Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/31415
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorGanganath, Nen_US
dc.creatorCheng, CTen_US
dc.creatorTse, CKen_US
dc.date.accessioned2015-10-13T08:27:00Z-
dc.date.available2015-10-13T08:27:00Z-
dc.identifier.issn1551-3203en_US
dc.identifier.urihttp://hdl.handle.net/10397/31415-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Ganganath, N., Cheng, C. -., & Tse, C. K. (2015). A constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrains. IEEE Transactions on Industrial Informatics, 11(3), 601-611 is available at http://dx.doi.org/10.1109/TII.2015.2413355en_US
dc.subjectEnergy efficienten_US
dc.subjectHeuristic searchen_US
dc.subjectMobile roboten_US
dc.subjectOutdooren_US
dc.subjectPath planningen_US
dc.subjectUneven terrainsen_US
dc.titleA constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrainsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage601en_US
dc.identifier.epage611en_US
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1109/TII.2015.2413355en_US
dcterms.abstractMotions of mobile robots need to be optimized to minimize their energy consumption to ensure long periods of continuous operations. Shortest paths do not always guarantee the minimum energy consumption of mobile robots. Moreover, they are not always feasible due to climbing constraints of mobile robots, especially on steep terrains. We utilize a heuristic search algorithm to find energy-optimal paths on hilly terrains using an established energy-cost model for mobile robots. The terrains are represented using grid-based elevation maps. Similar to A?-like heuristic search algorithms, the energy-cost of traversing through a given location of the map depends on a heuristic energy-cost estimation from that particular location to the goal. Using zigzag-like path patterns, the proposed heuristic function can estimate heuristic energy-costs on steep terrains that cannot be estimated using traditional methods.We proved that the proposed heuristic energy-cost function is both admissible and consistent. Therefore, the proposed path planner can always find feasible energy-optimal paths on any given terrain without node revisits, provided that such paths exist. Results of tests on real-world terrain models presented in this paper demonstrate the promising computational performance of the proposed path planner in finding energy-efficient paths.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on industrial informatics, June 2015, v. 11, no. 3, p. 601-611en_US
dcterms.isPartOfIEEE transactions on industrial informaticsen_US
dcterms.issued2015-06-
dc.identifier.scopus2-s2.0-84937410145-
dc.identifier.eissn1941-0050en_US
dc.identifier.rosgroupid2014001083-
dc.description.ros2014-2015 > Academic research: refereed > Publication in refereed journalen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0020-n01-
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ganganath_Constraint-aware_Heuristic_Path.pdfPre-Published version1.81 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

228
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

630
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

86
Last Week
0
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

60
Last Week
0
Last month
0
Citations as of Aug 29, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.