Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/4768
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineering-
dc.creatorWang, Y-
dc.creatorWang, J-
dc.creatorHo, SL-
dc.creatorPang, L-
dc.creatorFu, W-
dc.date.accessioned2014-12-11T08:24:02Z-
dc.date.available2014-12-11T08:24:02Z-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10397/4768-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Y. Wang et al., J. Appl. Phys. 109, 07E522 (2011) and may be found at http://link.aip.org/link/?jap/109/07E522.en_US
dc.subjectConducting materialsen_US
dc.subjectEddy currentsen_US
dc.subjectFinite element analysisen_US
dc.subjectInduction heatingen_US
dc.subjectIronen_US
dc.subjectIterative methodsen_US
dc.subjectNeural netsen_US
dc.subjectTemperature distributionen_US
dc.titleA neural network combined with a three-dimensional finite element method applied to optimize eddy current and temperature distributions of traveling wave induction heating systemen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: S. L. Hoen_US
dc.description.otherinformationAuthor name used in this publication: W. N. Fuen_US
dc.identifier.spage1-
dc.identifier.epage3-
dc.identifier.volume109-
dc.identifier.issue7-
dc.identifier.doi10.1063/1.3560902-
dcterms.abstractIn this paper, neural networks with a finite element method (FEM) were introduced to predict eddy current distributions on the continuously moving thin conducting strips in traveling wave induction heating (TWIH) equipments. A method that combines a neural network with a finite element method (FEM) is proposed to optimize eddy current distributions of TWIH heater. The trained network used for tested examples shows quite good accuracy of the prediction. The results have then been used with reference to a double-side TWIH in order to analyze the distributions of the magnetic field and eddy current intensity, which accelerates the iterative solution process for the nonlinear coupled electromagnetic matters. The FEM computation of temperature converged conspicuously faster using the prediction results as initial values than using the zero values, and the number of iterations is reduced dramatically. Simulation results demonstrate the effectiveness and characteristics of the proposed method.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of applied physics, 1 Apr. 2011, v. 109, no. 7, 07E522, p. 1-3-
dcterms.isPartOfJournal of applied physics-
dcterms.issued2011-04-01-
dc.identifier.isiWOS:000289952100407-
dc.identifier.scopus2-s2.0-79955448118-
dc.identifier.eissn1089-7550-
dc.identifier.rosgroupidr54497-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Neural_network_combined.pdf1.91 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

137
Last Week
1
Last month
Citations as of Jul 14, 2024

Downloads

244
Citations as of Jul 14, 2024

SCOPUSTM   
Citations

4
Last Week
0
Last month
0
Citations as of Jul 11, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.