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Abstract 

Forecasting reservoir inflow is important to hydropower reservoir management and scheduling. An 

Adaptive-Network-based Fuzzy Inference System (ANFIS) is successfully developed to forecast 

the long-term discharges in Manwan Hydropower. Using the long-term observations of discharges 

of monthly river flow discharges during 1953-2003, different types of membership functions and 

antecedent input flows associated with ANFIS model are tested. When compared to the ANN 

model, the ANFIS model has shown a significant forecast improvement. The training and 

validation results show that the ANFIS model is an effective algorithm to forecast the long-term 

discharges in Manwan Hydropower. The ANFIS model is finally employed in the advanced water 

resource project of Yunnan Power Group (http://202.118.74.192:7001/YNProject/index.jsp ). 
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1. Introduction 

Accurate time and site-specific forecasts of streamflows and reservoir inflow are required for 
effective hydropower reservoir management and scheduling. In the past few decades, a wide range 
of hydrologic models has been proposed for this purpose. Conventionally, factor analysis and 
hydrological analysis methods such as historical evolution method, time series analysis, multiple 
linear regression method and so forth, are used to forecast the long-term discharges. Nowadays, 
time series analysis and multiple linear regression method are the two most commonly used 
methods. The time series analysis is based on the decomposition of various factors into trend and 
cycle. After 1970s, autoregressive moving-average (ARMA) models proposed by Box et al. [1] are 
also widely used. Since 1990s, artificial neural network (ANN) [2,3], based on the understanding 
of the brain and nervous systems, is gradually used in hydrological prediction. In this paper, the 
potential of the adaptive-network-based fuzzy inference system (ANFIS) [4-7], first developed by 
Jang (1993), in hydrological prediction will be discussed and evaluated. This approach has been 
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tested and evaluated in the field of signal processing and related areas. 
The past few years have witnessed a rapid growth in the number and variety of applications 

of fuzzy logic and fuzzy set theory, which were introduced by Zadeh [22]. The applications range 
from consumer products such as cameras, washing machines, and microwave ovens to industrial 
process control, medical instrumentation, decision-support systems, and portfolio selection. An 
apparent recent trend relates to the use of fuzzy logic in combination with neurocomputing and 
genetic algorithms. In general, fuzzy logic, neurocomputing, and genetic algorithms might be 
viewed as principal constituents of soft computing. Among various combinations of 
methodologies in soft computing, the most interesting applications offer an appropriate 
combination of fuzzy logic and neurocomputing. It results in a hybrid system that operates on both 
linguistic descriptions of the variables and the numeric values through a parallel and fault tolerant 
architecture. This effective method, ANFIS, has been successfully applied to many problems such 
as prediction of workpiece surface roughness [8], pesticide prediction in ground water [9] and 
validation in financial time series [10]. Specially, the neuro-fuzzy system for modeling 
hydrological time series was presented by Nayak et al. [11]. 

2. Fuzzy inference system 

2.1. Fuzzy rule-based models 

The process of fuzzy inference involves membership functions, fuzzy logic operators, and 
if-then rules. Fuzzy inference systems (FIS) have been successfully applied in fields such as 
automatic control, data classification, decision analysis, expert systems, and computer vision. The 
basic structure of a FIS consists of three conceptual components: a rule base, which contains a 
selection of fuzzy rules; a database which defines the membership functions (MF) used in the 
fuzzy rules; and a reasoning mechanism, which performs the inference procedure upon the rules to 
derive an output (see Fig. 1). FIS implements a nonlinear mapping from its input space to the 
output space. This mapping is accomplished by a number of fuzzy if-then rules, each of which 
describes the local behavior of the mapping. The parameters of the if-then rules (referred to as 
antecedents or premises in fuzzy modeling) define a fuzzy region of the input space, and the 
output parameters (also termed consequents in fuzzy modeling) specify the corresponding output. 
There are three types of fuzzy inference systems in wide use: Mamdani-type [12], Sugeno-type 
[13-14] and Tsukamoto-type [15]. These three types of inference systems vary somewhat in the 
way outputs are determined. 
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 Fig.1. Fuzzy inference system (first-order Sugeno) 



2.2. Sugeno models 

   The Sugeno model (or Takagi-Sugeno model) was proposed by Takagi and Sugeno [14]. A 
typical rule in a Sugeno fuzzy model has the form: 
   If x is A and y is B, then z = f（x，y） 
where A and B are fuzzy sets of antecedent, and z = f（x，y）is the precise function. Usually, z = f
（x，y）are polynomials of input variables x and y. In the first-order Sugeno model, the function z 
= f（x，y）is a first-order polynomial of the input variables. For a zero-order Sugeno model, the 
output level z is a constant. For instance, consider that the FIS has two inputs x and y and one 
output z and, for the first-order Sugeno fuzzy model, a typical rule set with two fuzzy if-then rules 
can be expressed as: 

Rule 1:If x is 1A and y is 1B ，then 1 1 1 1f =p x+q y+r  

Rule 2:If x is 2A and y is 2B ，then 2 2 2 2f =p x+q y+r  

Figure 2 illustrates the fuzzy reasoning mechanism for this Sugeno model to derive an output 
function (f) from a given input vector [x, y]. The Sugeno fuzzy inference system is 
computationally efficient and works well with linear techniques, optimization and adaptive 
techniques. It is extremely well suited to the task of developing a FIS using the framework of 
adaptive neural networks which is termed an ANFIS. 
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3. ANFIS 

3.1. ANFIS architecture 

This neuro-fuzzy network is a five-layer feed forward network that uses neural network 
learning algorithms coupled with fuzzy reasoning to map an input space to an output space. The 
ANFIS architecture is shown in Figure 3, and an introduction of the model is as follows. 
Layer1: input nodes 

Each node in this layer generates membership grades of an input variable. The node output 

1,iO  is defined by: 

Fig.2. First-order Sugeno fuzzy model 



i1,i AO (x), i=1,2=μ  or 

i1,i B -2O (y), i=3,4=μ  

where x (or y) is the input to the node; iA (or i-2B ) is a fuzzy set associated with this node, 

characterized by the shape of the MFs in this node and can be any appropriate functions that are 
continuous and piecewise differentiable such as Gaussian, generalized bell shaped, trapezoidal 
shaped and triangular shaped functions. Assuming a generalized bell function as the MF, the 

output 1,iO can be computed as, 

A
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where { ia ， ib ， ic } is the parameter set that changes the shapes of the MF with the maximum 

equal to 1 and the minimum equal to 0; and { ia ， ib ， ic } are called premise parameters. 

Layer 2: rule nodes  

Every node in this layer multiplies the incoming signals, denoted as∏ , and the output 2,iO  

that represents the firing strength of a rule, is computed as, 

i i2,i A BO (x) (y),  i=1,2w= μ  

Therefore, the outputs 2,iO of this layer are the products of the corresponding degrees from layer 1. 

Layer 3: average nodes 
The node of this layer, labeled as N, computes the normalized firing strengths as, 
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Layer 4: consequent nodes 
Node i in this layer computes the contribution of the ith rule towards the model output, with 

the following node function: 

4,iO ( )i i i i iw f w p q r= = + +  

where iw  is the output of layer 3 and { ip ， iq ， ir } is the consequent parameter set. 

Layer 5: output nodes 
The single node in this layer computes the overall output of the ANFIS as: 
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3.2. Hybrid learning algorithm 

The ANFIS architecture consists of two parameter sets for optimization: the premise 

parameters { ia ， ib ， ic },which describe the shape of the MFs, and the consequent parameters 

{ ip ， iq ， ir },which describe the overall output of the system. From the ANFIS architecture shown 

in Fig.3, it can be seen that when the values of the premise parameters are fixed, the overall output 
can be expressed as a linear combination of the consequent parameters. In symbols, the output f in 
Fig.3 can be rewritten as 

1 21 2

1 1 1 2 2 21 1 1 2 2 2

f=w f +w f

 =(w x )p + w y q + w r w x p w y q + w r（ ） （ ） +（ ） +（ ） （ ）
 

which is linear in the consequent parameters 1p , 1q , 1r , 2p , 2q , 2r . Therefore, a hybrid learning 

algorithm combines the backpropagation gradient descent and the least squares estimate method, 
which outperforms the original backproagation algorithm [16]. The consequent parameters are 
updated first using the least squares algorithm and the antecedent parameters are then updated by 
back propagating the errors that still exist. Specifically, in the forward pass of the hybrid learning 
algorithm, node outputs go forward until layer 4 and the consequent parameters are identified by 
the least squares method. In the backward pass, the error signals propagate backward and the 
premise parameters are updated by gradient descent. Table 1 summarizes the activities in each 
pass. More details about the hybrid learning algorithm can be found in Jang and Sun [6]. 
 
 Forward pass Backward pass 
Premise parameters Fixed Gradient descent 

Fig.3. ANFIS architecture 

Table.1. Two passes in the hydrid learning procedure for ANFIS 



Consequent parameters Least-squares estimate Fixed 
Signals Node outputs Error signals 

4. Study area and data used 

The Manwan Hydropower in the Lancangjiang River is selected as the study site. The 
Lancangjiang River is a large river in Asia, which originates from the Qinghai-Tibet Plateau, 
penetrates Yunnan from northwest to the south and passes through the Laos, Burma, Thailand, 
Cambodia and Vietnam, ingresses into the South China Sea at last. The river is about 4,500 miles 
long and has a drainage area of 744,000 square miles. The Manwan Hydropower merges on the 
middle reaches of the Lancang River and at borders of Yunxian and Jingdong counties. The 
catchment area at the Manwan dam site is 114,500 square miles, the length above Manwan is 
1,579 miles, and the mean elevation is 4,000 miles. The average yearly runoff is 1,230 cubic 
meters per at the dam site. Rainfall provides most of the runoff and snow melt accounts for 10%. 
Nearly 70% of the annual rainfall occurs from June to September. 

The monthly flow data from January 1953 to December 2003 (presented in Figure 4) are 
studied. The data set from January 1953 to December 1998 is used for training whilst that from 
January 1999 to December 2003 is used for validation. In the modeling process, the data sets of 
river flow were normalized to the range between 0 and 1 as recommended by Masters [17]. 

 

 

5. Application of ANFIS to flow prediction in Manwan 

5.1. Model development and testing 

There are no fixed rules for developing an ANFIS, even though a general framework can be 
followed based on previous successful applications in engineering. The goal of an ANFIS is to 
generalize a relationship of the form of  

nY= f X（ ） 

where nX  is an n-dimensional input vector consisting of variables 1x , . . . , ix , . . . , nx , and 

Fig.4. Monthly discharge of the Manwan Reservoir(unnormalized) 



Y  is the output variable. In the flow modeling, values of ix  may be flow values with different 

time lags and the value of Y  is generally the flow in the next period. However, the number of 
antecedent flow values that should be included in the vector nX  is not known a priori. An 
ANFIS model is constructed initially with one antecedent flow in the input vector. The input 
vector is then modified by successively adding flow at one more time lag, and a new ANFIS 
model is developed each time. With the increase of the input vectors adding from one to six, Six 
ANFIS models were developed as follows: 

t t-1 t-nModel  n    Q f Q Q n 1 6= （ ，， ） = ，， 

where tQ  corresponds to the river flow at time t. 

The model performance is examined by means of the following indices: 
(1) The coefficient of correlation (CORR) given by:  
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where oQ (i) and fQ (i)  are, respectively, the observed and forecasted discharge and 

oQ , fQ denotes the mean of them, and n is the number data points considered. 

(2) The root mean square error (RMSE): 

n
2

f o
i 1

1RMSE (Q (i) Q (i))
n =

= −∑  

5.2. Results and discussions 

Table 2 shows the performance indices of ANFIS form model 1 to model 6, which are 
developed in Section 5.1, using the Gaussian membership function and the trapezoidal 
membership function respectively. The membership function of every input parameter within the 
architecture can be divided into two areas, i.e. small and large areas. The results indicate that 
model 3, which consists of three antecedent flows in input, showed the highest CORR and 
minimum RMSE during validation regardless of the adoption of Gaussian membership function or 
trapezoidal membership function for the ANFIS. It is selected as the best-fit model for describing 
the flow of the Manwan Hydropower. To demonstrate the effect of choice of membership function 
on the model performance, the triangular membership function (TRIMF), the trapezoidal 
membership function (TRAPMF), the generalized bell membership function (GBELLMF), the 
Gaussian membership function (GAUSSMF), the Gaussian combination membership function 
(GAUSS2MF), the spline-based membership function (PIMF) and the sigmoidal membership 
function (DSGMF) for the ANFIS structure are tested using model 3, and the results are presented 
in Table 3. It is showed that, the TRAPMF performs the best with the highest CORR and 
minimum RMSE during validation, and the GAUSSMF performs the worst. 



 
 
 
Model 

GAUSSMF TRAPMF 
Training Validation Training Validation 
RMSE CORR RMSE CORR RMSE CORR RMSE CORR 

1 0.11843 0.78539 0.13043 0.77773 0.11889 0.78348 0.12958 0.78156 
2 0.090325 0.88157 0.10475 0.86359 0.09186 0.87722 0.10694 0.85762 
3 0.075927 0.91793 0.099208 0.87957 0.075795 0.91823 0.097094 0.88877 
4 0.06605 0.93861 0.13718 0.78263 0.067406 0.93597 0.10266 0.87995 
5 0.061604 0.9469 0.14105 0.78515 0.065892 0.939 0.16199 0.72977 
6 0.058825 0.9518 0.41629 0.38461 0.060644 0.94868 0.27504 0.58358 
 
 
 
 
MF Training Validation 

RMSE CORR RMSE CORR 
TRIMF 0.079641 0.9093 0.097281 0.88339 
TRAPMF 0.075795 0.91823 0.097094 0.88877 
GBELLMF 0.075036 0.91993 0.10304 0.86983 
GAUSSMF 0.075927 0.91793 0.099208 0.87957 
GAUSS2MF 0.074961 0.9201 0.098256 0.88327 
PIMF 0.075463 0.91898 0.98573 0.88652 
DSGMF 0.07424 0.92169 0.99168 0.87999 

5.3. Result comparison with ANN Model 

   ANN model has been widely applied in flow prediction. The main advantage of the ANN 
approach over traditional methods is that it does not require information about the complex nature 
of the underlying process under consideration to be explicitly described in mathematical form. 
Hence, an ANN model is constructed using the same input parameters to the ANFIS model 3 to 
compare the performance of them in this case. A scaled conjugate gradient algorithm [18,19] is 
employed for training, and the hidden neurons are optimized by trial and error. The final ANN 
architecture consists of 3 hidden neurons. In order to have the same basis of comparison, the same 
training and verification sets are used for both models. The performances of ANN and ANFIS 
during training period and validation period are respectively presented in Figure 5 and Figure 6, 
and the performance indices of them is showed in Table 4. It is demonstrated that, when employed 
for flow prediction in Manwan, ANFIS exhibits some advantages over ANN model. During 
validation, the correlation coefficient of ANFIS model is 0.88877, which is larger than its 
counterparts of ANN model (0.87766). Moreover, the RMSE of ANFIS model is 0.097094, which 
is much smaller than that of ANN model (0.099927). 

Table.3. CORR and RMSE for model 3 with different MFs 

Table.2. CORR and RMSE for different models 



 

 

 

 
 
 
 Training Validation 

RMSE CORR RMSE CORR 
ANFIS 0.075795 0.91823 0.097094 0.88877 
ANN 0.080755 0.90662 0.099927 0.87766 

6. Conclusion 

In this study, an ANFIS model is used to predict long-term flow discharges in Manwan based 
on historical records. Data from January 1953 to December 1998 and from January 1999 to 
December 2003 are used for training and validation in monthly flow predictions, respectively. The 
results indicate the ANFIS model can give good prediction performance. The correlation 
coefficients between the prediction values and the observational values are 0.88877 and 0.91823 
for validation and training, respectively. The adoption of different membership functions for 
ANFIS show that the TRAPMF performs the best in long-term prediction of discharges in 
Manwan Hydropower consisting of three antecedent flows in input. It is found, through result 

Fig.5. ANFIS forecasted, ANN forecasted and observed flow during training period 

Fig.6. ANFIS forecasted, ANN forecasted and observed flow during validation period 

Table.4. Performance indices of ANN and ANFIS models 



comparison with an appropriate ANN model, that the ANFIS model is able to give more accurate 
prediction. This demonstrates its distinct capability and advantages in identifying hydrological 
time series comprising non-linear characteristics. 
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