Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116603
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorZhang, XHen_US
dc.creatorZhu, Zen_US
dc.creatorYuan, GKen_US
dc.creatorZhu, Sen_US
dc.date.accessioned2026-01-06T02:09:12Z-
dc.date.available2026-01-06T02:09:12Z-
dc.identifier.isbn en_US
dc.identifier.issn0022-460Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/116603-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, X.-H., Zhu, Z., Yuan, G.-K., & Zhu, S. (2021). Adaptive Mode Selection Integrating Kalman Filter for Dynamic Response Reconstruction. Journal of Sound and Vibration, 515, 116497 is available at https://doi.org/10.1016/j.jsv.2021.116497.en_US
dc.subjectAdaptive mode selectionen_US
dc.subjectExperimental studiesen_US
dc.subjectKalman filteren_US
dc.subjectNumerical investigationen_US
dc.subjectResponse reconstructionen_US
dc.subjectStructural health monitoringen_US
dc.titleAdaptive mode selection integrating Kalman filter for dynamic response reconstructionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage en_US
dc.identifier.epage en_US
dc.identifier.volume515en_US
dc.identifier.issue en_US
dc.identifier.doi10.1016/j.jsv.2021.116497en_US
dcterms.abstractDirect application of the Kalman filter algorithm to state estimation of civil structures presents a computational challenge due to their high dimensions and complexity. Rewriting dynamic equations using modal coordinates can be an alternative solution to this problem because high modes with minimal contributions to structural responses can be truncated. Although the mode selection is important in accurately estimating the state of civil structures, studies on determining the remaining mode number are limited. Hence, the mode selection method in the Kalman filter for the optimal reconstruction of structural responses is investigated in this study. A modal signal-to-noise ratio (MSNR) is defined as the ratio of the estimated modal response variance to the corresponding estimation error variance. Only modes with MSNR values higher than an analytically derived threshold are selected. A beam structure is numerically investigated to examine effects of excitation amplitude and frequency, measurement noise, and number of sensors on the adaptive mode selection for optimal response reconstruction. Experimental studies using a simply supported overhanging beam also confirm the efficacy of the proposed approach in response reconstruction using multiple types of sensors (including strain gauges, displacement sensors and accelerometers). Both the numerical and experimental results reveal that using all vibration modes or a complete numerical model with all degrees of freedom will reduce the accuracy of response reconstruction.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of sound and vibration, 22 Dec. 2021, v. 515, 116497en_US
dcterms.isPartOfJournal of sound and vibrationen_US
dcterms.issued2021-12-22-
dc.identifier.scopus2-s2.0-85116075613-
dc.identifier.pmid -
dc.identifier.eissn1095-8568en_US
dc.identifier.artn116497en_US
dc.description.validate202601 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera4247-
dc.identifier.SubFormID52429-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors wish to acknowledge the financial supports from the Special Funds for Promoting Economic Development in Guangdong Province, China (Contract of Guangdong Natural Resources Department [2019]019), the National Natural Science Foundation of China (Project No. 51608126), the National Key R&D Program of China (Project No. 2019YFB1600700), the Research Grants Council of Hong Kong (Project No. T22-502/18-R), and the GDSTC Key Technologies R&D Program (Project No. 2019B111106001).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Adaptive_Mode_Selection.pdfPre-Published version3.03 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.