Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1279
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorCheng, C-
dc.creatorLin, J-
dc.creatorSun, Y-
dc.creatorChau, KW-
dc.date.accessioned2014-12-11T08:24:18Z-
dc.date.available2014-12-11T08:24:18Z-
dc.identifier.isbn978-3-540-28320-1-
dc.identifier.urihttp://hdl.handle.net/10397/1279-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesLecture notes in computer science ; v. 3162-
dc.rights© Springer-Verlag Berlin Heidelberg 2005. The original publication is available at http://www.springerlink.com.en_US
dc.subjectAdaptive systemsen_US
dc.subjectHydropower reservoirsen_US
dc.subjectForecasting reservoir inflowen_US
dc.subjectAlgorithmsen_US
dc.subjectMembership functionsen_US
dc.subjectReservoirs (water)en_US
dc.subjectManwan Hydropoweren_US
dc.titleLong-term prediction of discharges in Manwan Hydropower using adaptive-network-based fuzzy inference systems modelsen_US
dc.typeBook Chapteren_US
dc.description.otherinformationAuthor name used in this publication: Chun-Tian Chengen_US
dc.description.otherinformationAuthor name used in this publication: Ying-Guang Sunen_US
dc.description.otherinformationAuthor name used in this publication: Kwokwing Chauen_US
dc.description.otherinformationAuthor name used in this publication: Jian-Yi Linen_US
dc.identifier.doi10.1007/11539902_145-
dcterms.abstractForecasting reservoir inflow is important to hydropower reservoir management and scheduling. An Adaptive-Network-based Fuzzy Inference System (ANFIS) is successfully developed to forecast the long-term discharges in Manwan Hydropower. Using the long-term observations of discharges of monthly river flow discharges during 1953-2003, different types of membership functions and antecedent input flows associated with ANFIS model are tested. When compared to the ANN model, the ANFIS model has shown a significant forecast improvement. The training and validation results show that the ANFIS model is an effective algorithm to forecast the long-term discharges in Manwan Hydropower. The ANFIS model is finally employed in the advanced water resource project of Yunnan Power Group.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn L Wang, K Chen & YS Ong (Eds.), Advances in natural computation : first international conference, ICNC 2005, Changsha, China, August 27-29, 2005 : proceedings, p. 1152-1161. Berlin ; New York: Springer, 2005-
dcterms.issued2005-
dc.identifier.isiWOS:000232246700145-
dc.identifier.scopus2-s2.0-26844569500-
dc.relation.ispartofbookAdvances in natural computation : first international conference, ICNC 2005, Changsha, China, August 27-29, 2005 : proceedings-
dc.relation.conferenceICNC-
dc.publisher.placeBerlin ; New Yorken_US
dc.identifier.rosgroupidr21066-
dc.description.ros2004-2005 > Academic research: refereed > Publication in refereed journal-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Book Chapter
Files in This Item:
File Description SizeFormat 
LNCS9.pdfPre-published version199.28 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

170
Last Week
1
Last month
Citations as of Dec 22, 2024

Downloads

305
Citations as of Dec 22, 2024

SCOPUSTM   
Citations

88
Last Week
0
Last month
1
Citations as of Dec 19, 2024

WEB OF SCIENCETM
Citations

79
Last Week
0
Last month
1
Citations as of Dec 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.