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Abstract—Motions of mobile robots need to be optimized to
minimize their energy consumption in order to ensure long
periods of continuous operations. Shortest paths do not always
guarantee the minimum energy consumption of mobile robots.
Also, they are not always feasible due to climbing constraints
of mobile robots, especially on steep terrains. We utilize a
heuristic search algorithm to find energy-optimal paths on hilly
terrains using an established energy-cost model for mobile robots.
The terrains are represented using grid-based elevation maps.
Similar to A*-like heuristic search algorithms, the energy-cost
of traversing through a given location of the map depends on
a heuristic energy-cost estimation from that particular location
to the goal. By using zigzag-like path patterns, the proposed
heuristic function can estimate heuristic energy-costs on steep
terrains that cannot be estimated using traditional methods.
We proved that the proposed heuristic energy-cost function is
both admissible and consistent. Therefore, the proposed path
planner can always find feasible energy-optimal paths on any
given terrain without node revisits, provided that such paths exist.
Results of tests on real-world terrain models presented in this
paper demonstrate the promising computational performance of
the proposed path planner in finding energy-efficient paths.

Index Terms—Mobile robot, outdoor, path planning, energy-
efficient, heuristic search, uneven terrains.

I. INTRODUCTION

IN mobile robotics, motion techniques can be classified

into two broad categories: motion planning algorithms and

reactive navigation algorithms [1]. Motion planning algorithms

use a priori information about the robot and its environment

to do off-line planning. On the other hand, reactive navigation

algorithms use real-time sensory information to control the

motion of mobile robots according to their environment. While

both are equally important in goal-driven navigation and

cannot be replaced by one another, off-line mobile robot path

planning algorithms fell into the former category.

Path planning can be identified as a process of finding

an optimum path between two given locations on a terrain

such that predefined requirements are satisfied [2]. With their

theoretical foundation in network science, path planning al-

gorithms are well adopted in robotics [3]–[9]. In previous

Manuscript received September 12, 2014. Accepted for publication March
06, 2015.

Copyright c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work is supported by the Department of Electronic and Information
Engineering, the Hong Kong Polytechnic University (Project G-UB45) and
the Hong Kong PhD Fellowship Scheme.

The authors are with the Department of Electronic and Information En-
gineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong
(Email: †nuwan.marasinghearachchige@connect.polyu.hk).

work, the most common requirement has been minimizing the

path length [10]–[14]. Shortest paths are very effective criteria

for mobile robot path planning as the path length is often

proportional to the traversal time, especially when the terrain

is flat. Recently, mobile robots have been commonly utilized

in outdoor applications [15]–[23], where terrains are mostly

uneven. On such terrains, shortest paths can be physically

infeasible due to motion power limitations of the mobile

robots. On the other hand, traversing shortest paths can be

highly energy inefficient on steep terrains. Most of the mobile

robots are powered with portable energy sources, such as

batteries. Therefore, the operation duration of such robots very

much depends on their energy efficiency.

The focus of this paper is on finding energy-efficient paths

for mobile robots which are physically feasible in a given

environment. The energy consumption of the robot depends

on its inclination angle as well as the traversal distance

along the path. Some inclination angles are impermissible

as the robot cannot generate enough power to overcome

the effect of external forces on such surfaces. Therefore,

these physical constraints need to be considered when finding

energy minimizing paths. Geodesic shortest paths often fail

to capture physical properties of the environment, such as

gravity, friction, maximum driving force of the robot, and

robot’s stability on steep hills, which limit their applicability

and usefulness in real world applications.

A. Related Work

Despite the vast range of potential application areas, such

as surveillance, rescue, and mining in hostile areas, very

few attentions have been devoted for energy-efficient path

finding problem. One of the early attempts on mobile robots

path planning on terrain maps can be found in [24]. They

represented the terrain as polygonalized isolines. Minimum-

time trajectories of motion on these maps were calculated

using the elevation changes between adjacent isolines. Vertices

of the polygons are used as nodes in the graph search.

The proposed algorithm was tested using a simulated model

of an unmanned robot. Several years later, Rowe and Ross

introduced an energy-cost model for mobile robots navigating

in uneven terrains [25]. They considered the external forces

imposed on the mobile robots in their energy-cost model,

and the cost of the traversal between two arbitrary points is

defined as the energy requirement to overcome the effect of

the friction and gravity. They also introduced anisotropism to

their model by considering impermissible traversal directions

due to overturn dangers and power limitations. Their energy-
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model has been adopted lately in many other works [26]–

[28] as it captures most of the physical characteristics of the

environment. In [25], Rowe and Ross also proposed a method

to find cost-efficient paths by using A* search algorithm to

pick appropriate path segments from path subspaces. They

showed that there were only four ways available for traversing

heading-dependent homogeneous regions optimally.

Lanthier et al. [27] introduced a terrain face weight idea,

which apprehends the nature of the terrain, slope of each

terrain face, and friction. In [27], they discretize the terrain

by placing Steiner points on boundaries of the terrain faces

and connect them with weighted edges. Dijkstra’s algorithm

[29] is then used to find a path with minimum total weight in

a graph. Based on the terrain face weight concept introduced

in [27], Sun and Reif [28] proposed an energy minimizing

path planning method on uneven terrains for mobile robots.

They also derived upper and lower bounds of the combinatorial

size of energy-efficient paths on uneven terrains under certain

assumptions. Their approximation algorithm outperforms the

path planner introduced in [27] in terms of time complexity.

Even though the terrain face concept adopted in [27], [28]

can reduce the computational complexity by approximating

the uneven ground level with flat surfaces, such approxima-

tions cause to degrade the accuracy of the generated paths.

Therefore, it is difficult to claim the global optimality of path

planners as they do not fully consider the elevation changes

of terrain surfaces.

Plonski et al. [30] considered energy-efficient time-

constrained path planning of a solar-powered robot navi-

gating on uneven terrains. First, they obtain a solar map

using Gaussian process regression. Then the energy-efficient

paths are found based on this map and an empirical model

of the robot. Choi et al. [31] proposed an energy-efficient

path planning method (A*-Eopt) for mobile robots. They

represented the terrain using simulated grid-based elevation

maps. An A* heuristic search algorithm [32] was used to

find the energy minimizing paths on the elevation maps.

Their heuristic energy-cost function is based on the Euclidean

distance between current location and the destination on the

terrain. In [31], the authors showed that A* with such a

heuristic function is unable to find physically feasible paths

on steep terrains because heuristics can sometime be infinitely

large depending on the gradient of the straight line connecting

current location and goal location. Recently, we proposed a

heuristic search algorithm (Basic Z*) for energy-efficient path

planning on simulated grid-based elevation maps [33]. Its

heuristics can overcome the impermissible traversal headings

due to power limitations of a mobile robot. Results given in

[33] show that the Basic Z* can find energy-efficient paths on

uneven terrains where A*-Eopt may fail due to infinitely large

heuristic energy-cost. However, the computational efficiency

of the Basic Z* algorithm may vary due to regular node revisits

while searching for an optimal solution.

B. Contributions and Organization of the Paper

In this paper, we further investigate the mobile robot energy-

efficient path planning problem on uneven terrains. In contrast

to our previous work, we perform our tests on real world

terrain models. We propose a novel energy-efficient path plan-

ning algorithm, Z*, by improving the computational efficiency

of the Basic Z* algorithm. Notably, the heuristic function

used in Z* algorithm generates zigzag-like paths to overcome

the impermissible traversal headings resulted from climbing

constraints of a mobile robot. We prove that this heuristic

energy-cost function is admissible and consistent. Therefore,

Z* can find energy-optimal paths on any terrain without node

revisiting previously visited nodes. Most interestingly, the

energy-efficient paths generated by the proposed approach is

always physically feasible for the robots involved.

The rest of the paper is organized as follows. Section II

explains how to construct a graph for finding energy-efficient

paths in a given terrain. It also briefly discusses the energy-

cost model used in this paper. The proposed energy-efficient

path planner for outdoor mobile robots is explained in details

in Section III. A physical interpretation of proposed heuristic

energy-cost function is included. Results of the proposed path

planner are presented and performances of the proposed path

planner are analyzed in Section IV. Concluding remarks and

future work are given in Section V. In addition to main

contents of this paper, we provide proofs of the admissibil-

ity and consistency of the heuristic energy-cost function in

APPENDIX A.

II. PRELIMINARIES

A. Terrain Representation and Notations

With the recent advancements in geographical information

systems, high resolution digital elevation models (DEMs) are

available for many geographical locations of the earth [34]–

[36]. They are useful in accurate representation of the terrain

surface elevation. A DEM of a section of Anderson Canyon

in Arizona is shown in Fig. 1. To facilitate the path planning

process in this work, DEMs of terrains are transformed into

weighted graphs with 8-connected neighborhoods. Each node

on the graph is corresponding to a point on the terrain surface.

If n is a node in the aforementioned graph (see Fig. 1), then

(n.x, n.y, n.z) are the terrain surface coordinates of that node.

Let nc be the node corresponding to the current location of

the robot on a given terrain, and nn be a neighboring node

that the robot will move to in next time step. The length of

the projection of the straight line connecting nc and nn on the

underlying x-y plane is defined as

d(nc, nn) =
√

(nc.x− nn.x)2 + (nc.y − nn.y)2. (1)

Let the elevation difference between nc and nn as,

∆(nc, nn) = nn.z − nc.z. (2)

Then the Euclidean distance s between nc and nn in a three-

dimensional (3D) space can be defined as

s(nc, nn) =
√

d(nc, nn)2 +∆(nc, nn)2 (3)

and the angle of inclination (positive for uphilling, negative

for downhilling) as

φ(nc, nn) = tan−1

[

∆(nc, nn)

d(nc, nn)

]

. (4)
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Fig. 1. A digital elevation model of a 1 km× 1 km section of Anderson Canyon in Arizona (left-hand side). Such terrain model can be converted to a graph
with 8-connected neighborhoods (right-hand side) in order to facilitate the path planning process.

Edge costs of a graph depends on the optimization criteria

of the paths. For a shortest path problem, they can be 3D

Euclidean distances between nodes. Since our focus is on

finding the energy-efficient paths, edge costs of the graph need

to be defined in terms of energy-costs.

B. Energy-Cost Model

Here we adopt the energy-cost model developed by Rowe

and Ross [25] to calculate the edge costs. Their model not

only explains how to calculate the energy-cost, but also how

to decide impermissible traversal headings. This energy-cost

model assumes a constant velocity v for the entire traversal.

Therefore, the two major external forces applying on the mo-

bile robot are gravity and friction [25]. The resultant of these

two forces on the mobile robot is given as mg(µ cosφ+sinφ).
This formula has been confirmed experimentally within 1% of

error for wheeled vehicles on shallow slopes in [37]. Here, m
is the mass of the robot, µ is the friction coefficient, and g
is the gravitational field strength. Hence, the energy-cost of

ncnn traversal is defined as mgs(nc, nn)(µ cosφ(nc, nn) +
sinφ(nc, nn)).

In its uphill traversal, a mobile robot may be unable to climb

steep inclination due to the motion power limitations. If the

maximum force available to overcome gravity and friction is

Fmax, according to the physical model considered here, the

maximum inclined angle that the robot can overcome is

φf = sin−1

(

Fmax

mg
√

µ2 + 1

)

− tan−1(µ). (5)

Here, Fmax can be defined as Pmax/v, where Pmax is the

maximum available motion power of the robot. This has again

been experimentally confirmed within 2% of error for wheeled

vehicles on shallow slopes in [37]. Furthermore, the traction

is governed by the static friction coefficient µs between the

surfaces. It can be proved that an anisotropic traction-loss

phenomena will arise if the inclined angle is greater than φs

[25], which is defined as

φs = tan−1(µs − µ). (6)

After counting on all aforesaid cases, the critical impermissible

angle for the uphill traversal can be defined as

φm = min(φf , φs). (7)

Therefore, φm is the maximum inclined angle that the robot

is capable of overcoming.

For a downhill traversal, there is zero resultant external force

on the mobile robot when φ = φb, which is defined as the

critical breaking angle. It can be easily shown that

φb = − tan−1(µ). (8)

A special consequence can be perceived when φ < φb, i.e.

mg(µ cosφ + sinφ) < 0. In such a situation, the robot

normally starts to accelerate as it gains energy. However, since

we assume constant velocity for the robot, it has to apply

breaking force to avoid being accelerated. Generally speaking,

breaking requires negligible energy. Therefore, the energy

consumption of the robot in the breaking region (φ ≤ φb)

is negligible [25], [28]. Thus, the energy-cost for traversing

ncnn can be summarized as

k(nc, nn) (9)

=



















∞, if φ(nc, nn) > φm.

mgs(nc, nn)(µ cosφ(nc, nn)

+ sinφ(nc, nn)), if φm ≥ φ(nc, nn) > φb.

0, otherwise.

The energy-cost model given in (9) assumes that the energy-

cost for making turns is negligible. The same assumption

has been made in previous works on energy minimizing path

planning on uneven terrains [25]–[28]. Changes in energy-

consumption with different velocity profiles have been studied

in [38], [39].

III. ENERGY-EFFICIENT PATH PLANNING

Assume that the starting point and goal location of the

mobile robot are represented by nodes ns and ng , respectively.

Here, the search problem is to find a minimum energy-

cost path connecting ns and ng . An obvious solution to

such a problem can be obtained using brute-force search

algorithms, which consider all possible candidates by checking

whether they satisfies a given set of requirements. Therefore,

these algorithms guarantee to find an optimum solution for

a problem if such a solution exists. Even though they are

simple to implement and grantees to find an optimal solution

if such exists, on the down side, brute-force algorithms are

computationally expensive. Their computational complexity
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Fig. 2. The robot is unable to climb straightly from nc to ng on a steep
surface (dashed line) since φ(nc, ng) > φm. However, it may be able to
reach ng by following a series of zigzag movements.

grows with the number of candidate solutions and therefore,

they can be impractical if the size of the problem is large.

A. Heuristic Search Algorithms

Heuristic search algorithms overcome the high computa-

tional cost of brute-force algorithms by using heuristics. A*

search algorithm is a typical example for this category of

algorithms which achieves better computational complexity

over Dijkstra’s search algorithm in the shortest path finding

problem. In A*-like heuristic search algorithms, the expected

energy-cost of traversing to ng through nc is defined as

f(nc) = g(nc) + h(nc), (10)

where g(nc) is an energy-cost of traveling from ns to nc which

can be calculated using (9) for each step. Here h(nc) is a

heuristic estimate of the energy-cost of traveling from nc to

ng .

1) Estimating the Heuristic Energy-Cost: If the heuristic

function always returns zero, then these algorithms reduce to

brute-force searches. The ideal case is the heuristic function

estimating the exact cost of reaching goal from a particular

node. Unfortunately, it is unrealistic to find such heuristics in

most of the real world problems, but something falls between

above two cases [40]. Hence, the computational cost of such

algorithms depends on the quality of the heuristics.

Definition 1: The heuristic function, h(nc) is said to be

admissible if it never overestimates the cost of reaching ng

from a given node [40].

A*-like heuristic search algorithms are only guaranteed to

find optimal solutions if h(nc) is admissible [32]. Finding

an admissible heuristic function is challenging in most of the

applications, except some obvious cases such as in shortest

path finding problem which can utilize the Euclidean distance

to the goal from any given node as its heuristic.

Here, if the h(nc) is calculated based on the Euclidean

distance by connecting nc and ng with a virtual straight line,

i.e. h(nc) = k(nc, ng), h(nc) can sometime be infinitely

large depending on the gradient of this straight line with

respect to the x-y plane. Since the value of h(nc) eventually

affects the value of f(nc), such situations can result in false

impermissible traversal headings. An attempt made by Choi

et al. [31] further verifies it. Even though the mobile robot

is unable to traverse a straight line connecting one point to

another if φ > φm, it may still reach the target by following

a series of zigzag movements as illustrated in Fig. 2. The

headings in the zigzag pattern is permissible if φ ≤ φm. There
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Fig. 3. It is unable to estimate the heuristic energy-cost of the ncng traversal
since φ(nc, ng) > φm. Therefore, the proposed method selects a heading for
the robot such that φ = φm, which results in a finite heuristic energy-cost.

are two possible permissible paths as shown in Fig. 2 to reach

ng: ncn1n2n4n5n6ng and ncn1n2n3n5n6ng . Similarly, many

other paths can be found with the same heuristic energy-cost

and have φ ≤ φm. Based on such zigzag movements, we

proposed a heuristic energy-cost function [33] which can be

summarized as

h(nc) =



























mg∆(nc,ng)

sinφm
(µ cosφm

+ sinφm), if φ(nc, ng) > φm.

mgs(nc, ng)(µ cosφ(nc, ng)

+ sinφ(nc, ng)), if φm ≥ φ(nc, ng) > φb.

0, otherwise.

(11)

Here, the last two cases are straightforward to understand. In

the second case, when φm ≥ φ(nc, ng) > φb is calculated by

connecting nc and ng with a virtual straight line, i.e. h(nc) =
k(nc, ng), as the robot is able to traverse the angles less than

the critical impermissible angle. In the last case, the gradient of

the virtual straight line that connects nc and ng with respect to

the x-y plane, falls in the braking range. Therefore, according

to the energy-cost model given in (9), the heuristic energy-cost

reduces to zero. We now illustrate the physical meaning of the

h(nc) when φ(nc, ng) > φm with the help of Fig. 3. Since

φ(nc, ng) > φm, it is impossible to estimate a finite value for

h(nc) using k(nc, ng). Hence, we define a new path to ng

via ni for estimating a finite value of h(nc) which ultimately

results in a zigzag-like path pattern. Let nj be a point on the

x-y plane which goes through nc, such that ∠ngncnj = π/2
and ∠ńgnjng = φm. Here, ńg is the projection of ng on the

same x-y plane. Therefore, ∠ńgncnj = π/2 as well. We select
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point ni on the straight line connecting ng and nj such that

s(nc, ni) = s(nj , ni). In Fig. 3, ńi is the projection of ni on

the x-y plane which goes through nc, nj , and ńg . Therefore,

using similar triangles njnińi and ncnińi, we can show that

φ(nc, ni) = φ(nj , ni) = φm. The total heuristics energy-cost

is equal to the summation of energy expenditure of traversing

ncni and ning . Hence, we can define the heuristic to be the

energy-cost of traversing njning . By definition, s(ng, ńg) =
∆(nc, ng) and s(nj , ng) = ∆(nc, ng)/ sinφm. Therefore,

h(nc) = mg(µ cosφm + sinφm)∆(nn, ng)/ sinφm when

φ(nc, ng) > φm. Here φ = φm is not the only inclination

angle which generates a permissible heading for the scenario

under study. It is possible to find many other paths to reach

ng with φ ≤ φm. Nevertheless, a proof given in APPENDIX

A shows that the heuristic is admissible when φ = φm.

2) Generating Energy-Efficient Paths: Z* uses best-first

search to find the energy-efficient paths. It starts by visiting

node ns and calculating its energy-cost using (10). Obviously,

f(ns) = h(ns). Once a node is visited, it is added to an OPEN

set. The OPEN set can be implemented as a sorted priority

queue based on each node’s f(ns) cost. In addition to the

OPEN set used in Basic Z* algorithm, here Z* uses another

set called CLOSED set. Similar to Basic Z* algorithm, in each

iteration, a node with minimum expected energy-cost, nc is

taken out from the OPEN set and added to the CLOSED set.

All the neighbors of nc are added to OPEN set. Basic Z* omits

the CLOSED set due to its uncertainty over the consistency

of its heuristics.

Definition 2: A heuristic function is said to be consistent

(or monotonic) [40] if it satisfies

h(nc) ≤ k(nc, nn) + h(nn). (12)

If the heuristic function is consistent, then f(nc) is monoton-

ically nondecreasing along any path connecting ns and ng .

Since the heuristics used in Basic Z* are not proven to be

consistent, it may add certain nodes back to the OPEN set,

which are taken out before. We call this as node revisiting,

which is necessary to guarantee an optimal solution. However,

such revisits degrade the computational efficiency of search

algorithms. In APPENDIX A, we prove that the heuristic func-

tion given in (11) is consistent. With the proven consistency of

the proposed heuristic function, Z* heuristic search algorithm

can find a optimal solution without revisiting nodes in the

CLOSED set, thus, it is computationally more efficient than

Basic Z*.

The sequence of costs of the visited nodes by Z* starts with

f(ns) = h(ns), which is the minimum and are guaranteed

to stay same or increase until it hits the cost of the optimal

solution f(ng) = g(ng), which is the maximum. When

nc = ng , the algorithm has reached the goal and the iterative

procedure will be terminated. Here, f(ng) is the cost of

the energy-efficient path. The energy-efficient path will be

created by traversing back from ng to ns using their parent

connections. The resultant graph of the nodes in CLOSED set

obviously gives a tree structure without any cycles as each

node is only visited once.

TABLE I
PARAMETERS OF EACH TEST.

Test Terrain
ns ng v Payload

(m) (m) (ms-1) (kg)

I Anderson Canyon (130,850) (920,270) 0.5 0

II Lowe Peak (800,90) (130,920) 1.0 25

III Matheny Ridge (60,250) (960,920) 0.8 70

IV
Lowe Peak

(800,90) (130,920) 1.0 25with obstacles

IV. RESULTS AND DISCUSSION

In this section, we evaluate Z* algorithm against Basic

Z* algorithm for energy-efficient path planning on uneven

terrains. We use results of the Dijkstra’s algorithm with

the energy-cost function defined in (9) as a reference (D-

Eopt), because it guarantees to provide a energy-optimal path

between two given points, if it exists. We also demonstrate the

difference between energy-efficient paths and shortest paths on

hilly terrains by using Dijkstra’s algorithm with 3D Euclidean

distance (D-Dopt) to find shortest paths on hilly terrains.

Extensive tests were carried out to verify the completeness,

optimality, and search efficiency of the Z* search algorithm.

A. Test Setup

Tests were carried out using a simulated model of a Seekur

mobile robot platform [41]. Seekur is capable of operating at

about a maximum motion power of Pmax = 1280 W. The

mass of the Seekur is 300 kg. We used different payloads

with Seekur in different tests. A complete overview of the

parameter setup in four selected tests is given in Table I.

Here the gravitational field strength (g) is assumed to be 9.81
ms-2. In contrast to previous work on energy-efficient path

planning [31], [33], which were conducted on simulated hilly

landscapes, tests were carried out on several DEMs of real

terrains with an area of 1 km× 1 km. All these DEMs were

fed to the algorithms under test as square shaped graphs with

100 nodes on each side (i.e. 10,000 nodes in each graph).

The friction coefficients between the terrain and the robot

wheels are µ = 0.1 and µs = 1.0, respectively. All the path

planning methods under test were evaluated using MATLAB

on a portable computer with 2.20 GHz Intel Core i7-4702HQ

CPU using a single core and 16 GB memory. Statistical results

on the averaged run time of the algorithms were acquired using

20 tests.

B. Performance Analysis

The first test was conducted on a part of the Anderson

Canyon in Arizona. Paths generated from the algorithms

under test are shown in Fig. 4 (a). The energy-efficient paths

generated using D-Eopt, Basic Z*, and Z* are slightly different

from each other. This is due to the fact that a mobile robot

consumes no energy when φ(nc, nn) < φb. If there is more

than one such nn, the algorithms arbitrarily select one of them.

It may result in different routes, but the paths are associated

with the same energy-cost. This can be verified using the
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TABLE II
TEST RESULTS.

Test Algorithm
Energy-cost Path length Number of nodes Run time

(kJ) (m) visited revisited average (s) variance (s2)

I

D-Dopt 447.076 1076.498 9435 0 125.796 0.752

D-Eopt 425.046 1122.099 9271 0 126.284 0.756

Basic Z* 425.046 1273.495 3320 0 71.375 0.120

Z* 425.046 1273.495 3320 0 43.506 0.027

II

D-Dopt N/A 1236.949 9782 0 131.000 0.109

D-Eopt 1662.660 2058.765 7855 0 105.9117 0.383

Basic Z* 1662.660 2059.341 6673 84 148.367 0.155

Z* 1662.660 2059.341 6673 0 90.871 0.088

III

D-Dopt N/A 1241.229 9922 0 127.653 0.274

D-Eopt 1394.153 1549.596 9862 0 132.241 0.186

Basic Z* 1394.153 1550.500 6114 3 136.762 0.193

Z* 1394.153 1550.500 6114 0 83.814 0.100

IV

D-Dopt N/A 1241.784 9697 0 132.161 0.626

D-Eopt 1687619 2113.941 7905 0 107.393 0.506

Basic Z* 1687.619 2113.969 6944 85 154.532 0.763

Z* 1687.619 2113.969 6944 0 94.578 0.115

results summarized in Table II. The shortest path generated

using D-Dopt is clearly distinguishable from other two paths.

According to the results given in Table II, it is shorter than

the other two. However, our objective is to find a minimum

energy-cost path. The results clearly show that the energy-cost

of the shortest path is higher than those minimum energy-cost

paths. Z* finds optimal paths much faster by visiting a least

number of nodes. In this test, D-Eopt has visited 92.71% of

the map to find an energy-efficient path, whereas Basic Z* and

Z* achieve that by just exploring 33.20% of the map. Basic

Z* have not revisited any nodes to find the optimum solution

and end up visiting same number of nodes as Z*. Since the

energy-efficient path generated in this test has comparatively

less turns, there is a lower possibility that a node which had

been removed from the OPEN set, to become a neighbor of a

node visited later down the path. In contrast, there is a higher

possibility of such node revisits in the energy-efficient paths

generated in other tests. This depends on the nature of the

terrain as well as the starting point and the goal of a path.

The tests II and III were conducted on regions of the Lowe

Peak in Utah and Matheny Ridge in Washington, respectively.

Resulted paths are shown in Fig. 4 (b) and (c). In both

tests, the shortest path generated by D-Dopt is significantly

different from the other two paths. Unfortunately, such a path

is practically impermissible on the given terrain due to the

climbing constraints of the robot. Therefore, the energy-cost of

the shortest path is incalculable. It is interesting to see that the

energy minimizing algorithms utilize zigzag-like path patterns

to climb the steep hills in the terrains. Such paths can be

predicted by the heuristic energy-cost function used in this

paper which helps to overcome the impermissible traversal

headings due to the climbing constraints of the robots in

uphilling. The results presented in Table II clearly illustrate

the optimal nature of the paths generated by Basic Z* and

Z* algorithms. Furthermore, Z* is computationally efficient

as it is guaranteed to visit the least number of nodes since its

heuristic is consistent. This can be easily observed when we

compare the number of visited nodes by the algorithms under

test in each test. Z* does not revisit nodes, which makes it

more desirable than Basic Z*. Moreover, Z* is complete as it

is guaranteed to find an energy-efficient path to a given goal

location if that exists.

In the first three tests, it is assumed that terrains are

obstacle free. However, in most of the real-world scenarios,

mobile robots have to deal with dense environments and their

motion need to be planned in such a way that they avoid

collisions with known obstacles present in the environment.

This work can be easily extended to any general real-world

terrain by setting infinite energy-cost for traversing those nodes

coincide with obstacles. In order to demonstrate performances

of the proposed path planner in such environments, the test

IV was conducted with the same test parameters used in

test II, but with some artificial obstacles imposed on the

previously found energy-efficient path. New paths generated

by the algorithms under test are shown in Fig. 4 (d). White

areas on the terrain represents obstacle areas which should

be avoided by the robot. As we can observe from the given

results, all the path planners under test are capable of finding

collision free paths. Similar to the previous tests, Z* finds

an energy-efficient path by exploring a minimum number of

nodes. In this work, accuracy and optimally of all grid-based

path planning methods are discussed and evaluated in given

discrete domains. However, these results may differ in real-

world continuous domains. Therefore, the results generated

by Z* on DEMs can slightly deviate from the optimal paths

on their real-world counterparts. This problem can always be

alleviated by having maps with higher resolutions.

V. CONCLUSION

In this paper, we present a computationally efficient heuris-

tic search algorithm Z* for energy-efficient path planning

on hilly terrains. Traditional approaches cannot find feasible
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Fig. 4. Results of four selected tests showing the path generated by D-Dopt, D-Eopt, and Basic Z*: (a) Test I: Anderson Canyon, (b) Test II: Lowe Peak,
(c) Test III: Matheny Ridge and (d) Test II: Lowe Peak with artificial obstacle regions.

energy-efficient paths on steep terrains due to motion power

limitations of robots. Here, hilly terrains are represented using

grid-based elevation maps. The cost of traversing from a start

point to a goal point through a chain of connected nodes is

calculated as the summation of the energy-cost of traveling to

an intermediate node and the heuristic energy-cost of traveling

from the intermediate node to the goal. The heuristic energy-

cost function introduced in this paper enables Z* to find

energy-efficient paths in steep terrains using zigzag-like path

patterns. We prove that the proposed heuristic function is

admissible and consistent. Therefore, Z* can find a physically

feasible energy-efficient path on any given terrain, if it exists.

Moreover, Z* is computationally efficient as it avoids any

node revisits during its search. The resulted energy-efficient

paths can prolong the lifetime of mobile robot systems, which

are very useful in applications such as surveillance, rescue,

military, mobile wireless sensor networks, and mining in

hostile areas.

APPENDIX A

PROOFS OF THE ADMISSIBILITY AND CONSISTENCY OF

THE PROPOSED HEURISTIC FUNCTION

Proposition 1: The heuristic energy-cost function h(nc)
proposed in (11) is admissible.

Proof: Suppose we need to determine a heuristic function

h(nc), for calculating heuristic energy-cost for the ncng traver-

sal shown in Fig. 5. Here, h(nc) is admissible if it estimates the

possible minimum energy-cost for the ncng traversal. How-

ever, determining an admissible heuristic energy-cost function

is far from obvious in the current problem, because, not all

the paths connecting nc and ng are physically feasible for a

mobile robot to achieve.

Let us consider a general path connecting nc and ng through

N − 1 intermediate nodes as illustrated in Fig. 5. A vector
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Fig. 5. For the derivation of heuristic energy-cost of ncng traversal, we
consider a general path connecting nc and ng through N − 1 intermediate
nodes.

connecting nodes ni−1 and ni is denoted by,

P = s(ni−1, ni)









cosφ(ni−1, ni) cos θ(ni−1, ni)

cosφ(ni−1, ni) sin θ(ni−1, ni)

sinφ(ni−1, ni)









, (13)

where i = 1, 2, . . . , N, and θ(ni−1, ni) is the angle between

Xc and the projection of P on XcYc plane. For simplicity,

we denote φ(ni−1, ni) = φi(≤ φm), θ(ni−1, ni) = θi, and

s(ni−1, ni) = si, s(nc, ng) = s, and φ(nc, ng) = φ. Note that

the XcYc plane is defined in the horizontal plane such that

θ(nc, ng) = 0. Using the vector summation, we can write

s









cosφ

0

sinφ









=

N
∑

i=1

si









cosφi cos θi

cosφi sin θi

sinφi









. (14)

Using (14), we define functions f1, f2, and f3 as

f1(si, φi, θi) =

N
∑

i=1

si cosφi cos θi − s cosφ = 0 (15)

f2(si, φi, θi) =

N
∑

i=1

si cosφi sin θi = 0 (16)

f3(si, φi, θi) =

N
∑

i=1

si sinφi − s sinφ = 0 (17)

Using (9), the total heuristic energy-cost for n0, n1, . . . , nN

traversal can be defined as

H =

N
∑

i=1

k(ni−1, ni). (18)

Our objective is to find si, φi, and θi such that H is

minimized. Here, we use the method of Lagrange multipliers

to solve this optimization problem and the Lagrangian is

defined by,

Λ(si, φi, θi) = H −

3
∑

j=1

λjfj(si, φi, θi), (19)

where λj is the jth Lagrange multiplier. When H is minimum,

∇Λ(si, φi, θi) = 0. Therefore, using (19), we can obtain

∇siΛ(si, φi, θi) = ∇siH−λ1 cosφi cos θi − λ2 cosφi sin θi

− λ3 sinφi = 0 (20)

∇φi
Λ(si, φi, θi) = ∇φi

H+λ1si sinφi cos θi

+λ2si sinφi sin θi − λ3si cosφi = 0 (21)

∇θiΛ(si, φi, θi) = ∇θiH+λ1si cosφi sin θi

− λ2si cosφi cos θi = 0 (22)

From (22), cosφi cos θi 6= 0 since ∇θiH = 0. Therefore,

using (22), we can obtain

λ2 = λ1 tan θi. (23)

Using (20), (23), and (21) we can show that

∇siH = λ1

cosφi

cos θi
+ λ3 sinφi, (24)

∇φi
H = −λ1si

sinφi

cos θi
+ λ3si cosφi. (25)

Here, we need to consider three different situations to obtain

the final solution.

Case 1: φ ≤ φb

According to (9), the minimum possible energy-cost is

k(nc, ng) = 0 as it is assumed the robot cannot gain energy.

It is obvious, φi = φ and θi = 0. i.e. the minimum energy

path coincide with the straight line connecting nc and ng .

Therefore,

h(nc) = 0, when φ ≤ φb (26)

Case 2: φm ≥ φ > φb

As the solution is not as obvious as in the previous case,

we need to consider two different possibilities of φi to obtain

a solution for h(nc).
Case 2.1: φi ≤ φb: According to (9), k(ni−1, ni) = 0 when

φi ≤ φb. Thus ∇siH = ∇φi
H = 0. Using (24) and (25), we

can show that

λ1

λ3

=
− sinφi cos θi

cosφi

=
cosφi cos θi

sinφi

, (27)

⇒ tan2 φi = −1. (28)

This is not possible for any real φi. Therefore, this case does

not exist (φi 6≤ φb).

Case 2.2: φb < φi ≤ φm: Using (9) and (18), we can

obtain

∇siH = mg(µ cosφi + sinφi), (29)

∇φi
H = mgsi(−µ sinφi + cosφi). (30)

Using (24) and (29), we have

mg(µ cosφi + sinφi) = λ1

cosφi

cos θi
+ λ3 sinφi, (31)

and, with (25) and (30) we have

mgsi(−µ sinφi+cosφi) = −λ1si
sinφi

cos θi
+λ3si cosφi. (32)



9

By multiplying (31) with sinφi and (32) with cosφi, and

adding them together, we can obtain

λ3 = mg, (33)

λ1 = mgµ cos θi. (34)

Using (23) and (34), we have

λ2 = mgµ sin θi. (35)

Using (16) and (35), we can show that

(

λ2

mgµ

) N
∑

i=1

si cosφi = 0 (36)

As
∑N

i=1 si cosφi 6= 0, λ2 = 0 ⇒ θi = 0, λ1 = mgµ, and

λ3 = mg. Therefore, (15) and (17) can be written as

N
∑

i=1

si cosφi = s cosφ, (37)

N
∑

i=1

si sinφi = s sinφ. (38)

Using (18), (37), and (38), we can obtain

h(nc) =

N
∑

i=1

mgsi(µ cosφi + sinφi) (39)

= mgs(µ cosφ+ sinφ),when φm ≥ φ > φb. (40)

This is equivalent to the energy consumption of traversing the

straight line connecting nc and ng .

Case 3: φ > φm

Similar to the second case, we need to consider the two

possibilities of φi to obtain a solution for h(nc).
Case 3.1: φi < φb: Similar to Case 2.1, this case does not

exist.

Case 3.2: φb < φi ≤ φm: Unlike Case 2.2, here θi 6= 0
as φi < φ. i.e. if θi = 0, h(nc) = mgs(µ cosφ + sinφ). But

since φ > φm, it is impossible to estimate the energy-cost of

traversing the straight line connecting nc and ng . Therefore,

in order to satisfy (16), let

θi = (−1)i sin−1

(

λ2

mgµ

)

. (41)

This satisfy (16) given that N is even. Let, sin−1
(

λ2

mgµ

)

= θc.

Hence, (15) and (17) can be written as

N
∑

i=1

si cosφi = s

(

cosφ

cos θc

)

, (42)

N
∑

i=1

si sinφi = s sinφ. (43)

Using (18),

H =

N
∑

i=1

mgsi(µ cosφi + sinφi), (44)

= mgs

(

µ
cosφ

cos θc
+ sinφ

)

. (45)

θ  
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Fig. 6. A physical representation of θc

A physical meaning of (45) is illustrated in Fig. 6. Here,

nj is a point on Yc axis. H is equivalent to the energy-cost

of traversing njng . H is minimized when θc is maximized.

However, θc depends on φi, which can be defined as

cos θc =
tanφi

tanφ
, (46)

using Fig. 6. Therefore,

max (cos θc) =
tanφm

tanφ
. (47)

Using (45) and (47), we can define,

h(nc) =
mgs sinφ

sinφm

(µ cosφm + sinφm). (48)

However, s sinφ = ∆(nc, ng). Therefore, when φ(nc, ng) >
φm,

h(nc) =
mg∆(nc, ng)

sinφm

(µ cosφm + sinφm). (49)

Therefore the heuristic energy-cost function can be summa-

rized as in (11).

Proposition 2: The heuristic energy-cost function h(nc)
proposed in (11) is consistent.

Proof: If the proposed h(nc) is consistent, it should

satisfy (12). Suppose,

h(nc) > k(nc, nn) + h(nn) (50)

Here, k(nc, nn) ≥ 0. If (50) is true, the cost of traversing

from nc to ng via nn should be lower than h(nc). However,

according to Proposition 1, h(nc) is the minimum possible

heuristic energy-cost for ncng traversal. Therefore, (50) cannot

stand. i.e. h(nc) is consistent.
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