Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/66692
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, ZCen_US
dc.creatorLi, Ren_US
dc.creatorQiao, ZHen_US
dc.date.accessioned2017-05-22T02:26:36Z-
dc.date.available2017-05-22T02:26:36Z-
dc.identifier.issn1815-2406en_US
dc.identifier.urihttp://hdl.handle.net/10397/66692-
dc.language.isoenen_US
dc.publisherGlobal Science Pressen_US
dc.rights© 2016 Global-Science Pressen_US
dc.rightsPosted with permission of the publisher.en_US
dc.subjectBoltzmann transport equationen_US
dc.subjectExtended hydrodynamic modelen_US
dc.subjectMoment-dependent relaxation timeen_US
dc.subjectMultigriden_US
dc.subjectSemiconductor device simulationen_US
dc.titleExtended hydrodynamic models and multigrid solver of a silicon diode simulationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage551en_US
dc.identifier.epage582en_US
dc.identifier.volume20en_US
dc.identifier.issue3en_US
dc.identifier.doi10.4208/cicp.290615.020316aen_US
dcterms.abstractExtended hydrodynamic models for carrier transport are derived from the semiconductor Boltzmann equation with relaxation time approximation of the scattering term, by using the globally hyperbolic moment method and the moment-dependent relaxation time. Incorporating the microscopic relaxation time and the applied voltage bias, a formula is proposed to determine the relaxation time for each moment equation, which sets different relaxation rates for different moments such that higher moments damp faster. The resulting models would give more satisfactory results of macroscopic quantities of interest with a high-order convergence to those of the underlying Boltzmann equation as the involved moments increase, in comparison to the corresponding moment models using a single relaxation time. In order to simulate the steady states efficiently, a multigrid solver is developed for the derived moment models. Numerical simulations of an n+-n-n+ silicon diode are carried out to demonstrate the validation of the presented moment models, and the robustness and efficiency of the designed multigrid solver.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCommunications in computational physics, Sept. 2016, v. 20, no. 3, p. 551-582en_US
dcterms.isPartOfCommunications in computational physicsen_US
dcterms.issued2016-09-
dc.identifier.isiWOS:000383911800001-
dc.identifier.ros2016000259-
dc.identifier.eissn1991-7120en_US
dc.identifier.rosgroupid2016000258-
dc.description.ros2016-2017 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201804_a bcmaen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0558, RGC-B3-0238-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6674136-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
320_551.pdf4.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
0
Last month
Citations as of Apr 21, 2024

Downloads

31
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

4
Last Week
0
Last month
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.