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ABSTRACT:

Direct application of Kalman filter algorithm to state estimation of civil structures presents a
computational challenge due to their high dimensions and complexity. Rewriting dynamic
equations using modal coordinates can be an alternative solution to this problem because high
modes with minimal contributions to structural responses can be truncated. Although the
mode selection is important in accurately estimating the state of civil structures, studies on
determining the remaining mode number are limited. Hence, the mode selection method in the
Kalman filter for the optimal reconstruction of structural responses is investigated in this
study. A modal signal-to-noise ratio (MSNR) is defined as the ratio of the estimated modal
coordinate variance to the corresponding estimation error variance. Only modes with MSNR
values higher than an analytically derived threshold are selected. A beam structure is
numerically investigated to examine effects of excitation amplitude and frequency,
measurement noise, and number of sensors on the adaptive mode selection for optimal
response reconstruction. Experimental studies using a simply supported overhanging beam
also confirm the efficacy of the proposed approach in response reconstruction using multiple
types of sensors (including strain gauges, displacement sensors and accelerometers). Both the
numerical and experimental results reveal that using all vibration modes or a complete
numerical model with all degrees of freedom will reduce the accuracy of response

reconstruction.
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1. Introduction

Structural health monitoring (SHM) is a type of cutting-edge technology that ensures the
safety of structures during their long service lives [1,2]. An in-depth understanding of the
behavior of the entire structure is required to assessing structure safety conditions with an
efficient SHM system. Thus, responses at all critical locations of a structure are often needed
for the successful monitoring of structural health. However, the number of locations of
monitored structural responses is considerably less than the total degrees-of-freedom (DOFs)
of structures due to the economic cost associated with data acquisition and some additional
practical restraints (e.g., inaccessibility of locations for sensor installation). Thus, response
reconstruction at critical structural locations where sensors are unavailable is indispensable to
achieve SHM objectives.

Many structural response reconstruction approaches based on limited measurements have
been recently proposed. Kammer [3] put forward a response reconstruction technique in 1997
for locations without sensors based on measured responses at other locations by using a
transformation matrix. Law et al. [4] proposed a method for structural response reconstruction
in a full or substructure using generalized transmissibility concept in the frequency domain. Li
et al. [5] extended this approach to wavelet domain for structural response estimation under
unknown traffic-induced vibrations in 2017. In 2019, He and Zhou [6] developed a novel
approach for reconstructing structural responses of critical locations using measurements from
remote sensors based on empirical mode decomposition and Fourier series fitting method.
Recently, Sun et al. [7] presented a structural response reconstruction method for
reconstructing responses with quasi-static and dynamic components and solving the
measurement deficiency problem through principal component analysis.

The Kalman filter is a commonly used tool that provides an unbiased and recursive
algorithm in the time domain to estimate the unknown state vector of a linear dynamic system
that optimally uses an incomplete and noisy measurement set [8,9]. Kalman filter-based
methods consider uncertainties in structural systems and measurements. For example, Zhu et
al. [10] presented a Kalman filter-based response reconstruction technique and they further

extended the algorithm to accomplish data fusion for simultaneous acceleration, displacement,



and strain measurements through a normalization procedure [11]. Xu et al. [12] successfully
applied the algorithm to the SHM of long-span suspension bridges. Kalman filter estimator
also has the potential to reconstruct input excitations. Gillijns and Moor [13,14] presented the
three-step unbiased minimum-variance state and input estimation technique for linear systems
in 2007. This algorithm was extended by Lourens et al. [15] to reduced-order structural
dynamic models. Zhang and Xu [16] proposed multitype sensor placement optimization under
unknown excitation based on the three-step Kalman filter algorithm. In addition, Kalman
filter estimators have also been successfully applied to fatigue predictions [17] and damage
detection [18-20].

However, the direct application of the Kalman filter algorithm to civil structures with
large dimensions and high complexity presents a computational challenge. Rewriting the
second-order dynamic equation using modal coordinates can solve this problem by truncating
high vibration modes with minimal and negligible contributions to structural responses.
Determining the remaining mode number is important to estimate the structural state
accurately. A common way to select modes is based on the concept of modal contribution
factors developed in earthquake engineering, wherein modes are selected until the
accumulated modal contribution factors are beyond a specified threshold [21]. This method
has been extensively applied to civil structures, including beams [22,23], shear frames [24],
bridges [25] and other building structures [26]. Xue et al. [27] proposed a mode selection
method to include sufficient physical modes for the flexibility matrix identification. A
predefined mode number is typically adopted in these methods, which are associated with the
following limitations: (1) the contributions of individual modes to the overall dynamic
behavior of a structure are variable, which depends on the structural characteristics, loading
characteristics, and locations of interests; the selection of a fixed mode number cannot adapt
to such variability; and (2) these methods always aim to select a sufficiently large number of
modes; however, they did not realized that the inclusion of all or an excessive number of
vibration modes may even reduce the accuracy of reconstructed responses due to the
existence of reconstruction errors, as revealed in this study. Consequently, these
aforementioned mode selection methods cannot guarantee the optimal response reconstruction.

Additional emphasis should be placed on the adaptive selection of the most critical mode



shapes that can optimally reconstruct responses. In fact, the rational determination of the
mode number has been overlooked in the previous response reconstruction studies.

An adaptive mode selection method in Kalman filtering for the optimized reconstruction
of structural responses is presented in this study. The response reconstruction error that
considers the increasing number of modes is first analyzed. A modal signal-to-noise ratio
(MSNR) is then defined as the ratio of variance of the estimated modal coordinate response to
variance of the corresponding reconstruction error from the Kalman filter algorithm. A
threshold MSNR value is analytically derived, and modes with higher MSNR values than the
threshold are subsequently retained. A cantilever beam structure is numerically investigated.
The change of reconstruction errors with the increase of the selected mode number revealed
for the first time that using all vibration modes (or a complete structural model) is a
non-optimal solution with the presence of measurement and system noise. The effect of the
excitation amplitude and frequency on mode selection is subsequently explored. The selection
of the noise matrix and number of sensors are also discussed and compared with original
assumptions. Experimental tests of a simply supported overhanging steel beam were
conducted to verify the proposed method further. The numerical and experimental results
demonstrated that the proposed method can provide effective and flexible mode selection to

achieve accurate response reconstruction.

2. Theory

The mode selection method aims to choose the number of vibration modes for the optimal
response reconstruction. The Kalman filter algorithm is used in the reconstruction of
structural responses, in which posteriori error covariance matrix is applied to calculate MSNR

values of each mode. The flowchart of the proposed algorithm is illustrated in Fig. 1.

2.1 Kalman filtering algorithm
Kalman filtering is a recursive technique for obtaining an unbiased estimation of the
unknown linear dynamic system state vector from noisy measurements. The algorithm uses

the following discrete state-space dynamic and measurement equations [28]
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Fig. 1. Flowchart of the proposed algorithm.

where the subscript & represents the time step number; zx, yx, and ux denote discrete-time state,
observation, and external excitation vectors, respectively; A is the discrete state transmission

matrix and B is the input matrix which relates the input excitation to state vectors; the



observation matrix C maps the state vector into the observed vector, while D is the direct
transmission matrix; The process noise from modelling inaccuracies is characterized by wy
with covariance matrix Q, and measurement noise of sensors is represented by vi with
covariance matrix equal to R. It is a general practice to assume w; and v, are zero-mean white
noise and uncorrelated to each other.

Time update and measurement update is included in the two-step Kalman filter method

[9]:

Zyp = Az, ,+Bu, (2)
P, =AP_A"+Q, 3)
2, =2, ,+K[y,—Cz,;, , —-Du;], )
P, =[1-K,CIP,, |, Q)
K, =P, C'[CP, C +RT", (6)

where P, and K denote the covariance matrices of the estimation error in the state vector and
the optimal Kalman gain, respectively, at time step k. Asymptotic values for K and P can be

obtained after several iterations through Kalman filter algorithm, given any initial value of Py

and Z,.

2.2 Response Reconstruction in Modal Coordinate
Considering the computational challenge encountered by the Kalman filtering algorithm
in a structure with a large number of DOFs, the structure’s second-order dynamic equation
can be written in the modal coordinates:
q+260,q+0q=0"B,u, @
in which the modal coordinates vector is expressed by q, @ is the displacement mode shapes
after mass normalization, { denotes the modal damping coefficient matrix, (), represents the

modal frequency matrix, and B, is the location matrix of excitations. The state-space

expression of Eq. (7) can be expressed as follows:
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The observation vector y, depends on the types and numbers of sensors. The utilization

of multiple types of measurements can usually outperform the single type in response

reconstruction. If we consider a general case with structural strains, displacements and

accelerations measured, the measurement can be represented by the observation vector y,

and the corresponding output and direct transmission matrices can be expressed as:

E,® 0 0 (11)
. A
ve={edaj. c_| o o |- D=7 0
—Po;, 20®Lo, P0'B,

where € is the measured strain vector, d is the displacement vector, a is the acceleration vector,

and Eq is the strain-displacement matrix relating the node displacements and element strains.
The state vector z, including modal coordinates, is estimated using the Kalman filter

algorithm on the basis of multi-type measurements. The reconstruction of displacements and

strain responses at other critical locations can then be achieved through Eq. (12):

yz =Ceik, (12)

where the superscript “e” indicates the estimated or reconstructed responses, ik is the
estimated state vector, C° is the output matrix for the estimated strains and displacements that
has a similar format to C but are reconstructed for different locations of interest. Matrix
D’ ={0 O}T is not shown in Eq. (12). The number of rows in matrices C and C° represents

the number of sensor locations and responses to be reconstructed, respectively.

If all vibration modes are considered in Zj, the response reconstruction performed in the
modal coordinate will be the same as the conducted counterpart using mass, stiffness, and
damping matrices with complete DOFs. However, considering all vibration modes in

large-scale civil structures is generally unnecessary. The entire set of modes can be divided



into subsets of selected (generally lower modes with large contributions to responses) and

truncated (typically higher modes with small contributions to responses) modes as follows:

2=z, 2} ={a 4, 4, fl,}T, c=[c ¢l p=[p ] (13)

(A1
t

where subscripts “s” and “#” denote selected and truncated modes, respectively. Then, Eq. (12)

can be rewritten as
v =C%2 (14)
Errors between reconstructed and real responses can be calculated as
o=y —y=Ci(z,~2)-Cz =8,+9, (15)
n ~ 2\ |
where Z ={qs %} is the truncated state vector, 0 is the total error in reconstructed

responses, O, Z(ji(iY —ZS) represents estimation errors using the Kalman filter, and

0,=—C7 represents the truncation error. The covariance matrix of reconstruction errors

yields
A=cov@) =cov(d, +3,) (16)
where 5,1 is determined by the process and measurement noise covariance matrices, and

81‘ is determined by the state vector. In the Kalman Filter, the noise covariance are
commonly assumed independent with the structural responses. Therefore, it is reasonable to
assume that 5,1 is also independent with 5t,then

A=cov(8,)+cov(d,)=A, +A,. (17)
where

A, =C oz, ~z,)C) =CR(C)' (18)

— T 19
At - COV((th):Cf COV(Zt )((j) (19)
where Py is the submatrix of the covariance matrix P of estimation errors that corresponds to

selected modes. Accurate response reconstructions need to minimize A.

2.3 Mode Number Selection

10



The covariance A of reconstruction errors comprise A1 caused by the noise and A,
induced by the truncated modes. As the number of modes in Py increases, the error caused by

measurement noise increases, whereas the errors caused by the truncated modes decreases.

Moreover, reconstruction errors are dominated by A, when the number of selected modes is

small, but dominated by A,, when the number of modes increases to a certain level. This

phenomenon will be illustrated in the numerical examples of this paper. Consequently,
increasing the number of selected modes does not always improve the response reconstruction
accuracy. Therefore, an optimal number of vibration modes must be selected to maintain the
desired accuracy in the response reconstruction. This study aims at determining the required
number of modes with given measurement error covariance intensity R and process noise

covariance Q matrices.

Since the state vector is expressed using the modal coordinate in Eq. (8), the P matrix

calculated in Eq. (5) represents the error covariance of the estimated modal coordinate

P-E[ec’ |-E[(2-2)(z-2)' |-E [{3}._{2}J[{2}__{2}JT , (20)

where § and ( is the estimated modal displacement and velocity, respectively, both of
which are composed of mode 1 to n; e is the error vector in the estimated modal coordinate.

Considering the ith mode, as shown in Eq. (11), strains or displacements are only related to

the following modal displacement ¢; instead of the modal velocity q,- :

g, =q; +e,, 1)

where €; is the estimation error in the ith modal coordinate. The variance of the estimation

error €; corresponding to the ith mode can be represented by the diagonal element in the

covariance matrix P

p, = var(e,) =var(q, - §,), i=12,..,n, (22)

where p; stands for the ith diagonal element in the P matrix.

According to Eq. (18) and Eq. (19), the variances of the corresponding estimation and

11



truncation errors of the ith mode can be expressed as

[ , . ! ) TRT T (23)
A, = Ewue, 0 var(e;) Euoi 01 _|Eq0; 0 i 9. E, o
SLe 0 9o, 0 9, 0 0 0|
—Esd(pi 0 E, o, 0 i (24)
At,[: var(q;)
L O 0 Q; 0

where @ is the ith mode shape and P; can be calculated by Eq. (22).

The inclusion of the ith mode in the selected mode will introduce An,i but eliminate
At,i in the total reconstruction error A ; whereas the exclusion of the ith mode will
introduce the A,,,- but eliminate the An,,- . It is evident that the optimal selection should be

based on the relative magnitudes of An,i and At,i (ie, var(e,) and var(gq,) ), Where
var(gq,) represents the variance of the modal response and var( e,) Trepresents the variance

of the response estimation error. By borrowing the classical concept of signal-to-noise ratio, we
can define a new index as MSNR. Consequently, the ith mode should be included in the

response reconstruction only if

LA valg) _vang) (25)
l An,i VaI(e,) p,‘,‘

Otherwise, including this mode reduces the accuracy of the response reconstruction. This also
identifies the limitations of some existing response reconstruction methods that use the finite
element (FE) model with all DOFs, which is essentially equivalent to the inclusion of all
vibration modes in this study.

Eq. (25) can be defined as the MSNR in the ith mode responses. However, only the

estimated modal response ¢; is known in Kalman filter, while the real modal response ¢;

remains unknown. Thus, in practice, the estimated MSNR of the ith mode must be calculated

as:

vang;) _ var(g; +¢,) (26)
varg)  var(e)

}’l'_:

We can assume that ¢; and €; are two independent random variables because the

12



estimation error €; comes from process and measurement noises, which are independent of

structural responses. Consequently, the MSNR shown in Eq. (26) can be rewritten as:

_va(g,) _ var(g,)+var(g) _ var(q;)

r= +1>2

vae)  va(e) Pi

A large estimated MSNR 7 indicates more significant contributions of the ith mode to

(27)

the response reconstruction, whereas a small value indicates that this mode is overwhelmed
by noise. Thus, modes should be selected only if the estimated MSNR 7 is higher than this
threshold. This criterion can considerably simplify the mode selection in the response
reconstruction.

As illustrated by the flowchart in Fig. 1, the response reconstruction is first conducted by
using all the vibration modes. Then the MSNRs are calculated for all the candidate modes
individually, and those modes with the MSNRs less than the threshold are truncated. Finally,
the algorithm will redo the response reconstruction using the Kalman filter and the selected
modes only. The selected modes do not need to start from the first one. Neither should they be
consecutive. The actual MSNRs are influenced by excitations and sensor placement, as shown
in the next section. Consequently, the optimal mode selection in this approach will also adapt

to the changes in these factors.

3. Numerical investigation

A two-dimensional Euler—Bernoulli cantilever beam with a length of 2.0 m and a cross
section of 50.8 mm x 50.8 mm is investigated in the numerical study. The FE model
comprises 21 nodes and 20 equal-length elements (Fig. 2). Ten strain measurement sensors
are mounted at ten selected locations on the upper surface, as shown in Fig. 2(b). All element
strains, except those at elements 19 and 20, are assumed to be reconstructed in this study,
wherein strains correspond to the middle point of elements. The first ten flexural modes are
considered as candidate modes, with the first four frequencies equal to 2.25, 14.11, 39.45, and

77.18 Hz.

3.1 Optimal Mode Number

13



Responses attained from the FE model under a vertical random excitation applied at the

free end of the cantilever beam is utilized as real responses to observe the change of

reconstruction errors with the increase of mode number and calculate A , A,,, and A, The

random excitation (Excitation 1 in Table 1) demonstrates a frequency bandwidth and

maximum amplitude of 0.5-70 Hz and 50 N, respectively.

(a)
F
50.8mm
1 3 5 7 9 11 13 15 17 19
T T [ 1 [T T [ 1 [T T [ 1 [T T [ 1 y @
@ O © © O (O . 2
L .00m b
4 7
(b)
) S S S S A S B B
Fig. 2. Numerical investigation. (a) FE model, (b) sensor locations.
Table 1
Excitation types considered in numerical studies.
No. Types Frequency (Hz)
Excitation 1  Random excitation 0.5-70

Excitation 2  Non-stationary random exaction with varying amplitude 0.5-70
Excitation 3  Sine sweep excitation 0-50

Fig. 3(a) shows the variations of the reconstruction error with the increasing number of
modes selected, wherein the reconstruction error is calculated as the trace of the

reconstruction error matrix A. The large total reconstruction error variance at the beginning is

dominated by the truncated mode error A, When the mode number is equal to three, the

total reconstruction error variance becomes the minimum due to small errors caused by both
noise and truncated modes. When the mode number is greater than three, the total normalized

reconstruction error variance A enlarges as the number of modes increases. The similar A
and noise-induced error An implies a very small truncation error variance A, The

minimum total normalized reconstruction error variance exhibits a minimum value of A

14



when the mode number is three. Fig. 3(b) provides a clear explanation to this selection. Only
the first three modes obtain an MSNR greater than the threshold; consequently, the selection
of the first three modes offers the optimal accuracy of reconstructed responses, which may be
contradictory to the common practice of adopting a very detailed model in numerical
simulations. If ten modes are considered in this case, then the reconstruction error will be 3.7

times the optimal value.
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Fig. 3. Response reconstruction for the beam subjected to random excitation. (a) The
variation of reconstruction errors with the increasing number of the selected modes, (b)

MSNR for different vibration modes.
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3.2 Effect of Excitation Amplitude

MSNRs are highly dependent on excitation amplitudes. A nonstationary random excitation
(Excitation 2 in Table 1) with a frequency range of 0.5-70 Hz and varying amplitudes (i.e.,
maximum forces of 150, 100, 50, and 20 N in periods of 0—4, 4-8, 8—12, and 12-16 s,
respectively) is applied vertically at the free end of the beam to investigate the effect of
excitation amplitudes on the mode number selection. The time history of excitation is shown
in Fig. 4(a). A moving window method with a window size of 1 s is applied in this study to
select modes adaptively. Modes with MSNR values of » > 2 are selected.

Table 2 presents the results of the mode selection in each segment. Four modes with
MSNRs higher than the threshold are selected in the first four seconds, when the maximum
amplitude of excitation is 150 N; but reduce to three modes when the maximum amplitude of
excitations are only 100 and 50 N during 4-12 seconds. Finally, two modes remain in the last
four seconds when the maximum amplitude of excitation is 20 N. The decreasing amplitude
of excitations clearly reduces MSNRs of all modes and consequently leads to the less selected

vibration modes in the optimal response reconstruction.

(@) 150

Force (N)
o

(b)

Force (N)

-100

0 2 4 6 8 10 12
Time (s)
Fig. 4. Time histories of different excitations at the free end. (a) Non-stationary random
excitation with varying amplitudes, (b) Sine sweeping excitations (0-50 Hz).
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Table 2
Adaptive mode number selection under random excitations with varying amplitudes.

Time (s) Excitation amplitude (N) Selected mode number
0-1 1,234
1-2 1,234
2-3 150 1,2,3,4
3-4 1,2,3,4
4-5 1,2,3
5-6 100 1,2,3
6-7 1,2,3
7-8 1,2,3
8-9 1,2,3
9-10 1,2,3
10-11 30 1,2,3
11-12 1,2,3
12-13 1,2
13-14 1,2
14-15 20 1,2
15-16 1,2

Fig. 5 shows the comparison of variances of reconstruction errors of responses using the
optimally selected modes, first five and ten flexural modes, wherein each subfigure presents
errors for one excitation period (4-s period). In particular, the first ten modes were selected
based on the traditional modal contribution factors. Average error variances in the
reconstructed responses using ten modes are equal to 9.24x107'°, 6.93x107'?, 6.05x107'? and,
5.46x107'° for four different excitation amplitudes, and the corresponding standard deviations
of errors are 3.03x107°, 2.63x1075, 2.46x107'° and 2.34x107'° respectively. In order to
examine the effectiveness of the proposed algorithm, the first five flexural modes are also
selected to represent the scenario of randomly selecting low number of modes. The average
error variances in reconstructed responses using the first five modes under four different
excitation amplitudes are equal to 4.77x107'%, 3.28x107!°, 2.98x107'° and, 2.82x107°,
Average error variances of reconstructed responses using the proposed adaptive mode
selection procedure reduce to 3.66x107'%, 1.95x1071°) 1.60x107'°, and 1.21x107'° under four
excitation amplitudes, corresponding to standard deviations of 1.91x107, 1.40x1073,
1.26x1075, and 1.10x1073, respectively. The error variances have 60%-80% and 20%—60%

reductions when compared with results obtained by using the first 10 modes and first 5 modes,

17



respectively. Fig. 6 shows the time history of the strain response in element 4, including the
real and reconstructed responses that use the first ten, first five flexural modes and optimally
selected modes. Obviously, the use of adaptively selected modes demonstrates the smallest
reconstruction errors in the responses. Reconstruction errors with selected modes reduce more
significantly in the last four seconds compared with the use of all modes, because of the lower
amplitude of excitation. High modes show a minimal contribution to responses but
demonstrate significant discrepancies during the response reconstruction, as mentioned in the
previous section. The adaptive mode selection method provides accurate response

reconstruction results by selecting modes with high contribution.

3.3 Effect of Excitation Frequency

Another example that uses a sine sweeping excitation (Fig. 4(b)) is considered to
investigate the effect of excitation frequency on the mode number selection, where the
frequency changes from 0 Hz to 50 Hz at a rate of 4.167 Hz/s, as shown by Excitation 3 in
Table 1. The frequency range covers the first three vibration modes and a slow sweeping rate
is adopted to obtain steady responses under each frequency. The results of the mode selection
at each segment are listed in Table 3.

Three modes have MSNRs higher than the threshold in the first nine seconds, while only
two modes are selected for response reconstruction between 9 and 11 seconds. The excitation
in the last second exhibits frequency content close to the beam’s third and fourth natural
frequencies; thus, the first, third, and fourth modes remain.

As shown in Fig. 7, compared with reconstruction errors that use the first five and ten
modes, the accuracy of reconstructed responses improves significantly when the optimally
selected modes are used. Average error variances of the reconstructed responses are
8.04x1071°, 3.08x107!%, and 2.64x107'°, respectively, for the ten, five and optimal modes in
the first four seconds; are 5.90x107'°, 3.18x107!°, and 2.77x107'°, respectively, in 4-8 seconds;
and are 1.16x107%, 3.40x107'°, and 1.99x107'° in the last four seconds. By optimally selecting
the vibration modes, around 83% of errors are reduced by the proposed adaptive mode
selection technique in the last four seconds compared with the reconstruction error using the

first ten modes.

18



(2)
Il Sclccted modes

[ First 5 vertical modes
[ IFirst 10 vertical modes

54
=
=
E )
o]
-
£
£
L)
=
0 2 4 6 8 10 12 14 16 18
Element number
(b)
-9
8 15 Xlo T T T T T T T T
g
= 1
<
>
505
=
H o0
0 2 4 6 8 10 12 14 16 18
Element number
(©)
%107
8 T T T T T T T T
g !
=
.
- 05
(=]
)
=
0 2 4 6 8 10 12 14 16 18
Element number
(d)

Error variance
(=)
(9,
1

0 2 4 6 8 10 12 14 16 18
Element number

Fig. 5. Comparison of reconstruction error variances under random excitations with varying

amplitudes. (a) 0-4 s, (b) 4-8 s, (c) 8-12s, (d) 12-16s.

19



10

(a)

(b)

Error (m/m)

Strain (m/m)
=

x10°

T T T

Real
= Reconstructed (first 10 vertical modes)
——— Reconstructed (first 5 vertical modes)
—— Reconstructed (selected modes)

2 1 I 1 I 1 I I
0 2 4 6 8 10 12 14 16
Time (s)
x107
1 T T T T
Reconstruction errors (first 10 vertical modes)
0.75 1 Reconstruction errors (first 5 vertical modes) b
Reconstruction errors (selected modes)
0.5
.. 5 2K
T ”M\‘ ki if HHGE -
f”“l‘\”" l | IH‘ H "HV \ ' ”W HV'F l‘ﬂ“ LR
0 ik w\ “ \ \ ! i mh.\u\\ i Jmu Eﬂ Uyl
Il 8 i il
0.25 1

Standard deviation'of reconstruction error (first 5 'vertical modes)

Standard deviation of reconstruction error (selected modes)

I Standard deviation of reconstruction error (first 10 vertical modes) 7
1 ! 1 ! 1 ! !
0 2 4 6 8 10 12 14 16
Time (s)

Fig. 6. Comparison of the time histories of the real and reconstructed strain responses in

Element 4 under non-stationary random excitations with varying excitation amplitudes.

Table 3

(a) Time histories of strain responses, (b) Reconstruction errors.

Adaptive mode number selection under sine sweeping excitation (sweep from 0 to 50 Hz).

Time (s) Selected mode number
0-1 1,2,3
1-2 1,2,3
2-3 1,2,3
3-4 1,2,3
4-5 1,2,3
5-6 1,2,3
6-7 1,2,3
7-8 1,2,3
8-9 1,2,3
9-10 1,3
10-11 1,3
11-12 1,3,4

When compared to the reconstruction average error variances obtained by the first five
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flexural modes, the error variances by the proposed algorithm have a 18%, 15% and 41%
reduction in 0-4 s, 4-8 s and 8-12 s respectively, which further prove the effectiveness of the
proposed adaptive mode selection algorithm. Real and reconstructed strain responses using
selected and all modes are plotted in Fig. 8. The use of selected modes for response
reconstruction can achieve more accurate results than using all modes. This case investigation

further demonstrates the benefit of adaptive mode selection method in the response

reconstruction.
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Fig. 7. Comparison of reconstruction error variances under sine sweeping excitation. (a) 0-4s,
(b) 4-8s, (c) 8-12s.
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3.4 Effect of Noise Level

The measurement noise is assumed as zero-mean stationary Gaussian white noise in this
study. Process and measurement noise levels are assumed uncorrelated. The strain
measurement noise has a constant standard deviation of 27 pe, which is around 5% of the
standard deviation of the largest strain responses in element 1. The measurement noise level is
a major parameter that influences the response reconstruction accuracy. If the standard
deviation of the strain measurement noise is set to 5.4 pe (i.e., 1% of the standard deviation of
the maximum strain response), which represents an extremely low noise level, then the
minimum reconstruction error A under random excitation 1 is achieved when the first four
modes are selected, as shown in Fig. 9. Compared with Fig. 3(a), the minimum reconstruction
error in Fig. 9 is significantly smaller due to the reduced measurement noise. Moreover, the
increase in the total reconstruction error A is insignificant with the increasing number of

selected modes beyond four. The low measurement noise significantly reduces the

noise-induced estimation error A,, Consequently, the negative impact of selecting additional

vibration modes is minimized and the advantage of the adaptive model selection is reduced.
Thus, the measurement noise level should be carefully quantified in this method. Several
Bayesian technique-based noise quantification methods have been developed recently. But
they are beyond the scope of the current study and not included in this study. The system
process noise covariance matrix Q depends on the model accuracy. If the vibration modes are
identified from field measurement data, the process noise matrix Q shall be quantified

carefully to consider the potential discrepancy between the numerical and physical models.

3.5 Effect of Number of Sensors

The number of strain gauges also directly affects the reconstruction accuracy. Ten strain
gauges are assumed at selected locations in previous simulations. Fig. 10 shows the response
reconstruction error when the number of sensors is reduced to only two (only available in
elements 1 and 9). The optimal mode number is reduced to two, compared with three modes
considered in Fig. 3(a). Meanwhile, the total reconstruction error A based on two sensors is

larger than A based on ten sensors by one order of magnitude. Available sensor data affect
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the measurement update step in Kalman filtering. Therefore, estimated responses rely heavily
on the total number and positions of sensors. Zhang et al. [29] presented a detailed

investigation on sensor placement optimization and data fusion techniques.
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Fig. 8. Comparison of the time histories of the real and reconstructed strain responses in

element 4 under sine sweeping excitation. (a) Time history, (b) Reconstruction error.
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of only two sensors.

4. Experimental studies

A simply supported overhanging steel beam was constructed and experimentally
investigated in the laboratory to authenticate the effectiveness and feasibility of the proposed
adaptive mode selection method, as illustrated in Fig. 11. The total length, cross section,
modulus of elasticity, and density of the beam were 4 m, 50 mmx15.65 mm (widthxthickness),
2.05x10" N/m?, and 7,780 kg/m?, respectively. The beam was then mounted on roller and
hinge bearings, which were fixed on a concrete block that was attached to the ground. An
updated FE model consisting of 40 elements and 41 nodes with 123 DOFs was established
using commercial FE software, as shown in Fig. 12(a).

BX120-5AA resistance strain gauges, LK-503 laser displacement transducers, BK4374
and KDI1008 accelerometers were employed in the experiments to measure strain,
displacement and acceleration responses, respectively, as shown in Fig. 12(b). The installed
sensors were divided into two sets. One set was used for the sensor measurement in the
Kalman filter (Fig. 12(b)), and the other was to verify the reconstructed strain, displacement
and acceleration responses at the selected locations (Fig. 12(c)). A SINOCERALC-03A force
hammer was used to apply impact excitation upon the beam at the node 18 to generate the

vibration. All responses were collected at a sampling rate of 500 Hz using the 32-channel data
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99
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101
102

103
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105

acquisition system KYOWA EDX-100A. Figure 13 shows the measured acceleration response
at node 1. The standard deviations of the measurement noises from the strain gauges,
displacement transducers, and accelerometers were estimated to be 0.16 pe, 0.01 mm and 0.19

m?/s, respectively, from the measurement results. The variance of process noise is assumed as

5%107.
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Fig. 11. Experimental studies. (a) Experimental arrangement, (b) Configuration of

overhanging beam (unit: mm).
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Fig. 12. FE model of the overhanging beam and sensor locations. (a) FE model of the

overhanging beam (unit: mm), (b) Selected sensor locations for measurement, (¢) Sensor

locations for verification.
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Responses at locations where sensors were unavailable were reconstructed using the
measurements at the selected locations and then compared with the extra measurements to
verify their accuracy. The proposed adaptive mode selection method was applied to select
modes for response reconstruction. The moving window length and the threshold of the
MSNR were set to 2 s and 2 respectively. Table 4 lists the modes selected for response
reconstruction. The first seven modes with MSNRs higher than the threshold are selected in
the first moving window; then reduce to six modes in the next moving windows; and finally

decrease to five modes when the amplitude of excitation decrease in the last window.
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Fig. 13. Measured acceleration response at node 1 (experimental studies).

Table 4

Modes selected for response reconstruction (experimental investigation).
Time (s) Selected mode number
0-1 1,2,3,4,5,6,7
1-2 1,2,3,4,5,6
2-3 1,2,3,5,6

Fig. 14 shows the selected reconstructed responses, including the strain time history at
element 3, the displacement time history at node 6, and the acceleration time history response
at node 8. The reconstructed displacement response shows similar accuracy in Fig. 14(b);
however, the reconstructed strain and acceleration responses with the optimally selected
modes agree with the measured response much better than those with the first 10 modes. As
illustrated in Fig. 15, the use of selected modes demonstrates significantly lower
reconstruction error variances than the counterparts using the first 10 modes in the strain and
acceleration response reconstruction. The error variances decrease by 76% and 87%,

respectively, for strain and acceleration responses compared with the original results when the
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first 10 modes are used.

These experimental results further verify the effectiveness and advantage of the proposed

adaptive mode selection method for response reconstruction. The application of the Kalman

filter algorithm for response reconstruction in civil structures with a large number of DOFs

will become more viable and accurate with a limited number of selected modes.
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Fig. 14. Comparison of real responses, reconstructed responses using the optimally selected

modes and all modes (experimental studies). (a) Strain at element 3, (b) Displacement at node

6, (c) Acceleration at node 8.
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5. Conclusions

An adaptive mode selection method using the Kalman filter for response reconstruction

is proposed in this study. The results revealed that reconstruction errors are due to noises and
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truncated modes. Noise-induced errors increase while truncation errors decrease with the
increase in the selected mode number. It is illustrated that the inclusion of all vibration modes
(equivalent to a complete FE model with all DOFs) will reduce the accuracy of reconstructed
responses, which has not drawn sufficient attention before. Therefore, an optimal number of
modes should be selected to achieve minimum reconstruction errors. A MSNR is particularly
defined to demonstrate the contribution and error levels of each mode to the response
reconstruction. A threshold of 2 is analytically derived for the MSNR. Modes with MSNR > 2
should be maintained in the response reconstruction, while others should be truncated. A
beam structure is numerically investigated while considering effects of excitation amplitude,
excitation frequency, measurement noise level, and number of sensors. All these factors
significantly influence MSNRs and thus the mode selection. Consequently, vibration modes
should be adaptively selected on the basis of actual conditions to obtain the optimal response
reconstruction. The results demonstrate that reconstructed responses using selected modes are
more accurate than the traditional method that uses all modes. The experimental investigation
using a simply supported overhanging steel beam was conducted to verify the proposed
method. Data fusion for the strain, displacement, and acceleration is conducted. The
consistent results further illustrate the effectiveness and accuracy of the proposed mode
selection method in the response reconstruction. The results of this study can provide a
theoretical basis for the application of the Kalman filter algorithm in civil structures with a

large number of DOFs.
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