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ABSTRACT: 

Direct application of Kalman filter algorithm to state estimation of civil structures presents a 

computational challenge due to their high dimensions and complexity. Rewriting dynamic 

equations using modal coordinates can be an alternative solution to this problem because high 

modes with minimal contributions to structural responses can be truncated. Although the 

mode selection is important in accurately estimating the state of civil structures, studies on 

determining the remaining mode number are limited. Hence, the mode selection method in the 

Kalman filter for the optimal reconstruction of structural responses is investigated in this 

study. A modal signal-to-noise ratio (MSNR) is defined as the ratio of the estimated modal 

coordinate variance to the corresponding estimation error variance. Only modes with MSNR 

values higher than an analytically derived threshold are selected. A beam structure is 

numerically investigated to examine effects of excitation amplitude and frequency, 

measurement noise, and number of sensors on the adaptive mode selection for optimal 

response reconstruction. Experimental studies using a simply supported overhanging beam 

also confirm the efficacy of the proposed approach in response reconstruction using multiple 

types of sensors (including strain gauges, displacement sensors and accelerometers). Both the 

numerical and experimental results reveal that using all vibration modes or a complete 

numerical model with all degrees of freedom will reduce the accuracy of response 

reconstruction.  
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1. Introduction 

Structural health monitoring (SHM) is a type of cutting-edge technology that ensures the 

safety of structures during their long service lives [1,2]. An in-depth understanding of the 

behavior of the entire structure is required to assessing structure safety conditions with an 

efficient SHM system. Thus, responses at all critical locations of a structure are often needed 

for the successful monitoring of structural health. However, the number of locations of 

monitored structural responses is considerably less than the total degrees-of-freedom (DOFs) 

of structures due to the economic cost associated with data acquisition and some additional 

practical restraints (e.g., inaccessibility of locations for sensor installation). Thus, response 

reconstruction at critical structural locations where sensors are unavailable is indispensable to 

achieve SHM objectives.  

Many structural response reconstruction approaches based on limited measurements have 

been recently proposed. Kammer [3] put forward a response reconstruction technique in 1997 

for locations without sensors based on measured responses at other locations by using a 

transformation matrix. Law et al. [4] proposed a method for structural response reconstruction 

in a full or substructure using generalized transmissibility concept in the frequency domain. Li 

et al. [5] extended this approach to wavelet domain for structural response estimation under 

unknown traffic-induced vibrations in 2017. In 2019, He and Zhou [6] developed a novel 

approach for reconstructing structural responses of critical locations using measurements from 

remote sensors based on empirical mode decomposition and Fourier series fitting method. 

Recently, Sun et al. [7] presented a structural response reconstruction method for 

reconstructing responses with quasi-static and dynamic components and solving the 

measurement deficiency problem through principal component analysis.  

The Kalman filter is a commonly used tool that provides an unbiased and recursive 

algorithm in the time domain to estimate the unknown state vector of a linear dynamic system 

that optimally uses an incomplete and noisy measurement set [8,9]. Kalman filter-based 

methods consider uncertainties in structural systems and measurements. For example, Zhu et 

al. [10] presented a Kalman filter-based response reconstruction technique and they further 

extended the algorithm to accomplish data fusion for simultaneous acceleration, displacement, 
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and strain measurements through a normalization procedure [11]. Xu et al. [12] successfully 

applied the algorithm to the SHM of long-span suspension bridges. Kalman filter estimator 

also has the potential to reconstruct input excitations. Gillijns and Moor [13,14] presented the 

three-step unbiased minimum-variance state and input estimation technique for linear systems 

in 2007. This algorithm was extended by Lourens et al. [15] to reduced-order structural 

dynamic models. Zhang and Xu [16] proposed multitype sensor placement optimization under 

unknown excitation based on the three-step Kalman filter algorithm. In addition, Kalman 

filter estimators have also been successfully applied to fatigue predictions [17] and damage 

detection [18-20]. 

However, the direct application of the Kalman filter algorithm to civil structures with 

large dimensions and high complexity presents a computational challenge. Rewriting the 

second-order dynamic equation using modal coordinates can solve this problem by truncating 

high vibration modes with minimal and negligible contributions to structural responses. 

Determining the remaining mode number is important to estimate the structural state 

accurately. A common way to select modes is based on the concept of modal contribution 

factors developed in earthquake engineering, wherein modes are selected until the 

accumulated modal contribution factors are beyond a specified threshold [21]. This method 

has been extensively applied to civil structures, including beams [22,23], shear frames [24], 

bridges [25] and other building structures [26]. Xue et al. [27] proposed a mode selection 

method to include sufficient physical modes for the flexibility matrix identification. A 

predefined mode number is typically adopted in these methods, which are associated with the 

following limitations: (1) the contributions of individual modes to the overall dynamic 

behavior of a structure are variable, which depends on the structural characteristics, loading 

characteristics, and locations of interests; the selection of a fixed mode number cannot adapt 

to such variability; and (2) these methods always aim to select a sufficiently large number of 

modes; however, they did not realized that the inclusion of all or an excessive number of 

vibration modes may even reduce the accuracy of reconstructed responses due to the 

existence of reconstruction errors, as revealed in this study. Consequently, these 

aforementioned mode selection methods cannot guarantee the optimal response reconstruction. 

Additional emphasis should be placed on the adaptive selection of the most critical mode 
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shapes that can optimally reconstruct responses. In fact, the rational determination of the 

mode number has been overlooked in the previous response reconstruction studies. 

An adaptive mode selection method in Kalman filtering for the optimized reconstruction 

of structural responses is presented in this study. The response reconstruction error that 

considers the increasing number of modes is first analyzed. A modal signal-to-noise ratio 

(MSNR) is then defined as the ratio of variance of the estimated modal coordinate response to 

variance of the corresponding reconstruction error from the Kalman filter algorithm. A 

threshold MSNR value is analytically derived, and modes with higher MSNR values than the 

threshold are subsequently retained. A cantilever beam structure is numerically investigated. 

The change of reconstruction errors with the increase of the selected mode number revealed 

for the first time that using all vibration modes (or a complete structural model) is a 

non-optimal solution with the presence of measurement and system noise. The effect of the 

excitation amplitude and frequency on mode selection is subsequently explored. The selection 

of the noise matrix and number of sensors are also discussed and compared with original 

assumptions. Experimental tests of a simply supported overhanging steel beam were 

conducted to verify the proposed method further. The numerical and experimental results 

demonstrated that the proposed method can provide effective and flexible mode selection to 

achieve accurate response reconstruction.  

 

2. Theory 

The mode selection method aims to choose the number of vibration modes for the optimal 

response reconstruction. The Kalman filter algorithm is used in the reconstruction of 

structural responses, in which posteriori error covariance matrix is applied to calculate MSNR 

values of each mode. The flowchart of the proposed algorithm is illustrated in Fig. 1. 

 

2.1 Kalman filtering algorithm 

Kalman filtering is a recursive technique for obtaining an unbiased estimation of the 

unknown linear dynamic system state vector from noisy measurements. The algorithm uses 

the following discrete state-space dynamic and measurement equations [28] 
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1k k k k
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   
   

z Az Bu w

y Cz Du v
, 

(1) 

 
Fig. 1. Flowchart of the proposed algorithm. 

 

where the subscript k represents the time step number; zk, yk, and uk denote discrete-time state, 

observation, and external excitation vectors, respectively; A is the discrete state transmission 

matrix and B is the input matrix which relates the input excitation to state vectors; the 
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observation matrix C maps the state vector into the observed vector, while D is the direct 

transmission matrix; The process noise from modelling inaccuracies is characterized by wk 

with covariance matrix Q, and measurement noise of sensors is represented by vk with 

covariance matrix equal to R. It is a general practice to assume wk and vk are zero-mean white 

noise and uncorrelated to each other.  

Time update and measurement update is included in the two-step Kalman filter method 

[9]: 

 
| 1 1 1ˆ ˆk k k k   z A z B u , (2) 

 T
| 1 1k k k  P AP A Q, (3) 

 
| 1 | 1ˆ ˆ ˆ[ ]k k k k k k k k    z z K y C z D u , (4) 

 
| 1[ ]k k k k P I K C P , (5) 

 T T 1
| 1 | 1[ ]k k k k k


  K P C CP C R , (6) 

where Pk and Kk denote the covariance matrices of the estimation error in the state vector and 

the optimal Kalman gain, respectively, at time step k. Asymptotic values for K and P can be 

obtained after several iterations through Kalman filter algorithm, given any initial value of P0 

and 0ẑ . 

 

2.2 Response Reconstruction in Modal Coordinate 

Considering the computational challenge encountered by the Kalman filtering algorithm 

in a structure with a large number of DOFs, the structure’s second-order dynamic equation 

can be written in the modal coordinates: 

 2 T2 o u  oq ζω q ω q Φ B u  , (7) 

in which the modal coordinates vector is expressed by q, Φ is the displacement mode shapes 

after mass normalization, ζ denotes the modal damping coefficient matrix, oω  represents the 

modal frequency matrix, and Bu is the location matrix of excitations. The state-space 

expression of Eq. (7) can be expressed as follows: 
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The observation vector 
ky depends on the types and numbers of sensors. The utilization 

of multiple types of measurements can usually outperform the single type in response 

reconstruction. If we consider a general case with structural strains, displacements and 

accelerations measured, the measurement can be represented by the observation vector 
ky  

and the corresponding output and direct transmission matrices can be expressed as: 
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(11) 

where ε is the measured strain vector, d is the displacement vector, a is the acceleration vector, 

and Esd is the strain-displacement matrix relating the node displacements and element strains.  

   The state vector z, including modal coordinates, is estimated using the Kalman filter 

algorithm on the basis of multi-type measurements. The reconstruction of displacements and 

strain responses at other critical locations can then be achieved through Eq. (12): 

 ˆe e
k ky Cz , (12) 

where the superscript “e” indicates the estimated or reconstructed responses, ˆkz  is the 

estimated state vector, Ce is the output matrix for the estimated strains and displacements that 

has a similar format to C but are reconstructed for different locations of interest. Matrix 

 Te D 0 0  is not shown in Eq. (12). The number of rows in matrices C and Ce represents 

the number of sensor locations and responses to be reconstructed, respectively. 

If all vibration modes are considered in ˆkz , the response reconstruction performed in the 

modal coordinate will be the same as the conducted counterpart using mass, stiffness, and 

damping matrices with complete DOFs. However, considering all vibration modes in 

large-scale civil structures is generally unnecessary. The entire set of modes can be divided 
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into subsets of selected (generally lower modes with large contributions to responses) and 

truncated (typically higher modes with small contributions to responses) modes as follows:  

    ˆ ˆˆ ˆˆ ˆ ˆ
TT

s t s s t t z z z q q q q  , e e e
s t   C C C , e e e

s t   D D D , 
(13) 

where subscripts “s” and “t” denote selected and truncated modes, respectively. Then, Eq. (12) 

can be rewritten as 

 ˆe e
s sy C z , (14) 

    Errors between reconstructed and real responses can be calculated as 

  ˆ( )e e e
s s s t t n t      δ y y C z z Cz δ δ

, 
 

(15) 

where  ˆˆˆ
T

s s sz q q is the truncated state vector, δ is the total error in reconstructed 

responses, ˆ( )e
n s s s δ C z z  represents estimation errors using the Kalman filter, and 

e
t t tδ Cz  represents the truncation error. The covariance matrix of reconstruction errors 

yields 

 cov( ) cov( )n t  Δ δ δ δ
. 

(16) 

where nδ  is determined by the process and measurement noise covariance matrices, and 

tδ  is determined by the state vector. In the Kalman Filter, the noise covariance are 

commonly assumed independent with the structural responses. Therefore, it is reasonable to 

assume that nδ  is also independent with tδ , then 

 cov( ) cov( ) Δ Δn t n t   Δ δ δ , (17) 

where 

 T Tˆcov( )( ) ( )e e e e
n s s s s s s s  Δ C z z C CP C

, 
(18) 

 Tcov( )= cov( )( )e e e
t t t t t tΔ C z C z C  (19) 

where Ps is the submatrix of the covariance matrix P of estimation errors that corresponds to 

selected modes. Accurate response reconstructions need to minimize Δ. 

 

2.3 Mode Number Selection 
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The covariance Δ  of reconstruction errors comprise nΔ  caused by the noise and tΔ  

induced by the truncated modes. As the number of modes in Ps increases, the error caused by 

measurement noise increases, whereas the errors caused by the truncated modes decreases. 

Moreover, reconstruction errors are dominated by tΔ  when the number of selected modes is 

small, but dominated by nΔ  when the number of modes increases to a certain level. This 

phenomenon will be illustrated in the numerical examples of this paper. Consequently, 

increasing the number of selected modes does not always improve the response reconstruction 

accuracy. Therefore, an optimal number of vibration modes must be selected to maintain the 

desired accuracy in the response reconstruction. This study aims at determining the required 

number of modes with given measurement error covariance intensity R and process noise 

covariance Q matrices. 

Since the state vector is expressed using the modal coordinate in Eq. (8), the P matrix 

calculated in Eq. (5) represents the error covariance of the estimated modal coordinate  

 
  

T

TT
ˆ ˆ

ˆ ˆE E E
ˆ ˆ

                                                   

q qq q
P ee z - z z - z

q qq q  
, 

(20) 

where q̂  and q̂  is the estimated modal displacement and velocity, respectively, both of 

which are composed of mode 1 to n; e is the error vector in the estimated modal coordinate. 

Considering the ith mode, as shown in Eq. (11), strains or displacements are only related to 

the following modal displacement iq  instead of the modal velocity iq : 

 
î i iq q e  , (21) 

where ie  is the estimation error in the ith modal coordinate. The variance of the estimation 

error ie  corresponding to the ith mode can be represented by the diagonal element in the 

covariance matrix P  

 ˆvar( ) var( ),      1, 2,...,ii i i ip e q q i n    , (22) 

where iip  stands for the ith diagonal element in the P matrix.  

According to Eq. (18) and Eq. (19), the variances of the corresponding estimation and 
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truncation errors of the ith mode can be expressed as 

 T T T T

, var( ) =sd i sd i sd i i sd i
n i i ii

i i i

e p
      

       
       

E φ 0 E φ 0 E φ 0 φ E φ
Δ

φ 0 φ 0 φ 0 0 0 ,
 

(23) 

 T

, var( )sd i sd i
t i i

i i

q
   

    
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E φ 0 E φ 0
Δ

φ 0 φ 0
 

(24) 

where iφ  is the ith mode shape and iip
 can be calculated by Eq. (22).    

The inclusion of the ith mode in the selected mode will introduce ,n iΔ  but eliminate 

,t iΔ  in the total reconstruction error Δ ; whereas the exclusion of the ith mode will 

introduce the ,t iΔ  but eliminate the ,n iΔ . It is evident that the optimal selection should be 

based on the relative magnitudes of ,n iΔ  and ,t iΔ  (i.e., v a r( )ie  and var( )iq ), where 

v a r ( )iq  represents the variance of the modal response and v a r ( )ie  represents the variance 

of the response estimation error. By borrowing the classical concept of signal-to-noise ratio, we 

can define a new index as MSNR. Consequently, the ith mode should be included in the 

response reconstruction only if  

 ,

,

var( ) var( )
= 1

var( )
t i i i

i
n i i ii

q q
r

e p
  

Δ

Δ
 

(25) 

Otherwise, including this mode reduces the accuracy of the response reconstruction. This also 

identifies the limitations of some existing response reconstruction methods that use the finite 

element (FE) model with all DOFs, which is essentially equivalent to the inclusion of all 

vibration modes in this study. 

Eq. (25) can be defined as the MSNR in the ith mode responses. However, only the 

estimated modal response ˆiq  is known in Kalman filter, while the real modal response iq  

remains unknown. Thus, in practice, the estimated MSNR of the ith mode must be calculated 

as:  

 ˆvar( ) var( )
ˆ

var( ) var( )
i i i

i
i i

q q e
r

e e


   

(26) 

We can assume that iq  and ie  are two independent random variables because the 
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estimation error ie  comes from process and measurement noises, which are independent of 

structural responses. Consequently, the MSNR shown in Eq. (26) can be rewritten as: 

 ˆvar( ) var( ) var( ) var( )
ˆ 1 2

var( ) var( )
i i i i

i
i i ii

q q e q
r

e e p


    

.
   

(27) 

A large estimated MSNR îr  indicates more significant contributions of the ith mode to 

the response reconstruction, whereas a small value indicates that this mode is overwhelmed 

by noise. Thus, modes should be selected only if the estimated MSNR îr  is higher than this 

threshold. This criterion can considerably simplify the mode selection in the response 

reconstruction.  

As illustrated by the flowchart in Fig. 1, the response reconstruction is first conducted by 

using all the vibration modes. Then the MSNRs are calculated for all the candidate modes 

individually, and those modes with the MSNRs less than the threshold are truncated. Finally, 

the algorithm will redo the response reconstruction using the Kalman filter and the selected 

modes only. The selected modes do not need to start from the first one. Neither should they be 

consecutive. The actual MSNRs are influenced by excitations and sensor placement, as shown 

in the next section. Consequently, the optimal mode selection in this approach will also adapt 

to the changes in these factors.  

 

3. Numerical investigation 

A two-dimensional Euler–Bernoulli cantilever beam with a length of 2.0 m and a cross 

section of 50.8 mm × 50.8 mm is investigated in the numerical study. The FE model 

comprises 21 nodes and 20 equal-length elements (Fig. 2). Ten strain measurement sensors 

are mounted at ten selected locations on the upper surface, as shown in Fig. 2(b). All element 

strains, except those at elements 19 and 20, are assumed to be reconstructed in this study, 

wherein strains correspond to the middle point of elements. The first ten flexural modes are 

considered as candidate modes, with the first four frequencies equal to 2.25, 14.11, 39.45, and 

77.18 Hz.  

 

3.1 Optimal Mode Number 
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Responses attained from the FE model under a vertical random excitation applied at the 

free end of the cantilever beam is utilized as real responses to observe the change of 

reconstruction errors with the increase of mode number and calculate Δ , nΔ , and tΔ . The 

random excitation (Excitation 1 in Table 1) demonstrates a frequency bandwidth and 

maximum amplitude of 0.5–70 Hz and 50 N, respectively. 

 

(a)  

 

(b)  

 

Fig. 2. Numerical investigation. (a) FE model, (b) sensor locations. 

 

Table 1  

Excitation types considered in numerical studies. 

No. Types  Frequency (Hz) 

Excitation 1 Random excitation 0.5-70 

Excitation 2 Non-stationary random exaction with varying amplitude 0.5-70 

Excitation 3 Sine sweep excitation 0-50 

 

Fig. 3(a) shows the variations of the reconstruction error with the increasing number of 

modes selected, wherein the reconstruction error is calculated as the trace of the 

reconstruction error matrix Δ. The large total reconstruction error variance at the beginning is 

dominated by the truncated mode error t . When the mode number is equal to three, the 

total reconstruction error variance becomes the minimum due to small errors caused by both 

noise and truncated modes. When the mode number is greater than three, the total normalized 

reconstruction error variance   enlarges as the number of modes increases. The similar   

and noise-induced error n  implies a very small truncation error variance t . The 

minimum total normalized reconstruction error variance exhibits a minimum value of   
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when the mode number is three. Fig. 3(b) provides a clear explanation to this selection. Only 

the first three modes obtain an MSNR greater than the threshold; consequently, the selection 

of the first three modes offers the optimal accuracy of reconstructed responses, which may be 

contradictory to the common practice of adopting a very detailed model in numerical 

simulations. If ten modes are considered in this case, then the reconstruction error will be 3.7 

times the optimal value.   

(a) 

 

(b) 

   

Fig. 3. Response reconstruction for the beam subjected to random excitation. (a) The 

variation of reconstruction errors with the increasing number of the selected modes, (b) 

MSNR for different vibration modes.  
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3.2 Effect of Excitation Amplitude 

MSNRs are highly dependent on excitation amplitudes. A nonstationary random excitation 

(Excitation 2 in Table 1) with a frequency range of 0.5–70 Hz and varying amplitudes (i.e., 

maximum forces of 150, 100, 50, and 20 N in periods of 0–4, 4–8, 8–12, and 12–16 s, 

respectively) is applied vertically at the free end of the beam to investigate the effect of 

excitation amplitudes on the mode number selection. The time history of excitation is shown 

in Fig. 4(a). A moving window method with a window size of 1 s is applied in this study to 

select modes adaptively. Modes with MSNR values of r > 2 are selected.  

Table 2 presents the results of the mode selection in each segment. Four modes with 

MSNRs higher than the threshold are selected in the first four seconds, when the maximum 

amplitude of excitation is 150 N; but reduce to three modes when the maximum amplitude of 

excitations are only 100 and 50 N during 4–12 seconds. Finally, two modes remain in the last 

four seconds when the maximum amplitude of excitation is 20 N. The decreasing amplitude 

of excitations clearly reduces MSNRs of all modes and consequently leads to the less selected 

vibration modes in the optimal response reconstruction. 

 

(a) 

 

(b) 

 
Fig. 4. Time histories of different excitations at the free end. (a) Non-stationary random 

excitation with varying amplitudes, (b) Sine sweeping excitations (0-50 Hz). 
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Table 2  

Adaptive mode number selection under random excitations with varying amplitudes. 

Time (s) Excitation amplitude (N) Selected mode number 

0-1 

150 

1,2,3,4 

1-2 1,2,3,4 

2-3 1,2,3,4 

3-4 1,2,3,4 

4-5 

100 

1,2,3 

5-6 1,2,3 

6-7 1,2,3 

7-8 1,2,3 

8-9 

50 

1,2,3 

9-10 1,2,3 

10-11 1,2,3 

11-12 1,2,3 

12-13 

20 

1,2 

13-14 1,2 

14-15 1,2 

15-16 1,2 

 

Fig. 5 shows the comparison of variances of reconstruction errors of responses using the 

optimally selected modes, first five and ten flexural modes, wherein each subfigure presents 

errors for one excitation period (4-s period). In particular, the first ten modes were selected 

based on the traditional modal contribution factors. Average error variances in the 

reconstructed responses using ten modes are equal to 9.2410−10, 6.9310−10, 6.0510−10 and, 

5.4610−10 for four different excitation amplitudes, and the corresponding standard deviations 

of errors are 3.0310−5, 2.6310−5, 2.4610−10 and 2.3410−10, respectively. In order to 

examine the effectiveness of the proposed algorithm, the first five flexural modes are also 

selected to represent the scenario of randomly selecting low number of modes. The average 

error variances in reconstructed responses using the first five modes under four different 

excitation amplitudes are equal to 4.7710−10, 3.2810−10, 2.9810−10 and, 2.8210−10. 

Average error variances of reconstructed responses using the proposed adaptive mode 

selection procedure reduce to 3.6610−10, 1.9510−10, 1.6010−10, and 1.2110−10 under four 

excitation amplitudes, corresponding to standard deviations of 1.9110−5, 1.4010−5, 

1.2610−5, and 1.1010−5, respectively. The error variances have 60%–80% and 20%–60% 

reductions when compared with results obtained by using the first 10 modes and first 5 modes, 
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respectively. Fig. 6 shows the time history of the strain response in element 4, including the 

real and reconstructed responses that use the first ten, first five flexural modes and optimally 

selected modes. Obviously, the use of adaptively selected modes demonstrates the smallest 

reconstruction errors in the responses. Reconstruction errors with selected modes reduce more 

significantly in the last four seconds compared with the use of all modes, because of the lower 

amplitude of excitation. High modes show a minimal contribution to responses but 

demonstrate significant discrepancies during the response reconstruction, as mentioned in the 

previous section. The adaptive mode selection method provides accurate response 

reconstruction results by selecting modes with high contribution. 

 

3.3 Effect of Excitation Frequency 

Another example that uses a sine sweeping excitation (Fig. 4(b)) is considered to 

investigate the effect of excitation frequency on the mode number selection, where the 

frequency changes from 0 Hz to 50 Hz at a rate of 4.167 Hz/s, as shown by Excitation 3 in 

Table 1. The frequency range covers the first three vibration modes and a slow sweeping rate 

is adopted to obtain steady responses under each frequency. The results of the mode selection 

at each segment are listed in Table 3.  

Three modes have MSNRs higher than the threshold in the first nine seconds, while only 

two modes are selected for response reconstruction between 9 and 11 seconds. The excitation 

in the last second exhibits frequency content close to the beam’s third and fourth natural 

frequencies; thus, the first, third, and fourth modes remain.  

As shown in Fig. 7, compared with reconstruction errors that use the first five and ten 

modes, the accuracy of reconstructed responses improves significantly when the optimally 

selected modes are used. Average error variances of the reconstructed responses are 

8.04×10−10, 3.08×10−10, and 2.6410−10, respectively, for the ten, five and optimal modes in 

the first four seconds; are 5.9010−10, 3.18×10−10, and 2.7710−10, respectively, in 4–8 seconds; 

and are 1.1610−9, 3.40×10−10, and 1.9910−10 in the last four seconds. By optimally selecting 

the vibration modes, around 83% of errors are reduced by the proposed adaptive mode 

selection technique in the last four seconds compared with the reconstruction error using the 

first ten modes.  



 19

(a) 

 

 

(b)    

 

(c)    

 

(d)    

 
Fig. 5. Comparison of reconstruction error variances under random excitations with varying 

amplitudes. (a) 0-4 s, (b) 4-8 s, (c) 8-12s, (d) 12-16s. 

  1 
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 2 

(a)  

 

(b)  

 

Fig. 6. Comparison of the time histories of the real and reconstructed strain responses in 3 

Element 4 under non-stationary random excitations with varying excitation amplitudes. 4 

(a) Time histories of strain responses, (b) Reconstruction errors. 5 

 6 

Table 3  7 

Adaptive mode number selection under sine sweeping excitation (sweep from 0 to 50 Hz). 8 

Time (s) Selected mode number 

0-1 1,2,3 

1-2 1,2,3 

2-3 1,2,3 

3-4 1,2,3 

4-5 1,2,3 

5-6 1,2,3 

6-7 1,2,3 

7-8 1,2,3 

8-9 1,2,3 

9-10 1,3 

10-11 1,3 

11-12 1,3,4 

 9 

When compared to the reconstruction average error variances obtained by the first five 10 
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flexural modes, the error variances by the proposed algorithm have a 18%, 15% and 41% 11 

reduction in 0-4 s, 4-8 s and 8-12 s respectively, which further prove the effectiveness of the 12 

proposed adaptive mode selection algorithm. Real and reconstructed strain responses using 13 

selected and all modes are plotted in Fig. 8. The use of selected modes for response 14 

reconstruction can achieve more accurate results than using all modes. This case investigation 15 

further demonstrates the benefit of adaptive mode selection method in the response 16 

reconstruction. 17 

 18 

(a) 

                       

 

(b)    

 

(c)    

 
Fig. 7. Comparison of reconstruction error variances under sine sweeping excitation. (a) 0-4s, 19 

(b) 4-8s, (c) 8-12s. 20 

 21 
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3.4 Effect of Noise Level 22 

The measurement noise is assumed as zero-mean stationary Gaussian white noise in this 23 

study. Process and measurement noise levels are assumed uncorrelated. The strain 24 

measurement noise has a constant standard deviation of 27 μ, which is around 5% of the 25 

standard deviation of the largest strain responses in element 1. The measurement noise level is 26 

a major parameter that influences the response reconstruction accuracy. If the standard 27 

deviation of the strain measurement noise is set to 5.4 μ (i.e., 1% of the standard deviation of 28 

the maximum strain response), which represents an extremely low noise level, then the 29 

minimum reconstruction error   under random excitation 1 is achieved when the first four 30 

modes are selected, as shown in Fig. 9. Compared with Fig. 3(a), the minimum reconstruction 31 

error in Fig. 9 is significantly smaller due to the reduced measurement noise. Moreover, the 32 

increase in the total reconstruction error   is insignificant with the increasing number of 33 

selected modes beyond four. The low measurement noise significantly reduces the 34 

noise-induced estimation error nΔ . Consequently, the negative impact of selecting additional 35 

vibration modes is minimized and the advantage of the adaptive model selection is reduced. 36 

Thus, the measurement noise level should be carefully quantified in this method. Several 37 

Bayesian technique-based noise quantification methods have been developed recently. But 38 

they are beyond the scope of the current study and not included in this study. The system 39 

process noise covariance matrix Q depends on the model accuracy. If the vibration modes are 40 

identified from field measurement data, the process noise matrix Q shall be quantified 41 

carefully to consider the potential discrepancy between the numerical and physical models. 42 

 43 

3.5 Effect of Number of Sensors 44 

The number of strain gauges also directly affects the reconstruction accuracy. Ten strain 45 

gauges are assumed at selected locations in previous simulations. Fig. 10 shows the response 46 

reconstruction error when the number of sensors is reduced to only two (only available in 47 

elements 1 and 9). The optimal mode number is reduced to two, compared with three modes 48 

considered in Fig. 3(a). Meanwhile, the total reconstruction error   based on two sensors is 49 

larger than   based on ten sensors by one order of magnitude. Available sensor data affect 50 



 23

the measurement update step in Kalman filtering. Therefore, estimated responses rely heavily 51 

on the total number and positions of sensors. Zhang et al. [29] presented a detailed 52 

investigation on sensor placement optimization and data fusion techniques. 53 

(a)  

 

(b)  

 

Fig. 8. Comparison of the time histories of the real and reconstructed strain responses in 54 

element 4 under sine sweeping excitation. (a) Time history, (b) Reconstruction error. 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

Fig. 9. Variations of reconstruction errors with increasing number of modes in consideration 65 

of a low measurement noise level. 66 
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 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

Fig. 10. Variations of reconstruction errors with increasing number of modes in consideration 76 

of only two sensors. 77 

 78 

4. Experimental studies 79 

A simply supported overhanging steel beam was constructed and experimentally 80 

investigated in the laboratory to authenticate the effectiveness and feasibility of the proposed 81 

adaptive mode selection method, as illustrated in Fig. 11. The total length, cross section, 82 

modulus of elasticity, and density of the beam were 4 m, 50 mm×15.65 mm (width×thickness), 83 

2.05×1011 N/m2, and 7,780 kg/m3, respectively. The beam was then mounted on roller and 84 

hinge bearings, which were fixed on a concrete block that was attached to the ground. An 85 

updated FE model consisting of 40 elements and 41 nodes with 123 DOFs was established 86 

using commercial FE software, as shown in Fig. 12(a). 87 

BX120-5AA resistance strain gauges, LK-503 laser displacement transducers, BK4374 88 

and KD1008 accelerometers were employed in the experiments to measure strain, 89 

displacement and acceleration responses, respectively, as shown in Fig. 12(b). The installed 90 

sensors were divided into two sets. One set was used for the sensor measurement in the 91 

Kalman filter (Fig. 12(b)), and the other was to verify the reconstructed strain, displacement 92 

and acceleration responses at the selected locations (Fig. 12(c)). A SINOCERALC-03A force 93 

hammer was used to apply impact excitation upon the beam at the node 18 to generate the 94 

vibration. All responses were collected at a sampling rate of 500 Hz using the 32-channel data 95 
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acquisition system KYOWA EDX-100A. Figure 13 shows the measured acceleration response 96 

at node 1. The standard deviations of the measurement noises from the strain gauges, 97 

displacement transducers, and accelerometers were estimated to be 0.16 με, 0.01 mm and 0.19 98 

m2/s, respectively, from the measurement results. The variance of process noise is assumed as 99 

5×10-9.  100 

(a) 

           

(b) 

 
Fig. 11. Experimental studies. (a) Experimental arrangement, (b) Configuration of 101 

overhanging beam (unit: mm). 102 

(a)  

b)  

 

 

(c)  

 
Fig. 12. FE model of the overhanging beam and sensor locations. (a) FE model of the 103 

overhanging beam (unit: mm), (b) Selected sensor locations for measurement, (c) Sensor 104 

locations for verification. 105 

Displacement measurement sensors Strain measurement sensors Accelerometers

50
0 

Roller bearing 

1000 2000 1000 
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Responses at locations where sensors were unavailable were reconstructed using the 106 

measurements at the selected locations and then compared with the extra measurements to 107 

verify their accuracy. The proposed adaptive mode selection method was applied to select 108 

modes for response reconstruction. The moving window length and the threshold of the 109 

MSNR were set to 2 s and 2 respectively. Table 4 lists the modes selected for response 110 

reconstruction. The first seven modes with MSNRs higher than the threshold are selected in 111 

the first moving window; then reduce to six modes in the next moving windows; and finally 112 

decrease to five modes when the amplitude of excitation decrease in the last window.  113 

 114 

Fig. 13. Measured acceleration response at node 1 (experimental studies). 115 

 116 

Table 4  117 

Modes selected for response reconstruction (experimental investigation). 118 

Time (s) Selected mode number 

0-1 1,2,3,4,5,6,7 

1-2 1,2,3,4,5,6 

2-3 1,2,3,5,6 

Fig. 14 shows the selected reconstructed responses, including the strain time history at 119 

element 3, the displacement time history at node 6, and the acceleration time history response 120 

at node 8. The reconstructed displacement response shows similar accuracy in Fig. 14(b); 121 

however, the reconstructed strain and acceleration responses with the optimally selected 122 

modes agree with the measured response much better than those with the first 10 modes. As 123 

illustrated in Fig. 15, the use of selected modes demonstrates significantly lower 124 

reconstruction error variances than the counterparts using the first 10 modes in the strain and 125 

acceleration response reconstruction. The error variances decrease by 76% and 87%, 126 

respectively, for strain and acceleration responses compared with the original results when the 127 
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first 10 modes are used. 128 

These experimental results further verify the effectiveness and advantage of the proposed 129 

adaptive mode selection method for response reconstruction. The application of the Kalman 130 

filter algorithm for response reconstruction in civil structures with a large number of DOFs 131 

will become more viable and accurate with a limited number of selected modes. 132 

(a)  

 
 

(b)  

 
 

(c)  

 

Fig. 14. Comparison of real responses, reconstructed responses using the optimally selected 133 

modes and all modes (experimental studies). (a) Strain at element 3, (b) Displacement at node 134 

6, (c) Acceleration at node 8.  135 
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 136 

(a)  

 

(b)  

 

(c) 

 

Fig. 15. Comparison of reconstruction errors (a) Strain at element 3, (b) Displacement at node 6, 137 

(c) Acceleration at node 8. 138 

 139 

5. Conclusions 140 

An adaptive mode selection method using the Kalman filter for response reconstruction 141 

is proposed in this study. The results revealed that reconstruction errors are due to noises and 142 
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truncated modes. Noise-induced errors increase while truncation errors decrease with the 143 

increase in the selected mode number. It is illustrated that the inclusion of all vibration modes 144 

(equivalent to a complete FE model with all DOFs) will reduce the accuracy of reconstructed 145 

responses, which has not drawn sufficient attention before. Therefore, an optimal number of 146 

modes should be selected to achieve minimum reconstruction errors. A MSNR is particularly 147 

defined to demonstrate the contribution and error levels of each mode to the response 148 

reconstruction. A threshold of 2 is analytically derived for the MSNR. Modes with MSNR > 2 149 

should be maintained in the response reconstruction, while others should be truncated. A 150 

beam structure is numerically investigated while considering effects of excitation amplitude, 151 

excitation frequency, measurement noise level, and number of sensors. All these factors 152 

significantly influence MSNRs and thus the mode selection. Consequently, vibration modes 153 

should be adaptively selected on the basis of actual conditions to obtain the optimal response 154 

reconstruction. The results demonstrate that reconstructed responses using selected modes are 155 

more accurate than the traditional method that uses all modes. The experimental investigation 156 

using a simply supported overhanging steel beam was conducted to verify the proposed 157 

method. Data fusion for the strain, displacement, and acceleration is conducted. The 158 

consistent results further illustrate the effectiveness and accuracy of the proposed mode 159 

selection method in the response reconstruction. The results of this study can provide a 160 

theoretical basis for the application of the Kalman filter algorithm in civil structures with a 161 

large number of DOFs.  162 
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