows the results of the case δ = 1 with J = 128
and τ = 0.1, which is consistent with the existing work [15].

In addition, we also present some results from reducing δ to 0.1, 0.01, and 0.001,
respectively. The results are summarized in Figures 3–5. The first plot in each figure
presents the height u(x, t) at some time t, the second one shows the corresponding
gradient ux(x, t), and the third one plots the evolution of the energy E(u(·, t)).

Figure 3 presents the results of the case δ = 0.1 with (J, τ) = (128, 0.01) and
(J, τ) = (256, 0.005). We find that both solutions have few differences between them,
so we are convinced that the results presented here are credible. The energy decreases
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(h) gradient: t = 100 (i) energy: 0 ≤ t ≤ 100

Fig. 2. Example 4.1: The results of the case δ = 1.
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(a) height: t = 200
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(b) gradient: t = 200 (c) energy: 0 ≤ t ≤ 200

Fig. 3. Example 4.1: The results of the case δ = 0.1 obtained with (J, τ) = (128, 0.01) (solid
line) and (J, τ) = (256, 0.005) (dashed line).

little after t = 200 so that we view the solution at t = 200 as the steady state. It is
observed from the left and middle graphs that there are two complete waves in the
steady state whose gradients do not exceed the range between −1 and 1.
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(a) height: t = 500
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(b) gradient: t = 500 (c) energy: 0 ≤ t ≤ 500

Fig. 4. Example 4.1: The results of the case δ = 0.01 obtained with (J, τ) = (256, 0.001) (solid
line) and (J, τ) = (512, 0.0005) (dashed line).
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(b) gradient: t = 1000 (c) energy: 0 ≤ t ≤ 1000

Fig. 5. Example 4.1: The results of the case δ = 0.001 obtained with (J, τ) = (512, 0.0001)
(solid line) and (J, τ) = (1024, 0.00005) (dashed line).

Figure 4 gives the results of the case δ = 0.01 with (J, τ) = (256, 0.001) and
(J, τ) = (512, 0.0005). Figure 5 gives the results of the case δ = 0.001 with
(J, τ) = (512, 0.0001) and (J, τ) = (1024, 0.00005). Likewise, we can trust these re-
sults. The solutions at the steady states present more waves in the considered domain
than those above, and the gradients still locate in the interval [−1, 1].

From the gradient graphs of Figures 2–5, we find that the smaller δ is, the more
points on the gradient curves locate at the horizon lines y = 1 or y = −1. This
is a consequence of the competitions between the Ehrlich–Schwoebel effect and the
dissipation mechanism of the energy functional

E(u) =

∫ 2L

0

(
1

4
(u2
x − 1)2 +

δ

2
u2
xx

)
dx.

It is seen that the Ehrlich–Schwoebel effect selects the slope |ux| = 1 while the dissi-
pation term weakens the selection. To reduce δ means to weaken the dissipation effect
or, equivalently, to strengthen the slope selection. And thus, the gradient interfaces
connecting −1 to 1 turn steep and the solution curves turn sharp there.

Example 4.2 (coarsening dynamics). We simulate the two-dimensional epitaxial
growth model (1.1) with δ = 0.1 on the domain Ω = (0, 100)×(0, 100) with a 512×512
grid. We set the initial data as a stochastic state by a random number varying from
−0.001 to 0.001 on each grid point. The time step is set to be τ = 0.01.

This example is intended to verify the power laws for the energy evolution and
the height growth.
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(a) t = 100 (b) t = 2000 (c) t = 30000

Fig. 6. Example 4.2: Contour lines of the free energy Ffree.
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(a) energy evolution
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(b) height growth

Fig. 7. Example 4.2: The power law for the evolution of the energy and the interface height.

Figure 6 presents the contour lines of the free energy

Ffree :=
1

4
(|∇u|2 − 1)2 +

δ

2
|∆u|2

at t = 100, 2000, and 30000.
Figure 7 shows the evolution of the energy and the interface height. Panel (a)

presents the power law for the evolution of the energy. The energy curve is plotted in
log-to-log scale and nearly parallels to the dashed line t−

1
3 , which suggests that the

energy evolves in time as the power law Ctα with α ≈ − 1
3 . Panel (b) presents the

power law for the growth of the interface height h(t), which is defined by

h(t) =

(
1

|Ω|

∫
Ω

u2(x, y, t) dxdy

) 1
2

.

Again, the height curve is plotted in log-to-log scale. The growth of the interface
height approximately obeys the power law Ctβ with β ≈ 1

3 , which is consistent with
the existing works (see, e.g., [20, 22, 33]).

5. Conclusions. In this work, we investigate the error estimate of an FEOS
method for a nonlinear fourth-order diffusion equation modeling epitaxial growth
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of thin films. The convergence order O(τ2 + h4) in discrete L2-norm is proved
theoretically and verified numerically. For the nonlinear subproblem, we construct
a 25-point center-difference scheme in space and use the third-order explicit SSP-
RK3 scheme in time. Since fewer points are involved in the scheme at each node
compared to the 33-point center-difference scheme presented in [1], the restriction for
the stability may be reduced. We carry out several numerical experiments to verify
the efficiency of the derived algorithm and present some results for small δ’s with the
time step τ = δ/10. Furthermore, we find numerically the coarsening exponents for
the energy evolution and the height growth are −1/3 and 1/3, respectively.
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