Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116026
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorLi, Y-
dc.creatorYang, Y-
dc.creatorLiu, K-
dc.creatorWen, CY-
dc.date.accessioned2025-11-18T06:49:05Z-
dc.date.available2025-11-18T06:49:05Z-
dc.identifier.urihttp://hdl.handle.net/10397/116026-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Li, Y., Yang, Y., Liu, K., & Wen, C.-Y. (2025). Intelligent Joint Space Path Planning: Enhancing Motion Feasibility with Goal-Driven and Potential Field Strategies. Sensors, 25(14), 4370 is available at https://doi.org/10.3390/s25144370.en_US
dc.subjectCollision avoidanceen_US
dc.subjectJoint spaceen_US
dc.subjectManipulatoren_US
dc.subjectPath planningen_US
dc.subjectRapidly-exploring random treeen_US
dc.titleIntelligent joint space path planning : enhancing motion feasibility with goal-driven and potential field strategiesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume25-
dc.identifier.issue14-
dc.identifier.doi10.3390/s25144370-
dcterms.abstractTraditional path-planning algorithms for robotic manipulators typically focus on end-effector planning, often neglecting complete collision avoidance for the entire manipulator. Additionally, many existing approaches suffer from high time complexity and are easily trapped in local extremes. To address these challenges, this paper proposes a goal-biased bidirectional artificial potential field-based rapidly-exploring random tree* (GBAPF-RRT*) algorithm, which enhances both target guidance and obstacle avoidance capabilities of the manipulator. Firstly, we utilize a Gaussian distribution to add heuristic guidance into the exploration of the robotic manipulator, thereby accelerating the search speed of the RRT*. Then, we combine the modified repulsion function to prevent the random tree from trapping in a local extreme. Finally, sufficient numerical simulations and physical experiments are conducted in the joint space to verify the effectiveness and superiority of the proposed algorithm. Comparative results indicate that our proposed method achieves a faster search speed and a shorter path in complex planning scenarios.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSensors, July 2025, v. 25, no. 14, 4370-
dcterms.isPartOfSensors-
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105011622960-
dc.identifier.pmid40732498-
dc.identifier.eissn1424-8220-
dc.identifier.artn4370-
dc.description.validate202511 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is supported by the Research Centre of Unmanned Autonomous Systems, the Hong Kong Polytechnic University (P0046487) and the Research Centre for Low Altitude Economy, the Hong Kong Polytechnic University (P0054124).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
sensors-25-04370-v2.pdf4.9 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.