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Abstract: Simulation of particle crushing is a critical topic in computational mechanics, and in particular, 3D dynamic 

damage analysis using peridynamics (PD) constitutes an attractive research field. This study proposes a variable bond 

force peridynamic model (VBF-PD) that incorporates 3D micromodulus functions for different VBF forms, which have 

not been presented in previous literature. The proposed VBF-PD is capable of capturing the variation of bond force density 

along the interaction direction of a PD bond. An improved dynamic damage model is developed to effectively simulate 

particle crushing. Two constraint methods are introduced to characterise the interactions of deformable particle-particle 

and rigid impactor-particle. Then, benchmark tests are performed to examine numerical performance of the proposed 

VBF-PD. The results demonstrate that the method effectively simulates particle crushing with high fidelity. The particle 

aggregation model is constructed to explore the effects of particle arrangements, loadings, and material properties on 

failure modes. The findings provide valuable insights, revealing that the behaviour of particle aggregations differs 

significantly from that of few-particle systems due to the complex interactions among particles. 

Keywords: particle crushing; breakage; granular material; peridynamics; dynamic loading; three-dimensional modelling

Highlights: 

 A variable bond force peridynamic model (VBF-PD) is proposed for modelling 3D particle crushing during dynamic 

impact processes.

 An improved dynamic damage model is developed to describe crushing of particle aggregation involving multiple 

particles. 

 Efficient constraint methods are proposed for addressing interactions of particle-particle and impactor-particle. 

 Effects of particle arrangements, loadings, and material properties on dynamic damage of particle aggregations are 

thoroughly explored. 
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1. Introduction

Particle crushing is a fundamental phenomenon in granular mechanics, critical for understanding 

mechanical properties and material stability, as it reveals the macroscopic mechanisms of geomaterial breakage. 

Breakage of particle systems alters the morphology of particle distributions and the interparticle contact states 

within particle aggregations (Einav 2007a, 2007b). These effects further modify the mechanical and hydraulic 

properties of granular aggregations, including strength, stiffness, and permeability (de Gennes 1998; Mesri 

and Vardhanabhuti 2009; Zhao et al. 2023). The macroscopic stability of structures, such as foundations, 

excavations, and slopes, is fundamentally influenced by progressive damage at the small scale (Chen et al. 

2021; Zar et al. 2024), and is also affected by the mechanical properties of the aggregate materials (Rui et al. 

2020; Tan et al. 2021). Therefore, studying breakage and damage mechanisms enables engineers to predict 

material behaviour under complex environments, design safer structures, and optimize performance in 

infrastructure projects (Ogata and Yasuhara 2023; Zar et al. 2024). Many research works have been dedicated 

to this topic, including theoretical analysis (Henkes and Chakraborty 2009; Buscarnera and Einav 2021), 

experiments (Hall and Wright 2015; Tang et al. 2022; Li et al. 2024), and numerical simulations (Einav 2007b; 

Augarde et al. 2021). Nevertheless, several key challenges persist, as outlined below: (1) Particle interactions: 

unlike continuous media, granular materials exhibit intricate behaviours influenced by factors such as particle 

size, arrangement modes, and material properties (de Gennes 1998; Zhao et al. 2023); (2) Dynamic 

characteristics: failure mechanisms involve intricate damage and dynamic responses, which make failure 

prediction particularly difficult (Einav 2007a, 2007b); and (3) Nonlinear effects: impact loading introduces 

nonlinearities that further complicate simulation (Pöschel and Schwager 2005). To this end, this study aims to 

develop an efficient method for modelling the crushing of 3D particles. 

Advanced computational methods are essential for capturing the complexities described above and for 

improving understanding of breakage mechanisms. Over the past decades, numerous efficient numerical 

methods have been proposed to address the challenges in particle crushing simulations (Einav 2007b; Augarde 

et al. 2021; Pöschel and Schwager 2005; Bui and Nguyen 2021). These methods can be basically categorized 

into three groups: (1) the mesh-based methods; (2) the particle-based methods; (3) the coupling methods. The 

Finite Element Method (FEM) (Chung and Chiang 1996; Turner et al. 2019; Zhang et al. 2020) and the Material 

Point Method (MPM) (Liang et al. 2024) are two representative mesh-based methods extensively applied in 

granular mechanics. However, both FEM and MPM require additional treatments to better capture the intricate 

interactions among particles. The finite element-based methods are renowned for accuracy in continuum 

mechanics but faces significant challenges in large deformations and discontinuities (Jin et al. 2021; Wong 

and Cui 2023). Issues such as severe mesh distortion and remeshing hinder its ability to accurately model large 

deformations and failure. MPM combines particle- and mesh-based approaches, addressing some issues in 

FEM but additionally introduces its own tough nuts. The transfer of information between particles and the 

meshes leads to numerical diffusion and inaccuracies, particularly when simulating sharp interfaces and 

complex interactions in granular systems (Augarde et al. 2021). The particle-based methods, such as the 

Discrete Element Method (DEM) (Lobo-Guerrero and Vallejo 2005; de Bono and McDowell 2020; Wang and 
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Yin 2022) and Smoothed Particle Hydrodynamics (SPH) (Yin et al. 2018; Longo et al. 2019), are generally 

more effective in handling these scenarios. The Contact Dynamics Method (CDM) (Azéma et al. 2013), 

grounded in rigorous contact theory, serves as a foundation for both DEM and SPH, enabling them to 

accurately capturing contact mechanics. DEM excels in capturing rigid particle interactions but struggles with 

computational efficiency when simulating large numbers of particles. Besides, it faces difficulties in accurately 

modelling fine-scale phenomena, especially breakage and progressive failure processes. SPH is well-suited for 

handling fluid-like behaviours and large deformations but suffers from numerical instability and inaccuracies 

in capturing contact forces. The CDM, DEM and SPH require substantial computational resources and may 

face issues in achieving high-resolution simulations for the detailed damage analysis. 

On the other hand, many advanced techniques have been developed by coupling different numerical 

frameworks, typically the Finite Element-Discrete Element Method (FEM-DEM) (Li et al. 2016; Ma et al. 

2016; Wei et al. 2019), the Phase-Field-DEM (PF-DEM) (Sac-Morane et al. 2024), the Computational Fluid 

Dynamics-DEM (CFD-DEM) (Liu et al. 2020; Wang et al. 2025), and the Particle Finite Element Method 

(PFEM) (Jin et al. 2021). However, FEM-DEM and PF-DEM often face challenges with computational 

efficiency due to the complexity in integrating the continuum (FEM or PF) and discrete (DEM) components. 

The interface between these components can lead to inaccuracies and make it difficult to capture fine-scale 

interactions and damage. CFD-DEM may encounter difficulties in modelling damage progression and finer 

details of particle crushing (Augarde et al. 2021; Bui and Nguyen 2021). PFEM has achieved great success in 

modelling large deformations and failure of solids, particularly in geotechnical stability problems (Jin et al. 

2021). As a finite element-based method, it lacks the capability in capturing granular material breakage. 

Therefore, it is essential to develop a new framework to address the limitations of conventional methods. 

Given this challenge, the nonlocal theory provides an effective solution. Peridynamic (PD) theory, 

pioneered by Silling (Silling 2000; Silling et al. 2007), is a nonlocal framework successfully used to model 

spontaneous damage. In contrast to conventional methods, PD formulates the governing equation as an 

integral-differential form, facilitating damage simulations without additional techniques (Silling and Lehoucq 

2010). Damage simulation is achieved by eliminating bond interactions between PD particles, thereby 

representing damage evolution within a unified framework. The original PD formulation proposed by Silling 

(2000), known as the bond-based PD (BB-PD). One advantage of PD framework is that it eliminates the need 

to calculate the stress intensity factor, as required in classical fracture mechanics (Bobaru et al. 2016; Wang et 

al. 2024a). But it is constrained by a fixed Poisson's ratio, limiting its ability to model material 

incompressibility. To overcome these drawbacks, the ordinary state-based peridynamics (OSB-PD) and the 

non-ordinary state-based peridynamics (NOSB-PD) have been proposed (Silling et al. 2007; Silling and 

Lehoucq 2010; Madenci and Oterkus 2013). These achievements improve flexibility and accuracy of PD in 

capturing complex material behaviours (Bobaru et al. 2016; Wang et al. 2023; Wang and Yin 2024b) as well 

as coupling process (Bie et al. 2024a, 2024b). In this study, we focus on brittle and elastic granular materials 

without delving into complex material constitutive relations. We aim to modify the BB-PD framework to 

enhance its applicability for 3D particle breakage. 

Although some studies have focused on simulating particle crushing using PD, most have focused on the 
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analysis of single particles, as seen in works such as (Blanc et al. 2021; Diehl et al. 2019; Walayat et al. 2023). 

In PD simulation, a single particle is usually impacted by a rigid object to replicate particle breakage under 

rigid body impact conditions. Nevertheless, modelling interactions among multiple particles remains 

challenging (Pöschel and Schwager 2005; Augarde et al. 2021; Bui and Nguyen 2021). A key issue is the need 

to integrate the DEM-based algorithms to update the contact forces between particles (Wang et al. 2023; Neto 

2023). However, this treatment is often impractical due to the substantial computational resources required for 

detecting contact interfaces (Neto 2023). Even if the contact interfaces can be accurately detected, achieving 

reliable numerical convergence continues to pose a major challenge (Konrad and Salami 2018; Wang et al. 

2022). Based on the challenges outlined above, this study focuses on the following aspects: (1) developing an 

improved variable bond force peridynamic framework (VBF-PD); (2) integrating an improved dynamic 

damage model into the proposed framework; (3) proposing constraint methods for particle interactions; and 

(4) exploring the mechanisms of particle crushing during impact contact. 

The article is organised as follows. Section 2 provides the fundamental formulation of PD. Section 3 

proposes the VBF-PD with integration of an improved dynamic damage model. It includes the derivations of 

3D VBF, which have not been presented in existing literature. Section 4 discusses modelling methods for 

particle-particle and impactor-particle interactions. Sections 5 and 6 provide details on numerical discretisation, 

validations, and applications. 

2. Fundamental formulation of peridynamics

2.1 Peridynamic kinematics

As shown in Fig. 1, a solid medium occupies a space in the reference (initial) configuration 𝛺0, and 

evolves into the current configuration under deformation, denoted as 𝛺t. A material point within 𝛺0 is 

denoted by 𝒙, which interacts with neighbouring points 𝒙′ within a range defined by the peridynamic horizon 

𝛿. In PD formulation, the peridynamic bond, defined as 𝝃 = 𝒙′ ― 𝒙, is introduced to capture the relative 

position between material points 𝒙 and 𝒙′ (Silling 2000). The length of a bond is expressed as |𝝃|. The 

relation |𝝃| < 𝛿 defines the set of neighbouring points associated with 𝒙. The peridynamic family of point 

𝒙 is represented by 𝐻𝑥 = {𝒙′|𝒙 ∈ 𝛺0,𝒙′ ∈ 𝛺0,|𝒙′ ― 𝒙| < 𝛿} (Silling and Lehoucq 2010; Wang and Yin 

2024b). 

During deformation or failure of the solid medium, the positions of material points 𝒙 and 𝒙′ are 

transformed to 𝒚 and 𝒚′, respectively. The displacements 𝒖 and 𝒖′ corresponding to these two points are 

represented by: 

𝒖 = 𝒖(𝒙,𝑡) = 𝒚 ― 𝒙
𝒖′ = 𝒖(𝒙′,𝑡) = 𝒚′ ― 𝒙′ (1)

where 𝑡 represents time. The relative displacement 𝜼 (the current bond) between material points is 

calculated by: 
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𝜼 = 𝒖′ ― 𝒖 = (𝒚′ ― 𝒚) ― 𝝃 (2)

which indicates that the bond 𝝃 is represented as 𝜼 + 𝝃 in the current configuration, as illustrated in Fig. 1. 

The bond stretch, denoted by 𝑠, characterises the relative variation in the length of bond 𝝃 and is calculated 

by: 

𝑠 =
|𝜼 + 𝝃| ― |𝝃|

|𝝃|
(3)

Fig. 1. Schematic of peridynamic model: (a) The initial and current configurations; (b) Peridynamic material points.

In PD, the interaction between any pair of two material points is described by the pairwise bond force 

density function 𝒇 (Silling and Lehoucq 2010; Wang and Yin 2024b). The function 𝒇(𝜼,𝝃,𝑡) represents the 

force (unit: per unit volume squared) exerted by point 𝒙′ on point 𝒙, while ― 𝒇(𝜼,𝝃,𝑡) represents the force 

exerted by point 𝒙 on point 𝒙′. Therefore, the internal force within the solid medium can be captured by 

function 𝒇. 

The peridynamic momentum balance equation of point 𝒙 is formulated as follows (Silling and Lehoucq 

2010; Wang et al. 2023): 

𝜌𝒖(𝒙,𝑡) = 𝑳(𝒙,𝑡) + 𝒃(𝒙,𝑡) (4)

where 𝒖(𝒙,𝑡) represents the acceleration of point 𝒙, 𝜌 is the mass density in the reference configuration, 𝒃(

𝒙,𝑡) denotes the body force density vector. The internal force function 𝑳(𝒙,𝑡) (unit: per unit volume) is 

formulated as (Silling and Lehoucq 2010; Wang and Yin 2024b): 

𝑳(𝒙,𝑡) = ∇ ⋅ 𝝈(𝒙,𝑡) =
 

𝐻𝑥

𝒇(𝜼,𝝃,𝑡) d𝑉′ (5)

where d𝑉′ denotes the infinitesimal volume associated with 𝒙′. This treatment eliminates the necessity for 

derivative calculations inherent in classical elasticity, replacing the divergence of the stress tensor, ∇ ⋅ 𝝈(𝒙,𝑡), 

with an integral form. The function 𝒇(𝜼,𝝃,𝑡) must satisfy the admissibility conditions (Silling 2000; Silling 

Initial configuration Current configuration 

(a)

(b)
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et al. 2007), which are expressed through the conservations of linear and angular momentum, 𝒇( ―𝜼, ― 𝝃,𝑡)

= ― 𝒇(𝜼,𝝃,𝑡) and (𝜼 + 𝝃) × 𝒇(𝜼,𝝃,𝑡) = 0. 

2.2 Constitutive relations in peridynamics

In this study, we use the well-developed constitutive modelling method proposed by Silling and Askari 

(2005) and Silling and Lehoucq (2010), known as the microelastic material model. This model requires that 

the condition ∫ 
𝛤 𝒇(𝜼,𝝃,𝑡)d𝜼 = 0 be satisfied, where 𝛤 is an arbitrary closed path within the medium. It 

implies that the pairwise bond force density 𝒇 can be derived from a potential function 𝑤(𝜼,𝝃) (unit: per 

energy unit volume squared), formulated as (Silling 2000; Silling and Askari 2005): 

𝒇(𝜼,𝝃,𝑡) =
∂𝑤(𝜼,𝝃)

∂𝜼
(6)

Consequently, the energy density (unit: per unit volume), denoted as 𝑒, can be calculated by: 

𝑒 =
1
2

 

𝐻𝑥

𝑤(𝜼,𝝃) d𝑉𝜉 (7)

where d𝑉𝜉 represents the volume associated with 𝒙. The potential function 𝑤(𝜼,𝝃) determines the complete 

forms of the bond force density 𝒇 and the energy density 𝑒. An implicit representation of the force density 

function can be derived from Eqs. (6) and (7) as follows: 

𝒇(𝜼,𝝃,𝑡) = 𝐹(|𝜼 + 𝝃|,𝝃) 𝜼 + 𝝃
|𝜼 + 𝝃| (8)

where 𝐹(|𝜼 + 𝝃|,𝝃) is a scalar function that exclusively depends on the length of current bond 𝜼 + 𝝃 and the 

initial bond vector 𝝃 (Silling and Askari 2005; Wang and Yin 2025). The prototype microelastic brittle (PMB) 

model offers a widely used form for the function 𝐹: 

𝐹(|𝜼 + 𝝃|,𝝃) = 𝑐𝑠𝜇(𝝃,𝑡) (9)

where 𝑐 is the micromodulus function of the PMB material, 𝑠 is the bond stretch (Eq. (3)), and 𝜇(𝝃,𝑡) is 

the damage indicator. The expression of 𝑐 is derived based on the equivalence between the energy density 

calculated by classical elasticity and peridynamics, given by Silling and Askari (2005) and Madenci and 

Oterkus (2013): 

𝑐 =

18𝐾
𝜋𝛿4 ,           for 3D

12𝐾′
𝜋ℎ𝛿3 ,         for 2D

(10)

where 𝐾 and ℎ represent the bulk modulus and thickness of material, respectively. The 2D bulk modulus 

𝐾′ is given by 𝐾′ = 𝐸/(2(1 ― 𝜈)) for plane stress problem and 𝐾′ = 𝐸/(2(1 + 𝜈)(1 ― 2𝜈)) for plane 

strain, where 𝐸 and 𝜈 denote Young's modulus and Poisson's ratio. 
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Consistent with the relevant works (Silling 2000; Wang and Yin 2025), our result Eq. (8) can be recast 

into: 

𝒇(𝜼,𝝃,𝑡) = 𝑪(𝝃)𝜼     for any 𝝃 and 𝜼 (11)

where 𝑪(𝝃) is the micromodulus tensor, generally written as 𝑪(𝝃) = ∂𝒇(𝟎,𝝃)/∂𝜼, and it satisfies the 

symmetry condition 𝑪( ― 𝝃) = 𝑪(𝝃) for any 𝝃 (Wang and Yin 2025). On the other hand, from Eqs. (8) and 

(9), and substituting Eq. (3), the micromodulus tensor for a linearized model can be obtained: 

𝑪(𝝃) =
𝑐𝜇(𝝃,𝑡)

|𝝃|
𝜼 + 𝝃

|𝜼 + 𝝃| ⊗
𝜼 + 𝝃

|𝜼 + 𝝃| (12)

The method for determining 𝜇(𝝃,𝑡) in Eqs. (9) and (12) and the details of peridynamic damage modelling 

will be elaborated in Section 3.3. 

3. The variable bond force peridynamic model (VBF-PD)

In this section, a 3D variable bond force peridynamic (VBF-PD) model is proposed, incorporating 

different VBF types for the construction of micromodulus functions. Then, an improved damage model is 

proposed to simulate the variable critical bond strain and mixed failure modes. 

3.1 Conventional bond force function

The conventional form of bond force density function is derived from the linearized formulation of bond-

based peridynamics (Silling and Askari 2005). Combining Eqs. (8) and (9), it yields: 

𝒇(𝜼,𝝃,𝑡) = 𝑠𝑐𝜇(𝝃,𝑡) 𝜼 + 𝝃
|𝜼 + 𝝃| (13)

The conventional form of the micromodulus function 𝑐 used in Eq. (13) remains constant along the 

peridynamic bond 𝝃, resulting in a fixed value of 𝒇(𝜼,𝝃,𝑡) during solid deformation, as illustrated in Fig. 2a. 

However, from a physical perspective, the value of material parameter 𝑐 should depend on the length of bond, 

denoted as |𝝃|. Notably, Kilic and Madenci (2009), Huang et al. (2015a), and Wang and Yin (2025) have 

proposed various approaches to account for the variation in 𝑐. 

Previous studies have explored the effect of different forms of 𝑐 in PD simulations (Kilic and Madenci 

2009; Huang et al. 2015a; Li et al. 2021), but limited results have presented for variable 𝑐 in 3D formulations. 

Herein, we revise the conventional bond force function (Eq. (13)) by rearranging 𝑐 as a function of the 

peridynamic bond 𝝃: 

𝑐(𝝃) = 𝑐0𝑔(𝝃) (14)

where 𝑔(𝝃) represents the attenuation function. In the conventional bond force form (Eq. (13)), 𝑔(𝝃) = 1, 

and the initial micromodulus 𝑐0 is determined by Eq. (10), which remains constant once the horizon 𝛿 is 

specified. Then, we derive the explicit form of variable 𝑔(𝝃) in the following section. 
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Fig. 2. Illustration of VBF: (a) Variation of 𝑐(𝝃) with change of distance |𝝃|; (b) The relative positions between two PD points in 

the spherical coordinate system. 

3.2 The variable bond force (VBF) function

According to Eqs. (13) and (14), the improved version of the bond force function (the VBF function) can 

be written as: 

𝒇(𝜼,𝝃,𝑡) = 𝑠𝑐0𝑔(𝝃)𝜇(𝝃,𝑡) 𝜼 + 𝝃
|𝜼 + 𝝃| (15)

Correspondingly, the expression of the micromodulus tensor (Eq. (12)) can be recast into: 

𝑪(𝝃) =𝑐0𝑔(𝝃)
𝜇(𝝃,𝑡)

|𝝃|
𝜼 + 𝝃

|𝜼 + 𝝃| ⊗
𝜼 + 𝝃

|𝜼 + 𝝃| (16)

where the method for determining 𝑔(𝝃) is crucial for achieving variable bond forces in the VBF-PD. To this 

end, we introduce the criteria for constructing the attenuation function 𝑔(𝝃), also referred to as the kernel 

function, which are expressed as follows (Huang et al. 2015a; Wang and Yin 2025): 

  𝑔(𝝃) = 𝑔(―𝝃)

  lim
|𝝃|→0

𝑔(𝝃) = max 𝑔

  lim
|𝝃|→𝛿

𝑔(𝝃) = 0

  
∞

―∞
lim
𝛿→0

𝑔(𝝃) = 1

(17)

In the VBF-PD, the expression of 𝑐0 differs from that in the conventional bond force form. Most of the 

relevant literature provides the expressions of 𝑐0 only under 1D or 2D conditions (Huang et al. 2015a; Wang 

and Yin 2025). In this study, we extend these results to 3D conditions. The derivation procedure is analogous 

to that of Silling and Askari (2005) and Madenci and Oterkus (2013), where the strain energy densities 

calculated from classical continuum mechanics (𝑊CM) and peridynamics (𝑊PD) are equated. In the spherical 

coordinate system 𝑂 𝜑,𝜃,|𝝃|  illustrated in Fig. 2b, 𝑊PD is computed by: 

(a) (b)
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𝑊PD =
1
2

𝛿

0

2𝜋

0

𝜋

0
𝑐0𝑔(𝝃)

𝑠2
0|𝝃|3

2 sin 𝜑 d𝜑 d𝜃 d|𝝃| (18)

where 𝜑 and 𝜃 are azimuth and polar angles, respectively. 𝑠0 is the bulk stretch in dilatant deformation. 

The specified forms of 𝑔(𝝃) can be chosen in different forms (Li et al. 2021). In this study, we consider five 

types, as listed in Table 1. 

Table 1

Expressions of different VBF functions and the corresponding quantities derived in this study. 

Function form 𝑔(𝝃) 𝑐0 𝑊PD 𝑊CM

Exponential VBF e―|𝝃|
𝛿

3

12 ―
32
e

𝐸
(1 ― 2𝜈)𝛿4𝜋 𝜋𝑐0𝛿4𝑠2

0 6 ―
16
e

Gaussian VBF
e―

𝝃
𝛿

2 3

1 ―
2
e

𝐸
(1 ― 2𝜈)𝛿4𝜋 𝜋𝑐0𝛿4𝑠2

0
1
2 ―

1
e

Parabolic VBF
1 ―

𝝃
𝛿

2 2 36𝐸
(1 ― 2𝜈)𝛿4𝜋

𝜋𝑐0𝛿4𝑠2
0

24

Cosinoidal VBF
cos

𝜋𝝃
2𝛿

3𝜋4

4(𝜋3 ― 24𝜋 + 48)
𝐸

(1 ― 2𝜈)𝜋𝛿4

2
𝜋3 𝑐0𝛿4𝑠2

0(𝜋3 ― 24𝜋 + 48)

Constant VBF 1 6𝐸
(1 ― 2𝜈)𝛿4𝜋

𝜋𝑐0𝛿4𝑠2
0

4

3
2

𝐸
(1 ― 2𝜈) 𝑠2

0

for all VBF forms

Remarks: (1) 𝑔(𝝃) is the attenuation function. 𝑐0 is the initial micromodulus. 𝑊CM and 𝑊PD are the strain energy densities in continuum 

mechanics and peridynamics. (2) 𝑔(𝝃) = 1 corresponds to the constant function used in the conventional formulation. (3) The derivation details are 

provided in Appendix A. 

By Analogy with Eq. (18), the strain energy density 𝑊CM in classical continuum mechanics (Malvern 

1969) is computed under the same loading conditions as in the derivation of 𝑊PD: 

𝑊CM =
1
2 𝜆(𝜀𝑘𝑘𝜀𝑘𝑘)2 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 (19)

where 𝜀𝑖𝑗 are the components of strain tensor, 𝜀𝑘𝑘 are the principal components of strain tensor, 𝜆L and 𝜇L 

are the Lamé elastic constants, given by 𝜆L = 𝐸𝜈/((1 + 𝜈)(1 + 2𝜈)) and 𝜇L = 𝐸/(2(1 + 𝜈)). Substituting 

𝑔(𝝃) from Table 1 into Eq. (18) and combining it with Eq. (19), different forms of 𝑐0 under 3D conditions 

are obtained by relation 𝑊CM = 𝑊PD. The results are summarised in Table 1, with detailed derivations 

provided in Appendix A. 

Fig. 2a illustrates the variation of 𝑐(𝝃) (Eq. (14)) with varying 𝝃. The properties of different forms of 𝑐

(𝝃) are summarised as follows: 

 The constant VBF used in the conventional method fails to capture variation in 𝑐(𝝃). 

 The parabolic VBF achieves the relatively highest value; the exponential type exhibits a sharp 

discontinuity at the position of PD point itself (at |𝝃| = 0). 

 The values of parabolic and cosinoidal types are zero at the edge of horizon 𝛿 (at |𝝃| = 𝛿). 

 From Table 1, there are no substantial differences among the various forms of VBF. The main 

distinction is that additional effort is required to calculate 𝝃, which is not needed in the conventional 

Page 10 of 35Canadian Geotechnical Journal (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

T
he

 H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
 o

n 
11

/2
0/

25
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



10

method (i.e. the constant VBF). 

3.3 An improved damage model

Characterisation of damage. In PD, material damage is described by the breakage of bonds between 

material points. The critical bond strain 𝑠c is a core parameter in damage simulations. It is determined by 

equating the energy release rate calculated from classical elasticity with that from peridynamics, expressed as 

(Madenci and Oterkus 2013; Wang et al. 2023): 

𝑠c =

5𝐺c

9𝐾𝛿,         for 3D

𝜋𝐺c

3𝐾′𝛿,       for 2D

(20)

where 𝐺c represents a material property obtained from fracture mechanics experiments, commonly referred 

to as the critical energy release rate (Silling and Askari 2005; Wang et al. 2023). The damage indicator 𝜇(𝝃,𝑡) 

introduced in Eqs. (9) and (12) depends on 𝑠𝑐. For tensile-sensitive damage (T-D) materials, 𝜇(𝝃,𝑡) can be 

determined based on the value of 𝑠𝑐 as follows: 

𝜇(𝝃,𝑡) =
1,       if 𝑠 < 𝑠c

0,      if 𝑠 ≥ 𝑠c
,      for T-D (21)

Then, once 𝜇(𝝃,𝑡) for each peridynamic bond is obtained, the local damage factor 𝑑(𝒙,𝑡) associated 

with point 𝒙, as well as the global damage factor 𝐷g of the solid medium, can be calculated as follows: 

𝑑(𝒙,𝑡) =
∫ 

𝐻𝑥
1 ― 𝜇(𝝃,𝑡) d𝑉𝜉

∫ 
𝐻𝑥

 d𝑉𝜉

𝐷g =
𝑁fail

𝑁total

(22)

where 𝑁fail and 𝑁total denote the numbers of broken bonds and total bonds, respectively. 

Compression and tensile failure mode. In conventional PD simulations, the failure mode is typically 

assumed to be tensile-dominant and not sensitive to compressive loading. However, previous studies have 

demonstrated that brittle materials, such as concretes, rocks, and ceramics, are fragile when pre-existing defects 

are present (Bažant and Planas 1998). To simulate this feature, we consider the tensile-sensitive damage (T-

D) criterion, and the mixed tensile and compressive-sensitive damage (TC-D) criterion. 

The T-D criterion is outlined in Eq. (21), while the TC-D criterion can be defined by considering the 

absolute value of the bond stretch, denoted as |𝑠|, written as: 
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|𝑠| = ||𝜼 + 𝝃| ― |𝝃|
|𝝃| | (23)

Analogous to Eq. (21), the TC-D criterion is formulated as follows:

𝜇(𝝃,𝑡) =
1,       if |𝑠| < 𝑠c

0,      if |𝑠| ≥ 𝑠c
,      for TC-D (24)

Variable critical bond strain. Eq. (20) provides an approach for calculating the critical bond strain 𝑠c, 

which is typically assumed to be constant in conventional PD simulations. However, in practical scenarios, 

material strength may change with the progression of deformation and damage, making a constant 𝑠c 

inadequate to capture this feature (Silling and Askari 2005). To address this issue, a modified form of the bond 

stretch is defined as: 

𝑠′
c = 𝑠c ― 𝐴0𝑠min (25)

where 𝑠′
c is the variable bond critical strain, 𝑠c is the initial critical bond strain determined by Eq. (20), 𝐴0 

is a coefficient set to 0.25 (Silling and Askari 2005), and 𝑠min represents the minimum value of bond stretch 

among all bonds. 

4. Impact contact modelling method

In this section, we develop an impact contact model to simulate particle interaction during crushing 

processes. To achieve this, two distinct methods are utilised to separately address particle-particle and 

impactor-particle interactions. 

4.1 Interaction relations in aggregated particles

Simulation of particle crushing during impact contact requires a specialised technique to handle the 

contact at the interface between two objects, serving as a supplement to the peridynamic formulation outlined 

in Sections 2 and 3. Without an efficient contact modelling technique, unphysical scenarios, particularly the 

overlapping of contacting objects, may occur (Lu et al. 2021; Wang et al. 2023). 

As illustrated in Fig. 3, following conventions in computational contact mechanics (Wriggers 2006), the 

loading bar is referred to as the "impactor", while the particle aggregation is considered as the "target". The 

primary focus is on modelling the impactor-target interaction. 

An initial velocity 𝑣0 is applied to the impactor. For illustration, we consider three identical particles, 

denoted as Particles P1, P2, and P3, as shown in Fig. 3a. Particle P1 serves as the target, which is in direct 

contact with the impactor (the loading bar). The interactions between P1-P2, P2-P3, and P1-P3 differ from the 

target-impactor contact. To clarify this, two types of connections are involved in this model: 

 Contact constraint (C-constraint): Impactor-to-target (impactor-P1) interaction is modelled using 

the C-constraint, including the computation of the contact force, as shown in Fig. 3b. The C-

constraint is typically implemented through iterative methods during impact contact. 
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 Tie constraint (T-constraint): Particle-to-particle (P1-P2, P2-P3, P1-P3) interactions are modelled 

using the T-constraint, where the interface between two particles is represented by a merging 

interface, as shown in Fig. 3c. The deformation at particle interfaces is identical for two closely 

positioned particles, as the particles are arranged in a compact pattern with minimal space between 

particle pairs. 

Fig. 3. Schematic of interactions in a particle system: (a) An example of simply particle system; (b) Connection of impactor-target 

using C-constraint; (c) Connection between two particles using T-constraint. 

4.2 Impact contact algorithm

The key differences between the C- and T-constraints lie in the complexity of computing contact forces 

and the arrangement of material points. Further details are given as follows. 

T-constraint. The interface between P1 and P2 is denoted as 𝑆P1-P2. The displacement vectors at 𝑆P1-P2 

corresponding to P1 and P2 are represented by 𝒖P1
𝑖  and 𝒖P2

𝑗 , as illustrated in Fig. 3c. Here, 𝑖 and 𝑗 denote 

the indices of particles at the interface. The T-constraint requires the following condition: 

𝒖P1
𝑖 = 𝒖P2

𝑗 ,      at 𝑆P1-P2 (26)

C-constraint. The complexity of C-constraint arises from the complexities in computing contact forces 

and updating particle positions. In the VBF-PD, we use the impact contact algorithm developed by Madenci 

and Oterkus (2013). As shown in Fig. 3b, the impactor is assumed to be rigid. The 𝑘-th PD material point at 

the impactor-target interface is denoted as 𝒙𝑘. The displacements of point 𝒙𝑘 at time 𝑡 and time 𝑡 + Δ𝑡 are 

denoted as 𝒖𝑡
𝑘 and 𝒖𝑡+Δ𝑡

𝑘 , respectively. Δ𝑡 represents the time increment. The velocity at time 𝑡 + Δ𝑡 is 

calculated as: 

𝒗𝑡+Δ𝑡
𝑘 =

𝒖𝑡+Δ𝑡
𝑘 ― 𝒖𝑡

𝑘
Δ𝑡

(27)

Impact contact

v0

Particle P1 (target)

Impactor

Particle P1 (target)

Time t Time t + Δt

PD points 
(front view)

Particle P1

Particle P2

Assembling 

T-constraint 
Interface 

SP1-P2

(b)

(c)

Particle P1
(Target)

Particle P2

Particle P3 PD points

Impactorv0

Impactor-to-target: C-
constraint

Particle-to-particle: T-
constraint

(a)
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The force exerted on the impactor by point 𝒙𝑘 is calculated by:

𝑭𝑡+Δ𝑡
𝑘 = ― 𝜌𝑘

𝒗𝑡+Δ𝑡
𝑘 ― 𝒗𝑡

𝑘
Δ𝑡 𝑉𝑘 (28)

where 𝜌𝑘 and 𝑉𝑘 are the density and volume associated with point 𝒙𝑘. The resultant force 𝑭𝑡+Δ𝑡
total, referred 

to as the total force, acting on the impactor can be obtained by summing 𝑭𝑡+Δ𝑡
𝑘  over the particles that are 

penetrated inside the impactor, expressed by: 

𝑭𝑡+Δ𝑡
total =

 

𝑘=1
𝑭𝑡+Δ𝑡

𝑘 𝜆𝑡+Δ𝑡
𝑘 (29)

where 𝜆𝑡+Δ𝑡
𝑘  is an indicator. It equals to 1 if the particle penetrates is inside the impactor; otherwise, it equals 

to 0. 

5. Numerical discretization

5.1 Discretization forms and explicit time integration

The discretization method proposed by Silling and Askari (2005) has found extensive applications in 

numerical implementation of peridynamics. In this method, there are no need for connectivity information of 

grids or material points, making it inherently mesh-free. The integral form of the peridynamic momentum 

balance equation (Eq. (4)) at time step 𝑛 can be discretized as: 

𝜌𝒖𝑛
𝑖 =

 

𝑗∈𝐻𝑖

𝒇 𝜼𝑛
𝑗𝑖,𝝃𝑗𝑖,𝑡 𝑉𝑗 + 𝒃𝑛

𝑖 (30)

where the variables labelled with superscript 𝑛 denote the values at time step 𝑛, 𝐻𝑖 denotes the family of 

PD point 𝒙𝑖, 𝑉𝑗 is the volume associated with 𝒙𝑗 inside 𝐻𝑖, as shown in Fig. 4. 𝒖𝑛
𝑖  and 𝒃𝑛

𝑖  are the 

acceleration vector and body force density associated with 𝒙𝑖, respectively. 𝜼𝑛
𝑗𝑖 and 𝝃𝑗𝑖 are the current bond 

and the initial bond, respectively. 𝜼𝑛
𝑗𝑖 depends on the displacement vectors during deformation, while 𝝃𝑗𝑖 is 

time-independent, and can be expressed as:

𝜼𝑛
𝑗𝑖 = 𝒖𝑛

𝑗 ― 𝒖𝑛
𝑖

𝝃𝑗𝑖 = 𝒙𝑗 ― 𝒙𝑖
(31)

The following simplified notations are adopted here: 

𝒖𝑛
𝑖 = 𝒖(𝒙𝑖,𝑡𝑛)

𝒃𝑛
𝑖 = 𝒃(𝒙𝑖,𝑡𝑛)

𝒇𝑛
𝑗𝑖 = 𝒇 𝜼𝑛

𝑗𝑖,𝝃𝑗𝑖,𝑡
(32)

In PD, the pairwise bond force density function 𝒇𝑛
𝑗𝑖 can be physically interpreted as the interaction 

exerted on 𝒙𝑖 by 𝒙𝑗, whereas 𝒇𝑛
𝑖𝑗 represents the interaction exerted on 𝒙𝑗 by 𝒙𝑖, as displayed in Fig. 4. 

Page 14 of 35Canadian Geotechnical Journal (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

T
he

 H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
 o

n 
11

/2
0/

25
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



14

The expression of 𝒇𝑛
𝑗𝑖 is given by Eq. (8) or its linearized form in Eq. (11). The discretised form of Eq. (8) is 

formulated as:

𝒇𝑛
𝑗𝑖 = 𝑐𝑠𝑛

𝑗𝑖𝜇 𝝃𝑗𝑖,𝑡
𝜼𝑛

𝑗𝑖 + 𝝃𝑗𝑖

|𝜼𝑛
𝑗𝑖 + 𝝃𝑗𝑖|

𝑠𝑛
𝑗𝑖 =

|𝜼𝑛
𝑗𝑖 + 𝝃𝑗𝑖| ― |𝝃𝑗𝑖|

|𝝃𝑗𝑖|

(33)

In the VBF-PD proposed in Section 3.2, the attenuation function 𝑔 𝝃𝑗𝑖  should be incorporated into Eq. 

(33), such that 𝑐 = 𝑐0𝑔 𝝃𝑗𝑖 , with different forms summarised in Table 1. The central difference scheme is 

utilised to update velocity and acceleration (Silling and Askari 2005; Wriggers 2006): 

𝒖𝑛+1/2
𝑖 =

𝒖𝑛+1
𝑖 ― 𝒖𝑛

𝑖
Δ𝑡

𝒖𝑛
𝑖 =

𝒖𝑛+1
𝑖 ― 2𝒖𝑛

𝑖 + 𝒖𝑛―1
𝑖

Δ𝑡2

(34)

where the notations 𝑛 + 1, 𝑛, 𝑛 ― 1, 𝑛 + 1/2 represent numbers of time step (𝑛 ≥ 1), termed as the 

updated step, current step, and the previous steps, respectively. Different time instants are denoted as follows: 

𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡
𝑡𝑛+1/2 = (𝑡𝑛+1 + 𝑡𝑛)/2

(35)

Then, the displacement at time 𝑡𝑛+1 can be calculated: 

𝒖𝑛+1
𝑖 = 𝒖𝑛

𝑖 + 𝒖𝑛+1/2
𝑖 Δ𝑡 (36)

Fig. 4. Schematic of a 3D view of PD material points in the discretised domain. 

5.2 Remarks on numerical discretization

The explicit time integration method is conditionally stable. Therefore, it is important to determine the 

maximum stable time increment Δ𝑡max. To achieve this, Silling and Askari (2005) proposed an efficient 

method for calculating Δ𝑡max, denoted as Δ𝑡S
max. Alternatively, the Courant-Friedrichs-Lewy (CFL) method 
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(Mendes et al. 2019) is used to calculate the stable time increment, denoted as Δ𝑡CFL
max. These two values can 

be computed as follows: 

Δ𝑡S
max =

2𝜌
𝐾eff

,    Δ𝑡CFL
max =

ℎ2
g𝜌
𝐾

(37)

where ℎg represents the average space between PD points, 𝐾eff is the effective stiffness (Silling and Askari 

2005; Bobaru et al. 2016): 

𝐾eff =
 

𝑗∈𝐻𝑖

18𝐾
𝜋𝛿4

𝑉𝑗

|𝝃𝑗𝑖| (38)

In our program, the maximum stable time increment Δ𝑡max is determined by:

Δ𝑡max = 𝑛safe × min Δ𝑡S
max,  Δ𝑡CFL

max (39)

where 𝑛safe represents the safety factor (0 < 𝑛safe < 1). 

Accurate calculation of the volume 𝑉𝑗 for each PD point is essential for correctly capturing mechanical 

responses. The conventional calculation method assumes a regular shape, specifically a sphere with radius 𝛿. 

However, as shown in Fig. 4, 𝑉𝑗 is not always entirely covered by a sphere. For example, at the edge of the 

sphere, 𝑉𝑗 may be partially covered within 𝛿, which requires a correction in volume calculation (Parks et al. 

2008; Bobaru and Zhang 2015). The correction factor associated with 𝒙𝑗 is written as: 

𝛼c
𝑗 =

2𝛿 + ℎg

2ℎg
―

𝑅𝑗𝑖

ℎg
(40)

Then, the corrected volume 𝑉𝑗′ is written as: 

𝑉𝑗′ =

𝛼c
𝑗𝑉𝑗,     if 𝛿 ― ℎ ≤ 𝑅𝑗𝑖 ≤ 𝛿

𝑉𝑗,          if 𝑅𝑗𝑖 ≤ ℎ
0,           if 𝛿 > 𝑅𝑗𝑖

(41)

where 𝑅𝑗𝑖 is the effective radius, expressed by |𝝃𝑗𝑖 + 𝜼𝑛
𝑗𝑖|, and ℎ = ℎg/2. 

6. Results and discussion

In this section, the VBF-PD is validated through benchmark tests. Then, the damage characteristics of 

particles are examined, taking into account the effects of material properties, particle arrangements, and 

loading conditions.

6.1 Validation of the proposed VBF-PD model

Three representative benchmark tests are selected to validate the VBF-PD, including: (1) the Kalthoff-
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Winkler test, (2) cylinder impact test, and (3) single particle crushing test, wherein the numerical performances, 

especially the grid convergence property and numerical accuracy, are studied in detailed.

6.1.1 The Kalthoff-Winkler test

The Kalthoff-Winkler (KW) test is a classical benchmark test widely used for validating numerical 

methods in simulating dynamic damage (Madenci and Oterkus 2013; Diehl et al. 2019). As shown in Fig. 5, a 

3D KW model is constructed and discretised into peridynamic points. The impactor is assumed to be a rigid 

body and impacts the brittle material at a velocity 𝑣0 along the z-axis. In the brittle material, two pre-existing 

cracks of length 𝑙c and width 𝑎0, are placed in the vertical direction, separated by a distance 𝑑𝑐. The 

parameters used in the simulation are provided in Table 2. The data is obtained from literature (Ren et al. 2019; 

Zhang et al. 2022). Analogous to previous studies, for convenience, we compare the initiation angle of the pre-

existing cracks with the experimental result. Figs. 5c-5e illustrate the damage patterns and crack paths during 

the impact process. The initiation angle is consistent with the reference result. The dynamic cracks propagate 

at an angle of approximately 30° to the horizonal direction. The two cracks propagate in a symmetric pattern. 

In addition, it demonstrates that the proposed VBF-PD is capable of effectively capturing the growth of 

dynamic cracks. More quantitative analyses regarding numerical performances will be presented in Sections 

6.1.2 and 6.1.3. 

Table 2

Model parameters used in peridynamic simulations. 

Model parameter Kalthoff-Winkler 

test

Cylinder impact 

test

Single particle 

test

Particle system test Unit

Young's modulus 𝐸 190 100 100 100, 150, 200, 250, 300 GPa

Poisson's ratio 𝜈 0.25 0.25 0.25 0.25 -

Shear modulus 𝐺 76 40 40 40, 60, 80, 100, 120 GPa

Material density 𝜌 8000 2800 2650 2650 kg/m3

Critical energy release 

rate 𝐺c

2.2×104 1×1010 (no failure) 10 10, 20, 30, 50 J/m2

Impact velocity 𝑣0 32 20 0.1 ∼ 10 5, 10, 20, 30 m/s

m

Dimensions

L = 0.2, W = 0.03

H = 0.1

lc = 0.05, a0 = 0.001

dc = 0.05

H = 0.4, R1 = 0.4

R2 = 0.1
R1 = 1, R2 = 1 R1 = 2, R2 = 1

m

Horizon 𝛿 3hg 3hg, 5hg 3hg 3hg m

Grid resolution ℎg 0.02 0.04, 0.02, 

0.015, 0.008

0.008 0.008

Time increment Δ𝑡 3.6×10-8 2.1×10-8 2.2×10-8 2.2×10-8 s

Remarks: Data source of the Kalthoff-Winkler test: Ren et al. (2019) and Zhang et al. (2022). Data source of particle crushing tests: Zhu and Zhao 

(2019) and Wan et al. (2020).
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Fig. 5. The Kalthoff-Winkler test: (a) Schematic of the model and peridynamic points; (b) A 3D view of crack paths; (c)-(e) Damage 

pattern at various time instants; (f) A font view of crack paths. 

6.1.2 Contact impact on a cylinder: different VBF forms

As illustrated in Fig. 6a, a cylinder impact model is constructed to examine the numerical accuracy and 

convergence property of the proposed VBF-PD. The radii of the deformable cylinder and the rigid impactor 

are denoted as 𝑅1 and 𝑅2, respectively, and the height of the cylinder is 𝐻. Notably, in the convergence 

analysis, the grid resolution, defined as the spacing between PD points, is set to 0.04, 0.02, 0.015, and 0.008. 

The material is purely deformable, and no failure occurs, such that the critical energy density rate 𝐺c is set to 

a very high value. Detailed parameters are provided in Table 2. 

The VBF-PD formulation described in Section 3.2 introduces a key improvement by replacing the 

conventional micromodulus function with the variable bond force density functions, as shown in Table 1 and 

Fig. 2a. To evaluate its performance, we compare the total kinetic energy (𝐸k) values calculated using different 

VBF forms. The results obtained from a commercial FEM software ABAQUS (Smith 2009) are used as the 

reference solution. 𝐸k of mechanical system is computed though the summation of discrete kinetic energy 

𝑒k over all material points (in PD) or elements (in FEM), written as: 

𝐸k =

𝑛p

𝑖=1
𝑒k,𝑖 =

𝑛p

𝑖=1

1
2 𝜌𝑉𝑖 𝑣2

1 + 𝑣2
2 + 𝑣2

3 (42)

where 𝑛p represents the number of material points or elements involved in this computation, and 𝑣𝑗 (𝑗 =

(c)

(e)

(d)

(f)

16.2 µs 29.5 µs

76.9 µs 29.5 µs 
(front view)

≈ 30°

Crack paths

(a) (b)v0

Impactor

Cracks

H

L

W Inset A

Inset A
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1,2,3) are the velocity components of material point 𝑖. 

Fig. 6. The cylinder impact test: (a) Schematic of the model and peridynamic points; (b) Variation of kinetic energy 𝐸k; (c) 

Convergence of the VBF-PD with various VBF forms; (d) Convergence of the VBF-PD with various peridynamic horizons (𝛿 = 𝑚

ℎg); (e) Variation of vertical displacement. 

The variation of 𝐸k, computed using different VBFs, are depicted in Fig. 6b. It is observed that, at the 

initial time, the kinetic energy is on the order of 3 × 104 J. Then, after a short period, 𝐸k decreases to the 

order of 1 × 104, with the reduced portion transferred into the strain energy 𝐸e. Eventually, the kinetic energy 

𝐸k tends to stabilize. In the inset of Fig. 6b, the result calculated by the Parabolic VBF is relatively smaller 

than those from other methods, while the Gaussian VBF is relatively accurate compared with others. However, 

despite the errors, they are acceptable and do not significantly affect the overall performance. 

-5-4.5-4-3.5-3
-4

-3.5

-3

-2.5

-2

Convergence

-5-4.5-4-3.5-3
-4

-3.5

-3

-2.5

-2(c) (d)

(e)

0 5 10 15 20
1

1.5

2

2.5

3

3.5 104

0 2 4 6

1.6

1.8

2

2.2

2.4

104

v0

Impactor

The cylinder model

H

R1

R2(a) (b)

0 5 10 15 20
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3

4
10-3

Point A

v0

Page 19 of 35 Canadian Geotechnical Journal (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

T
he

 H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
 o

n 
11

/2
0/

25
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



19

A further analysis of grid convergence performance evaluation is conducted under varying grid 

resolutions ℎg and different VBF forms. As displayed in Figs. 6c and 6d, the x- and y-axes are scaled 

logarithmically to clearly show the variation trends. The relative error, denoted as Err, is defined as: 

Err =

𝑛p

𝑖=1

‖𝑥𝑖 ― 𝑥h
𝑖 ‖2

‖𝑥𝑖‖2
(43)

where 𝑥𝑖 and 𝑥h
𝑖  represent the reference solutions and the solutions obtained by the proposed method, 

respectively. The simulation results demonstrate that the error associated with the conventional VBF is 

relatively larger compared to other methods, whereas the Gaussian VBF exhibits higher accuracy. The 

convergence rates of all methods are similar as the grid resolution increases. As shown in Fig. 6d, the error 

computed with 𝑚 = 3 is lower than that computed with 𝑚 = 5. This observation is consistent with many 

existing studies (Chen et al. 2023; Wang and Yin 2024b). 

Fig. 6e shows the variation of the displacement component 𝑢𝑦 at the bottom of the cylinder calculated 

using different VBF forms. 𝑢𝑦 remains approximately zero until 1.5 𝜇s. This delay is caused by the dynamic 

disturbance not yet propagating to the bottom point. The phenomenon is referred to as the dynamic effect of 

elastic waves, which is absent under static conditions. Then, the magnitude of displacement |𝑢𝑦| increases 

monotonically util the simulation termination. As an illustration, Fig. 7 presents the contours of deformation 

patterns during impact, where the wavefront of the elastic waves can be clearly observed. From 0.2 𝜇s to 1.2 

𝜇s, the wavefront propagates an obvious distance in such short period. 

Fig. 7. Deformation patterns (elastic wave propagation) of the cylinder. The slice view shows a half of the model. 

6.1.3 Single particle crushing: comparison of crushing patterns

The single particle crushing test has been widely used in previous studies for computational particle 

mechanics (Zhao et al. 2015; Zhu and Zhao 2019; Wan et al. 2020; Blanc et al. 2021; Walayat et al. 2023). A 

single particle model discretized by PD material points is depicted in Fig. 8a. An impactor with radius 𝑅2 

moves at velocity 𝑣0 and strikes the particle, acting either as a rigid indenter or as a rigid particle. Model 

parameters are given in Table 2. 

The cracks propagates during the impact process. As a comparative analysis, we compare the results 

calculated by the VBF-PD with the existing simulation results (Zhu and Zhao 2019; Wan et al. 2020), and 

experimental results (Zhao et al. 2015). Fig. 8 demonstrates that the damage pattern simulated using our 

0.2 µs 0.6 µs 1.2 µs

Wavefront of the 
elastic wave
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proposed method agrees well with those in existing literature. It appears that four main cracks are generated 

around the impact position and gradually propagate to the bottom edge of the particle. Note that the model 

parameters are consistent with those used in their studies. A quantitative analysis associated with the contact 

force-velocity curves is presented in Fig. 9. The reference solutions are extracted from the results by Zhu and 

Zhao (2019). This demonstrates that the proposed method can appropriately reproduce the existing results. 

Fig. 8. The single particle crushing test: (a) Schematic of the model and peridynamic points; (b) Results simulated by the VBF-PD; 

(c)-(d) The existing results (Zhao et al. 2015; Wan et al. 2020) of the Leighton Buzzard sand (LBS-3 and LBS-4). 

Fig. 9. Comparison with existing results for the variation in contact force 𝐹𝑦 with increasing impact velocity 𝑣0 (Zhu and Zhao 

2019). 

6.2 Crushing of particle pair with different material properties

Consider a particle pair system, where a rigid impactor strikes the particle pair at an initial velocity, 

following the same settings as described in Section 6.1.3. The test investigates the effects of Young's modulus 

𝐸, impact velocity 𝑣0 and critical energy release rate 𝐺c on failure patterns. Unless stated otherwise, the 

model parameters are listed in Table 2. 

Wan et al. (2020)
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Fig. 10. Damage and displacement of double particle: (a) Damage evolution; (b) Displacement distribution (only the undamaged 

portions are visualised); (c) A failure pattern at 30 µs. 

Figs. 10a and 10b display the damage patterns and displacement distributions of the particle pair over a 

time sequence. The target particle is denoted as Particle P1, while the bottom particle is denoted as Particle P2. 

Damage zones propagate from P1 to P2, with the most severe damaged regions concentrated at the interface 

of P1-P2. Particle P1 fragments into four main segments, as shown in Fig. 10b. For clarity, only the undamaged 

portions are displayed. These four portions do not undergo significant further breakage; instead, the openings 

between them vary, forming a flower-like pattern, as illustrated in Fig. 10c. 

Then, the dynamic damage characteristics are examined under varying impact velocity 𝑣0 and Young's 

modulus 𝐸. By comparing the results in Figs. 11a and 11b, we observe that 𝑣0 significantly influences the 

damage pattern. A higher impact velocity has considerable influence on damage development, as the top 

particle is almost entirely fragmented at 𝑣0 = 30 m/s, whereas it is only partially fragmented at 𝑣0 = 10 m/s. 

A comparison between Figs. 11a and 11c reveals the effect of Young's modulus 𝐸 on particle breakage. With 

a fixed velocity of 𝑣0 = 10 m/s, the crack paths and damage pattern of the bottom particle under 𝐸 = 200 

GPa are more severe than those under 𝐸 = 100 GPa. An underlying reason is that an increase in 𝐸 enhances 

the stiffness of particles, thereby promoting a more efficient transfer of kinetic energy from the top particle to 

the bottom one. Increase in Young's modulus 𝐸 alters the distribution of crack paths, reducing the number of 

dispersed fissures as material stiffness strengthened. The results also indicate that the increase in 𝐸 does not 

guarantee prevention of cracks; in fact, conversely, cracks may propagate further in stiffer materials compared 

to weaker materials. 

v0

10 µs 20 µs 30 µs

Failure pattern

(a)

(b)

(c)Particle P1

Particle P2
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Fig. 11. Failure patterns of double particles with different impact velocities 𝑣0 and elastic moduli 𝐸. The slice views illustrate a half 

of the 3D model: (a) 𝑣0 = 10 m/s, 𝐸 = 100 GPa; (b) 𝑣0 = 30 m/s, 𝐸 = 100 GPa; (c) 𝑣0 = 10 m/s, 𝐸 = 200 GPa. 

Fig. 12. Variation of contact force at the impact position: (a) Contact force under various impact velocities; (b) Contact force under 

various energy release rates. 
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Fig. 13. Variations of contact force and broken PD bonds: (a)-(b) Comparison of the effects of energy release rate and impact 

velocity on displacement at the contact point; (c)-(d) Effects of Young's modulus and impact velocity on damage. 

The contact force at the impact position, denoted as 𝐹𝑦, is calculated using the VBF-PD. Fig. 12a shows 

that variation in impact velocity 𝑣0 alters the position at which the maximum 𝐹𝑦 occurs. A lower 𝑣0 leads 

to a later occurrence of the maximum 𝐹𝑦. In addition, slight fluctuations are observed after loading step 1000, 

which can be attributed to the ongoing interactions among PD points. At lower values of 𝑣0 (5 or 10 m/s), 

these fluctuations disappear. In contrast to the effect of 𝑣0, Fig. 12b illustrates the effect of the critical energy 

release rate 𝐺c on the contact force 𝐹𝑦, where the maximum 𝐹𝑦 consistently appears around loading step 

250. 

Figs. 13a and 13b demonstrates that the variation in the impact velocity 𝑣0 has a greater effect on 

deformation than the variation in 𝐺c. The y-axis, 𝑢𝑦, represents the vertical displacement at the contact 

position. It is worth noting that the horizontal displacement 𝑢𝑥 vanishes because the impact is applied along 

the vertical direction. In the simulation, we record the variation in the number of broken PD bonds during 

dynamic damage, denoted as 𝑁fail, as defined in Eq. (22). As displayed in Figs. 13c and 13d, 𝑁fail captures 
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damage characteristics and gradually tends to stabilise. Fig. 13c shows that an increase in Young's modulus 𝐸 

highly reduces 𝑁fail, as a higher 𝐸 enhances particle stiffness. For comparison, Fig. 13d illustrates the 

combined effect of 𝑣0 and 𝐸 on damage. The results are consistent with physical expectations, showing that 

𝑁fail reaches its maximum under a higher 𝑣0 and a lower 𝐸. For example, 𝑁fail at 𝑣0 = 30 m/s and 𝐸 = 

100 GPa is greater than at 𝑣0 = 20 m/s and 𝐸 = 300 GPa. 

6.3 Different arrangements: effect of connection angle

The preceding analysis focuses on the central collision of a particle pair. However, in real scenarios, the 

connection angle, denoted as 𝛼, may alter particle morphology and microstructure. In this context, impact 

often occur off-centre, with particle pairs arranged at a connection angle 𝛼, as illustrated in Fig. 14. We 

examine the influence of different connection angles on particle crushing, with 𝛼 = 20°, 45°, 70°, and 90°. 

Model parameters are provided in Table 2. 

Fig. 14. Damage evolution of double pairs with different arrangements (𝛼 = 20° and 70°). The slice views and their corresponding 

3D views using different critical energy release rates: (a) Gc = 10 J/m2; (b) Gc = 30 J/m2. 

a
6 µs 12 µs 24 µs 24 µs (3D view)

= 20

= 70

10 µs 20 µs 30 µs 30 µs (3D view)

= 20

= 70

(a)

(b)

Gc = 10 J/m2
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Fig. 14 illustrates the damage patterns at different stages when 𝛼 = 20° and 70°, and the critical energy 

release rates 𝐺c = 10 and 30 J/m2. The results indicate that increasing the material strength (by raising 𝐺c) 

delays the onset of damage. For example, the damaged regions observed at 6 μs for 𝐺c = 10 J/m2 (Fig. 14a) 

are significantly more extensive than those at 10 μs for 𝐺c = 30 J/m2 (Fig. 14b). A large crack even 

propagates vertically in the former case, while it is absent in the latter case. The severely damaged regions are 

mainly concentrated in a central band of the top particle if 𝐺c = 30 J/m2. In contrast, when 𝐺c = 10 J/m2, the 

entire top particle is almost completely fragmented. In both cases, the interface between the top and bottom 

particles is fragmented due to high strain gradients and stress concentration. The top particle directly interacts 

with the impactor and absorbs most of the impact energy. In contrast, crushing of the bottom particle is 

mitigated by the buffering effect, which becomes more pronounced with increasing 𝐺c. 

Fig. 15. Variations of contact force and broken PD bonds under different particle arrangements: (a) Variation of contact force; (b) 

Variation of displacements at the contact position; (c) Variation of number of broken PD bonds. 

The force-loading step curves are recorded and compared under various conditions. As shown in Fig. 15a, 

the change of connection angle 𝛼 does not significantly alter variation of these curves. The peak values of 

𝐹𝑦 under conditions of 𝐺c = 10 J/m2 and 30 J/m2 are approximately 530 and 750 N, respectively. An Increase 

in 𝛼 slightly shifts the curve along the positive direction of the x-axis, caused by the off-centre effect in the 

impact process. To further illustrate the off-centre effect, which occurs when 𝛼 ≠ 0°, we record the variation 

of displacement components 𝑢𝑥 and 𝑢𝑦 at the contact position, as displayed in Fig. 15b. It is worth noting 
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that the horizontal displacement 𝑢𝑥 vanishes when 𝛼 = 0°. While the change of 𝛼 does not significantly 

affect 𝑢𝑦, it strongly influences 𝑢𝑥. This is because different arrangements of particles alter the positions of 

the barycentre, causing the motion and deformation of the particle system to vary in each case. 

Fig. 15c depict the effects of critical energy release rate 𝐺c and connection angle 𝛼 on the number of 

broken PD bonds 𝑁fail. It is evident that a considerable amount of bonds break during particle crushing. The 

effect of 𝐺c on damage is much greater than that of 𝛼. Within the range of 𝛼 = 20° ∼ 90°, decease in 𝛼 

may increase 𝑁fail, because the smaller the angle, the lesser the off-centre effect, allowing the impact energy 

to be fully transferred into the bottom particle. In contrast, when 𝛼 approximates 90°, this effect is not as 

pronounced. A common feature is that the variation of 𝑁fail tends to stabilise over time.

6.4 A complex scenario: crushing of aggerated particles

Many studies have highlighted that geometric parameters of particle systems strongly influence damage 

characteristics (de Gennes 1998; Zhao et al. 2015, 2023; Buscarnera and Einav 2021). In this section, we study 

crushing properties of a particle aggregation. As shown in Fig. 16a, the model consists of six particles, denoted 

as P1, P2, …, P6. The average connection angle between P1 and its neighbouring particles (P2, P3, P4, and 

P5) is denoted as 𝛼. The distance between particles is denoted as 𝑟p. We investigate variations in the 

parameters 𝛼 (20° and 45°) and 𝑟p (2.8 and 3.6 mm). Other parameters are the same as those used in Section 

6.3. For illustration, Figs. 16b-16d display three different patterns of particle arrangements. 

Fig. 16. Different patterns of a particle aggregation: (a) Schematic of the model and peridynamic model; (b) 𝑟p = 3.6 mm, 𝛼 = 45°; 

(c) 𝑟p = 2.8 mm, 𝛼 = 45°; (d) 𝑟p = 3.6 mm, 𝛼 = 20°. The parameters 𝑟p and 𝛼 represent the average distance and the average 

connection angle between particle pairs P1-P𝑘 (𝑘 = 2,3,4,5), respectively. 
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Fig. 17. Damage evolution of a particle aggregation: (a) 𝑟p = 3.6 mm, 𝛼 = 45°; (b) 𝑟p = 3.6 mm, 𝛼 = 20°. The critical energy 

release rate 𝐺c = 30 J/m2. 

In Fig. 17, 𝑟p = 3.6 mm is fixed, while 𝛼 is varied to examine the effect of the connection angle on 

crushing. When 𝛼 = 20°, cracks propagate into particles P2, P3, P4, and P5, even cause partial damage to 

particle P6. In contrast, when 𝛼 = 45°, the damage regions are primarily concentrated at the interfaces between 

particles. To further analyse the influences of 𝛼, 𝑟p and 𝐺c on the contact force 𝐹𝑦, we calculate the 

difference Δ𝐹𝑦 between the solutions of two cases among conditions C0, C1, C2, and C3, expressed as Δ𝐹𝑦

= 𝐹𝐶0
𝑦 ― 𝐹𝐶𝑖

𝑦  (𝑖 = 1,2,3), as illustrated in Fig. 18a. The peak values of Δ𝐹𝑦 primarily occur within the 

loading step range of 400 ∼ 700. After loading step 1000, there are still some fluctuations in Δ𝐹𝑦 until the 

simulation terminates. Fig. 18b shows that changes in 𝛼, 𝑟p and 𝐺c do not considerably affect the 

occurrence position of the peak 𝐹𝑦, which is also mainly observed within the loading step range of 400 ∼ 700. 

This indicates that these factors mainly influence the peak values. Moreover, increases in both 𝛼 and 𝐺c 

enhance the peak value of 𝐹𝑦, while 𝑟p has the opposite effect. 

The variation of the global damage factor 𝐷g (Eq. (22)) is shown in Fig. 18c. An increase in 𝐺c not 

only supresses the growth of 𝐷g but also alters the shape of its evolution curves. Specifically, when 𝐺c = 10 

J/m2 and 𝑟p = 3.6 mm, the damage factor 𝐷g calculated with 𝛼 = 45° is lower than that calculated with 𝛼 

= 20°. Conversely, under the conditions of 𝐺c = 30 J/m2 and 𝑟p = 3.6 mm, the trend is reversed. By 

comparing the blue and black solid lines in Fig. 18c, it is evident that when only 𝛼 is varied under 𝐺c = 30 

J/m2, the value of 𝐷g will eventually converge to nearly the same constant. Therefore, a phenomenon 

observed under lower 𝐺c condition (10 J/m2) may not be evident under higher 𝐺c condition (30 J/m2), owing 

to the complex interactions among multiple particles. 

a

5.2 µs 15.6 µs 31.2 µs 31.2 µs (3D view)

(a)

(b)
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Fig. 18. Variations of contact force and damage factor: (a) Variation of contact force 𝐹𝑦; (b) Variation of contact force increment Δ

𝐹𝑦; (c) Variation of global damage 𝐷g over time under different conditions. 

7. Concluding remarks

In this work, we proposed an improved variable bond force (VBF) peridynamic model for simulating 

dynamic damage of 3D particles. The VBF-PD framework integrates multiple forms of VBF, enabling the 

bond force density to vary with distance in a physically consistent manner. An improved dynamic damage 

model was developed to capture breakage. Furthermore, efficient constraint strategies are developed to handle 

particle-particle and impactor-particle interactions. The proposed method extends the applicability of 

conventional PD to complex dynamic fragmentation problems. Based on the VBF-PD, numerical performance 

was examined through benchmark tests. Different VBF forms were applied to examine gird convergence. 

Several particle crushing tests were conducted under various particle arrangements, loadings, and material 

properties. The evolution of kinetic energy, contact force, and damage factor was thoroughly analysed. The 

results show that particle crushing can be mitigated by the buffering effect through increasing the critical 

energy release rate. Different particle arrangements may lead to variations in particle motion and deformation. 

Damage evolution mode of multiple-particle systems differs from those observed in few-particle systems, 

which can be attributed to the complex interactions among multiple particles. 

The VBF-PD can be further extended to simulate large systems consisting of thousands of particles. A 

cost-effective approach is required to detect simultaneous particle contacts (Konrad and Salami 2018; Neto 

2023). Moreover, the VBF-PD can be extended to account for the breakage of irregularly shaped particles 
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(Azéma et al. 2013; Huang et al. 2015b, 2023), thereby offering insights into the influence of particle 

morphology on particle breakage. 
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Appendices

Appendix A. The initial micromodulus in VBF-PD for 3D problem

Following Section 3.2, various forms of the attenuation function 𝑔(𝝃) are used to derive the expressions 

for the initial micromodulus 𝑐0. We consider five different forms of the variable bond force (VBF): (1) 

Exponential function; (2) Gaussian function; (3) Parabolic function; (4) Cosinoidal function; (5) Constant. The 

expressions are given as: 
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𝑔(𝝃) =

e―
|𝝃|
𝛿 ,                      Exponential VBF

e―
𝝃
𝛿

2

,                 Gaussian VBF

1 ―
𝜉
𝛿

2 2

,    Parabolic VBF

cos
𝜋𝝃
2𝛿 ,                Cosinoidal VBF

1,                           Constant VBF

(A.1)

where the meanings of all notations have been introduced in the proceeding sections. 

To derive the expression of 𝑐0 in the VBF-PD, under dilatant condition, the strain energy density 𝑊CM 

in continuum mechanics can be obtained by substituting the loading condition 𝜀𝑘𝑘 = 𝑠0,  (𝑘 = 1,2,3) into 

Eq. (19), resulting in: 

𝑊CM =
1
2 𝜆(𝜀𝑘𝑘𝜀𝑘𝑘)2 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 =

3
2

𝐸
(1 ― 2𝜈) 𝑠2

0     (dilatant condition) (A.2)

The strain energy density 𝑊PD (Eq. (18)) in PD can be expressed in different forms by substituting 

different forms of 𝑔(𝝃) (Eq. (A.1)), given as: 

Exponential VBF: 

𝑊PD =
1
2

𝛿

0

2𝜋

0

𝜋

0
e―|𝝃|

𝛿 𝑐0
𝑠2

0|𝝃|3

2 sin 𝜑 d𝜑 d𝜃 d|𝝃| = 𝜋𝑐0𝛿4𝑠2
0 6 ―

16
e (A.3)

Gaussian VBF:

𝑊PD =
1
2

𝛿

0

2𝜋

0

𝜋

0
e―

𝝃
𝛿

2

𝑐0
𝑠2

0|𝝃|3

2 sin 𝜑 d𝜑 d𝜃 d|𝝃| = 𝜋𝑐0𝛿4𝑠2
0

1
2 ―

1
e (A.4)

Parabolic VBF:

𝑊PD =
1
2

𝛿

0

2𝜋

0

𝜋

0
1 ―

𝝃
𝛿

2 2

𝑐0
𝑠2

0|𝝃|3

2 sin 𝜑 d𝜑 d𝜃 d|𝝃| =
𝜋𝑐0𝛿4𝑠2

0
24

(A.5)

Cosinoidal VBF:

𝑊PD =
1
2

𝛿

0

2𝜋

0

𝜋

0
cos

𝜋𝝃
2𝛿 𝑐0

𝑠2
0|𝝃|3

2 sin 𝜑 d𝜑 d𝜃 d|𝝃| =
2

𝜋3 𝑐0𝛿4𝑠2
0(𝜋3 ― 24𝜋 + 48) (A.6)

Constant VBF:

𝑊PD =
1
2

𝛿

0

2𝜋

0

𝜋

0
𝑐0

𝑠2
0|𝝃|3

2 sin 𝜑 d𝜑 d𝜃 d|𝝃| =
𝜋𝑐0𝛿4𝑠2

0
4

(A.7)

The equivalence principle asserts that the strain energy density calculated from continuum mechanics and 

peridynamics should be equal. Therefore, comparing Eq. (A.2) with Eqs. (A.3) ∼ (A.7) leads to: 
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𝑊CM = 𝑊PD (A.8)

The expressions of 𝑐0 corresponding to different forms of 𝑔(𝝃) can be derived as follows: 

𝑐0 =

3

12 ―
32
e

𝐸
(1 ― 2𝜈)𝛿4𝜋 ,                  Exponential VBF

3

1 ―
2
e

𝐸
(1 ― 2𝜈)𝛿4𝜋 ,                       Gaussian VBF

36𝐸
(1 ― 2𝜈)𝛿4𝜋 ,                                       Parabolic VBF

3𝜋4

4(𝜋3 ― 24𝜋 + 48)
𝐸

(1 ― 2𝜈)𝜋𝛿4 ,    Cosinoidal VBF

6𝐸
(1 ― 2𝜈)𝛿4𝜋 ,                                        Constant VBF

(A.9)

The results of different VBF forms are summarised in Table 1. 
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