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In this paper, neural networks with a finite element method (FEM) were introduced to predict eddy

current distributions on the continuously moving thin conducting strips in traveling wave induction

heating (TWIH) equipments. A method that combines a neural network with a finite element method

(FEM) is proposed to optimize eddy current distributions of TWIH heater. The trained network used

for tested examples shows quite good accuracy of the prediction. The results have then been used with

reference to a double-side TWIH in order to analyze the distributions of the magnetic field and eddy

current intensity, which accelerates the iterative solution process for the nonlinear coupled

electromagnetic matters. The FEM computation of temperature converged conspicuously faster using

the prediction results as initial values than using the zero values, and the number of iterations is reduced

dramatically. Simulation results demonstrate the effectiveness and characteristics of the proposed

method. VC 2011 American Institute of Physics. [doi:10.1063/1.3560902]

With recent advances in artificial intelligence, genetic

algorithms, and the neural network, searching procedures

based on the mechanisms of natural selection and genetics

have been regarded as effective and efficient tools in design

optimization.1 The method has been used in optimal design

of electrical machines with various degree of success.2

Effective use of optimization techniques to solve practical

engineering problems is therefore still an area of research.

The finite element method (FEM) is nowadays routinely

used for analyzing and evaluating the performance of elec-

tromagnetic devices, accounting for the effects of nonlinear-

ity and geometric complexity of the physical problems.

Some methods have been proposed to decrease the FEM

computation time in transverse flux induction heating

design.1,2 But there has been no viable approaches applying

the classical optimization methods to 2D or 3D simulation of

the traveling wave induction heating (TWIH) system.

In this paper, a method that combined a neural network

with a FEM is applied to the design of a TWIH system to

offset the resulting inhomogeneous eddy current or power

density, which dominates the temperature distributions on

the surface of the work strip. Figure 1 shows the cross-sec-

tional view schematic of a typical axisymmetric configura-

tion. Two linear inductors with six coils are equipped on

opposite sides of the strip and slots perpendicular to the

direction of the movement. Due to the thickness of the inter-

posing refractory materials, there is a relatively large air gap

between the inductor and the strip.3 Symbols for the para-

metric model of the heater are also indicated. Nonlinearity in

the material properties of the yoke and coils are taken into

account in the FEM simulation. The design problem is sub-

ject to three constraints, the total height of the heater, the air

gaps and the speed of the strip movement.

Figure 2 shows the structure of the mesh generation of

the TWIH device. Alternating current through every two in-

phase sets of coils induces a magnetic field, which is perpen-

dicular to the surface of the sheet, and alternating magnetic

flux induces the eddy current on the work strip. The coil is

placed in close proximity to the strip surface and is excited by

FIG. 1. (Color online) Schematic of a double-side TWIH (1—magnetic

yoke; 2—exciting windings; 3—load metal sheet; t—strip thickness; g—air

gap between inductor and load; ans v—strip movement directions).

FIG. 2. (Color online) Mesh generation of TWIH device structure.a)Electronic mail: junhua.wong@polyu.edu.hk.
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a large alternating current at medium frequency about 500 Hz.

The eddy current induces heat in the strip, most notably at the

surface, which quickly raises the surface temperature.

Prediction for eddy current field and temperature field

distributions on the work strip are based on the multilayer

neural network B–P algorithm. A learning process is com-

posed of forward spread and reverse spread. In order to

decrease the error signals and make the network become

convergent, error signals would adjust the near layers’ con-

nection weights and each neuron layer’s offset, when trans-

mitting from output layers to input ones.

The neural network’s input layers contain a number of

neurons, but the output layer has only one neuron variable,

which represents the predicted point’s eddy current in the

eddy current field analysis.4 In order to combine with a FEM

solution, predicted points are chosen to be the objected

region’s nodes, and results of FEM analysis would be used as

the expected neural network training outputs. For TWIH neu-

ral network prediction of eddy current on the surface of the

work strip, the key factor is to determine the right input

variables.

Based on the relationship between eddy current distribu-

tions and the shape of the induction coil and the structure of the

heater, it is not difficult to determine the variables in the neural

network input layer. Figure 3 shows a 1/3 structure of a typical

diagram of the induction heater, which has four coil center lines

X1, X2, Y1, and Y2. Distances from a predicted point to these

four lines are denoted as d1, d2, d3, and d4, which serve as the

neural network’s four input variables. Other input variable is

the end effects, which depend on the distance between the coil

and the width of the trip (expressed as A). Through training, the

neural network has built the model that the eddy current density

is more intensive from the center along the radius direction

inside the projection coil. The parameters B, C, D, and E also

partially influence the eddy current distributions.2,5 Because C
is determined by X1, X2, and D, the C value cannot be the input

variables. So, the neural network prediction about the eddy cur-

rent field has totally eight input layer variables which are d1, d2,

d3, d4, A, B, D, and E.

In order to let the network learn that the eddy current

distributions vary with changes of A, B, D, and E parameters,

it is better to select a large number of combinations of these

parameters for the network training. The parameters selec-

tion uses the orthogonal L9 program to improve the training

efficiency. As a result, the FEM computation of the eddy cur-

rent field has been carried out, and finally attains a learning

network sample collection.

The whole coupled problem can be solved with the

FEM, using the trained networks to improve the conver-

gence. The electric conductivity of the work-piece, which

depends on the temperature, is applied to the electromagnetic

part. The electromagnetic problem is solved with the A� u
method and calculating the coil current J

*

:

PV ¼ J
*
�
�
�

�
�
�

2

=r; (1)

@ðcq#Þ
@t

¼ r � ðkr#Þ þ PV þ v
* � ðcq#Þ; (2)

where PV stands for the heat source (power loss), m is the rel-

uctivity, and c is the heat capacity. Then the temperature de-

pendency of the conductivity r is considered and this is

solved iteratively until the changes of the temperature field

r# fall below a certain tolerance value 1.

The prediction of the temperature field distributions are

based on a second feed-forward neural network. The output

layer is only one neuron representing the temperature value

at a specific point on the work-piece, marked as #i�1, #i, and

FIG. 3. (Color online) The 1/3 structure of the TWIH device and the param-

eters corresponding to the units of input layer.

FIG. 4. Input data used for the temperature estimation shown in a partial

view of a triangle mesh.

FIG. 5. The combined calculation flow of the proposed neural networks

with FEM.

TABLE I. Results of neural network prediction.

Sample group Average relative error (%) Maximum relative error (%)

1 3.3 7.2

2 3.0 10.1

3 2.9 12.7

4 4.2 15.3
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#iþ1 in Fig. 4. These values depend on the temperature val-

ues and the loss density around that point. The value of ve-

locity chosen prevents a heat flow against the moving

direction. Therefore, only the temperature values, #il, #c, and

#ir, in Fig. 4 influence the values #i�1, #i, and #iþ1, by heat

flow, which are three units of the input layer of the neural

network. And the objective function is r# ¼ #i � #FEMj j,
where #FEM is the FEM calculation results.

The calculation flow of the proposed neural networks

combined with FEM is shown in Fig. 5. The dependency of

the loss density is taken into account by calculating the total

losses in the four quadrants given by the neighboring ele-

ments. Special attention is given to the boundaries of the

squared region of the sheet, i.e., the entrance and exit of the

device and the two remaining edges. Concerning the neural

network the points on these corners lack one or more of both

the temperature value points (#il, #c, and #ir) and the

quadrants.

As a rather good value for the conductivity for each fi-

nite element is known in advance and an initial solution for

the thermal part of the problem is provided, the solution of

the neural networks, i.e., the eddy current distributions,

speeds up the entire process.

Select four structure parameter groups that are not used

in the training process to carry out the neural network predic-

tion for eddy current field. Neural network predicted results

are shown in Table I.

From Table I, we can see that the average relative errors

of the predicted values are only 2.9%– 4.2% for 600 pre-

dicted nodes on the work strip, and the biggest relative error

is 7.2%–15.3%, which are much less than the FEM com-

puted results.

Predicted eddy current distribution results are shown in

Fig. 6, and its origin of coordinate corresponds to the O point

in Fig. 3. The neural network was given a problem with a

sheet width not used during the training. The ability of prop-

agating a good result is measured as the residual difference

between the proposed and the finite element result.

Comparison between optimized and unoptimized eddy

current distributions with value offsets is shown in Fig. 7. It

is found that the eddy current distributions are improved af-

ter the proposed optimization method. Network prediction

results speed up the iterative solution process for the nonlin-

ear coupled electromagnetic thermal problems. Figure 8

shows the predicted result of temperature field distributions

on the surface with neural networks.

The results presented in this paper show quite a good ac-

curacy of the estimated solutions. This allows the use of the

proposed method in order to get the distributions, which is

not of the accuracy of finite element calculations, but

obtained very fast. The solution time of the finite element

method is reduced in this application by initializing with the

estimated distributions, which speeds up the optimization

processes. Further investigation could reduce the overall

error by implementing more input neurons.
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FIG. 6. The predicted result of eddy current distributions along the surface

of the work strip with neural networks.

FIG. 7. (Color online) Comparison between optimized and unoptimized

eddy current distributions along a line near the outlet of the work strip.

FIG. 8. (Color online) The predicted result of temperature field distributions

on the surface of the one half work strip with neural networks.
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