Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/117098
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorWang, L-
dc.creatorYin, ZY-
dc.creatorChen, W-
dc.date.accessioned2026-02-02T09:30:58Z-
dc.date.available2026-02-02T09:30:58Z-
dc.identifier.issn0008-3674-
dc.identifier.urihttp://hdl.handle.net/10397/117098-
dc.language.isoenen_US
dc.publisherCanadian Science Publishingen_US
dc.rights© 2025 The Authors.en_US
dc.rightsThis is the accepted version of the work. The final published article is available at https://doi.org/10.1139/cgj-2025-0133.en_US
dc.subjectBreakageen_US
dc.subjectDynamic loadingen_US
dc.subjectGranular materialen_US
dc.subjectParticle crushingen_US
dc.subjectPeridynamicsen_US
dc.subjectThree-dimensional modellingen_US
dc.titleInsights into 3D particle crushing under dynamic conditions using an improved variable bond force peridynamic modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1-
dc.identifier.epage22-
dc.identifier.volume62-
dc.identifier.doi10.1139/cgj-2025-0133-
dcterms.abstractSimulation of particle crushing is a critical topic in computational mechanics, and in particular, 3D dynamic damage analysis using peridynamics (PD) constitutes an attractive research field. This study proposes a variable bond force peridynamic model (VBF-PD) that incorporates 3D micromodulus functions for different VBF forms, which have not been presented in previous literature. The proposed VBF-PD is capable of capturing the variation of bond force density along the interaction direction of a PD bond. An improved dynamic damage model is developed to effectively simulate particle crushing. Two constraint methods are introduced to characterise the interactions of deformable particle–particle and rigid impactor–particle. Then, benchmark tests are performed to examine numerical performance of the proposed VBF-PD. The results demonstrate that the method effectively simulates particle crushing with high fidelity. The particle aggregation model is constructed to explore the effects of particle arrangements, loadings, and material properties on failure modes. The findings provide valuable insights, revealing that the behaviour of particle aggregations differs significantly from that of few-particle systems due to the complex interactions among particles.-
dcterms.abstractLa simulation du broyage des particules est un sujet crucial en mécanique computationnelle, et en particulier, l'analyse dynamique 3D des dommages utilisant la péridynamique (PD) constitue un domaine de recherche attrayant. Cette étude propose un modèle péridynamique de force de liaison variable (VBF-PD) qui intègre des fonctions micromodules 3D pour différentes formes de VBF, qui n'ont pas été présentées dans la littérature antérieure. Le VBF-PD proposé est capable de capturer la variation de la densité de force de liaison le long de la direction d'interaction d'une liaison PD. Un modèle dynamique de dommages amélioré est développé pour simuler efficacement l’écrasement des particules. Deux méthodes de contrainte sont introduites pour caractériser les interactions entre particule déformable-particule et particule-impacteur rigide. Ensuite, des tests de référence sont effectués pour examiner la performance numérique du VBF-PD proposé. Les résultats démontrent que la méthode simule efficacement l’écrasement des particules avec une haute fidélité. Le modèle d'agrégation de particules est construit pour explorer les effets de l'agencement des particules, des charges et des propriétés des matériaux sur les modes de rupture. Les résultats fournissent des informations précieuses, révélant que le comportement des agrégations de particules diffère significativement de celui des systèmes à quelques particules en raison des interactions complexes entre les particules.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCanadian geotechnical journal, 2025, v. 62, p. 1-22, https://doi.org/10.1139/cgj-2025-0133-
dcterms.isPartOfCanadian geotechnical journal-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105023490445-
dc.identifier.eissn1208-6010-
dc.description.validate202602 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.SubFormIDG000963/2026-01en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was financially supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (Grant number: SKLGGES-024014) and the Research Grants Council of the Hong Kong Special Administrative Region (Grant numbers: T22-607/24-N, 15227923, 15229223).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Insights_Into_3D.pdfPre-Published version10.57 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.