sensors

Article

Intelligent Joint Space Path Planning: Enhancing Motion
Feasibility with Goal-Driven and Potential Field Strategies

Yuzhou Li ¥, Yefeng Yang

check for
updates

Academic Editor: Yabin Gao

Received: 30 May 2025
Revised: 9 July 2025
Accepted: 11 July 2025
Published: 12 July 2025

Citation: Li, Y,; Yang, Y,; Liu, K,;
Wen, C.-Y. Intelligent Joint Space Path
Planning: Enhancing Motion
Feasibility with Goal-Driven and
Potential Field Strategies. Sensors 2025,
25,4370. https://doi.org/10.3390/

525144370

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Kang Liu ¥ and Chih-Yung Wen *

Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University,
Hong Kong 999077, China; yuzhoub5.li@connect.polyu.hk (Y.L.); yefeng.yang@connect.polyu.hk (Y.Y.);
kangl.liu@polyu.edu.hk (K.L.)

* Correspondence: chihyung.wen@polyu.edu.hk

Abstract

Traditional path-planning algorithms for robotic manipulators typically focus on end-
effector planning, often neglecting complete collision avoidance for the entire manipulator.
Additionally, many existing approaches suffer from high time complexity and are easily
trapped in local extremes. To address these challenges, this paper proposes a goal-biased
bidirectional artificial potential field-based rapidly-exploring random tree* (GBAPF-RRT¥)
algorithm, which enhances both target guidance and obstacle avoidance capabilities of
the manipulator. Firstly, we utilize a Gaussian distribution to add heuristic guidance into
the exploration of the robotic manipulator, thereby accelerating the search speed of the
RRT*. Then, we combine the modified repulsion function to prevent the random tree
from trapping in a local extreme. Finally, sufficient numerical simulations and physical
experiments are conducted in the joint space to verify the effectiveness and superiority of
the proposed algorithm. Comparative results indicate that our proposed method achieves
a faster search speed and a shorter path in complex planning scenarios.

Keywords: collision avoidance; path planning; manipulator; joint space; rapidly-exploring
random tree

1. Introduction

In modern industrial manufacturing, automated production, medical surgery, aerospace,
and precision assembly, robotic manipulators are widely utilized for various complex
tasks due to their high precision, efficiency, and programmability [1-3]. These tasks in-
clude welding, material handling, spraying, assembly, and remote operations in hazardous
environments. However, in such complex working environments, numerous obstacles
may interfere with the operation of robotic manipulators, necessitating obstacle avoidance
capabilities to ensure smooth task execution. Therefore, path-planning technology plays a
crucial role in enabling manipulators to complete designated tasks safely and efficiently.
Compared to low-degree-of-freedom (DOF) manipulators, high-DOF manipulators offer
greater flexibility and optimization potential in path planning, especially in cluttered or
constrained environments. However, efficiently planning motion paths for such manipu-
lators remains a key research challenge in the field. The difficulty lies in achieving both
obstacle avoidance and trajectory feasibility.

Path planning algorithms are typically classified into four major categories based
on their computational approach and characteristics, namely, searching-based methods,
sampling-based methods, optimization-based methods, and Reinforcement Learning-
based methods.

Sensors 2025, 25, 4370

https://doi.org/10.3390/s25144370

https://doi.org/10.3390/s25144370
https://doi.org/10.3390/s25144370
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-1173-7097
https://orcid.org/0000-0002-6396-3010
https://orcid.org/0000-0003-2881-5095
https://orcid.org/0000-0002-1181-8786
https://doi.org/10.3390/s25144370
https://www.mdpi.com/article/10.3390/s25144370?type=check_update&version=2

Sensors 2025, 25, 4370

2 of 25

The first category consists of searching-based methods, such as A* and Dijkstra. A*is
a heuristic search algorithm that uses an evaluation function to guide the search direction
and move toward the goal. Lin et al. proposed an improved A* algorithm that achieves
shorter paths and fewer inflection points, thereby optimizing path quality. However, it
introduces higher computational complexity, making it less scalable in high-dimensional
spaces [4]. Dijkstra’s algorithm is another classic approach for finding the shortest path
in a weighted map. Buzachis et al. modified the algorithm to optimize the path and
leveraged MapReduce to improve computation speed [5]. Similarly, Prasad et al. designed
a multi-Unmanned Aerial Vehicle (UAV) trajectory planning method based on Dijkstra’s
algorithm [6]. Despite these improvements, such algorithms remain far from meeting the
specific requirements of our scenario. As a result, both A* and Dijkstra are not well-suited
for path planning in the joint space of robotic manipulators.

The second category includes sampling-based algorithms, such as Rapidly-exploring
Random Tree (RRT) [7] and Probabilistic Roadmap (PRM) [8,9], along with their opti-
mized variants. Compared to the first category, these algorithms are more suitable for
high-dimensional spaces and complex environments. This is because sampling-based
methods avoid the explicit construction of the configuration space and do not rely on ex-
haustive enumeration or global discretization, which become computationally prohibitive
as the dimensionality increases. Instead, they efficiently explore the space by randomly
sampling feasible configurations, which makes them more scalable and adaptable in high-
dimensional planning problems. Zhang et al. [10] introduce SVF-RRT* based on RRT*,
which speeds up the convergence speed and smoothes the path. Moon et al. [11] proposed
a dual-tree RRT to increase the quality of the trajectory. Fan et al. [12] further enhanced
RRT* with a goal-biased strategy and a modified artificial potential field, significantly
improving convergence rate and path quality in cluttered environments. But most of the
improved sampling process introduces a degree of randomness, which will have high time
complexity in the high-dimensional space. Novosad et al. Improved PRM to find different
paths in complex 3D environment [13]. However, the quality of the generated paths is
often suboptimal, as they only provide asymptotically optimal solutions. Overall, while
improved versions of RRT and PRM offer better performance, they still face limitations
in efficiency and path quality, especially in high-dimensional planning scenarios. Despite
these challenges, the inherent scalability and flexibility of sampling-based algorithms make
them a promising foundation for further exploration and enhancement in high-dimensional
motion-planning problems.

The third category consists of optimization-based methods, including Artificial Po-
tential Field (APF) [14], Particle Swarm Optimization (PSO) [15-17], and SA (Simulated
Annealing) [18,19]. For example, Wang et al. proposed an APF-CPP approach, in which
they designed a unique coverage strategy to efficiently explore the environment [20]. Simi-
larly, Yang et al. introduced an adaptive APF method to generate smoother trajectories in
cluttered environments [21]. However, most of these improved methods are designed for
3D task spaces. In high-dimensional joint spaces, APF-based approaches typically lack a
sufficient global perspective, making it difficult to maintain path consistency and avoid
local extremes effectively. For PSO and SA methods, due to the large number of iterations
required to sufficiently explore the configuration space, they are generally not considered
for our scenario.

The fourth category comprises deep learning (DL) and reinforcement learning (RL)-
based methods [22-25]. With recent advancements in artificial intelligence, approaches that
integrate RL with classical planners such as RRT or PRM have gained increasing attention in
path-planning applications. For instance, Francis et al. combined PRM with RL to achieve
efficient indoor navigation for mobile robots [26], while Liu et al. integrated RRT with DL to

Sensors 2025, 25, 4370

30f25

enhance path exploration efficiency [27]. However, these learning-based methods typically
require large amounts of training data, and their applicability to real-time computation
remains a significant challenge. Furthermore, they often have problems with unstable
training results and struggle to incorporate joint constraints or kinematic constraints, which
limits their effectiveness in complex robotic manipulator scenarios.

Building upon the comparison of different types of planning algorithms aforemen-
tioned, this paper selects sampling-based algorithms for path planning in the joint space
of robotic manipulators. In recent years, RRT has been one of the most classical path-
planning algorithms and has been continuously improved to enhance its performance and
computational efficiency. Among these improvements, the RRT-Connect algorithm [28]
is a significant variant that employs a bidirectional expansion strategy, where two trees
are grown simultaneously from the start and goal points. The second tree continuously
expands toward the first tree until they connect. This approach incorporates greedy search
principles, which accelerate convergence and improve search efficiency. Additionally, there
are sampling-guided optimization algorithms [29,30] that refine the sampling strategy to
guide tree growth more effectively, thereby expediting convergence and reducing ineffec-
tive sampling during exploration. However, it is important to note that many RRT-based
improvements were not specifically designed for manipulators, and directly applying
them to path planning in the joint space of manipulators presents several challenges. For
instance, manipulators are constrained by joint angle limitations, and path planning must
strictly adhere to these constraints to prevent mechanical structure conflicts or infeasible
inverse kinematics (IK) solutions. IK refers to the process of computing the joint angles of a
manipulator that will place its end-effector at a desired position and orientation in space.
Solving IK is often challenging due to the non-linear relationships between joint variables
and end-effector pose, and because multiple or even no valid solutions may exist. Moreover,
due to the high degrees of freedom and redundancy of manipulators, path planning in joint
space requires extensive computation and long planning times, making it difficult to meet
real-time requirements. Therefore, further optimization and refinement of path-planning
algorithms are necessary to improve efficiency and accommodate engineering applications.

Based on the aforementioned research findings and the limitations of existing al-
gorithms in joint space path planning for manipulators, this paper aims to address key
challenges such as convergence speed, obstacle avoidance, and path smoothness. To this
end, we propose an optimized goal-biased bidirectional artificial potential field rapidly-
exploring random tree star (GBAPF-RRT*) algorithm that enhances computational efficiency
and planning quality in high-dimensional spaces, making the following key contributions
and overall framework of the proposed algorithm is illustrated in Figure 1:

1. Hybrid Gaussian Sampling Method—A hybrid Gaussian distribution is employed to
optimize the sampling process, effectively guiding tree expansion toward the target
point. This approach improves convergence speed, minimizes unnecessary sampling
nodes, and enhances search efficiency. Compared to unguided RRT, this method
significantly improves the efficiency of tree expansion and increases the likelihood of
finding a feasible path within limited iterations.

2. Modified Repulsive Force Function—While the original APF method is not well-suited
for path planning in high-dimensional space like joint space, an improved repulsive
force function is integrated into the expansion process. This enhancement significantly
improves obstacle avoidance performance in high-dimensional joint spaces, making it
more effective for robotic manipulator path planning.

3. Bidirectional expansion with adaptive step-size—A bidirectional tree expansion ap-
proach is adopted, allowing two trees to grow simultaneously and efficiently connect.
Additionally, an adaptive step-size strategy mitigates local extreme issues, ensuring

Sensors 2025, 25, 4370

4 of 25

a more stable and flexible search process in complex environments. Compared to
conventional single-tree expansion, this bidirectional strategy significantly accelerates
the search process and improves pathfinding efficiency in high-dimensional spaces.

Root Node

Figure 1. Schematic diagram of system framework.

2. Related Work

Although RRT and its variants are well-established in the path-planning literature, we
briefly revisit the basic RRT family of algorithms for two key reasons. First, our proposed
method builds directly upon the foundational RRT framework, and understanding its
core mechanisms helps clarify how our contributions extend and improve the original
formulation. Second, to fairly evaluate the performance of our enhancements, it is essential
to compare them against the baseline behaviors of classical algorithms such as RRT and
RRT*. Therefore, we provide a concise review of these representative methods to establish
the necessary context for our improvements.

2.1. Basic Algorithm
2.1.1. RRT

RRT is a classic and widely used algorithm in the field of path planning [7]. It finds
a feasible path from the start to the goal by randomly sampling points on the map and
expanding the tree accordingly.

The algorithm begins by randomly sampling a point in the space. Then it moves from
the nearest existing node in the tree toward the sampled point by a step size. The new node
at the new position will connect to the previous node. If the newly created node has not yet
reached the goal position, repeat the above steps until a feasible path is found.

However, RRT also has some notable drawbacks. First, since the sampling process is
entirely random, the tree may grow in directions that do not necessarily lead toward the
goal, resulting in a large number of unnecessary searches and reducing algorithm efficiency.
This issue becomes even more prominent in higher-dimensional spaces, such as the joint
space of robotic manipulators discussed in this paper. Additionally, in environments with
dense or complex obstacles, the randomness of RRT can lead to excessive computational
overhead when navigating around obstacles. If the path is surrounded by obstacles, the
algorithm may generate many ineffective expansions, significantly reducing the tree’s
growth efficiency. In such cases, RRT may require a large number of additional iterations

Sensors 2025, 25, 4370

50f25

to find a feasible path. Moreover, the generated path is often not optimal and typically
requires further post-processing and optimization.

2.1.2. RRT Star

RRT* is an enhanced version of the standard RRT algorithm [31]. While the traditional
RRT connects each newly generated node directly to its nearest neighbor in the tree, RRT*
introduces an optimization step that significantly improves the quality of the resulting
path. Instead of blindly attaching the new node to the closest existing node, RRT* searches
within a defined neighborhood around the new node to evaluate potential parent nodes.
It then selects the parent that results in the lowest cost path to the root in terms. This
re-wiring process allows RRT* to refine the path over time. As a result, RRT* not only
ensures path feasibility but also enhances path optimality compared to standard RRT. The
specific mechanism of RRT* is illustrated in Figure 2.

The goal The initial

configuration that fourati

the tree attempts to configuration
where the RRT

reach. .
starts growing.

Existing nodes

. already added to
the exploration
tree.

A newly generated
A random Y ge

node resulting
sample drawn . .

from extending
from the

configuration Ghear tOWAId Gng
space by a fixed step
pace. size.

Rewiring . .

radius in —— Valid edges in the

RRT* current tree

' structure

The lowest- connecting existing
. cost parent nodes. .

for g, -=- A potential

new-

extension from
Gnear TO Grang

Figure 2. Schematic diagram of RRT*.

However, RRT* still does not provide any guidance for selecting the random nodes,
meaning the sampling efficiency would decrease significantly in complicated or high-
dimensional maps. However, RRT* significantly improves path quality compared to
standard RRT by optimizing path connections and rewiring strategies. The resulting
paths are smoother and have lower costs, making RRT* more feasible and applicable in
practical scenarios.

2.2. Improved Version
2.2.1. Dual-Tree Methods

Bidirectional RRT is an extension of the standard RRT algorithm that improves search
efficiency by simultaneously growing two trees: one rooted at the start configuration and
the other at the goal configuration. These two trees explore the space independently and at-
tempt to connect with each other during the planning process. This strategy reduces search
time and increases the likelihood of finding a feasible path in complex or high-dimensional
environments. And RRT-Connect is a well-known and more aggressive implementation of
the bidirectional RRT strategy [28]. Unlike basic bidirectional RRT, which typically extends
trees by small steps, RRT-Connect employs a greedy approach that attempts to fully extend
one tree toward the other in a single iteration until it reaches an obstacle or connects. This
results in faster convergence and fewer required samples, making RRT-Connect particularly
effective in environments with relatively simple obstacle distributions.

Sensors 2025, 25, 4370

6 of 25

2.2.2. Goal-Biased Methods

The goal-biased method introduces an effective improvement to the original RRT
framework by incorporating probabilistic guidance toward the goal configuration during
sampling [10,14]. Specifically, during each iteration, a certain probability is assigned to
directly sample the goal or a point near it. This significantly reduces the number of iterations
required to reach a feasible solution, especially in environments with high dimensions.

2.2.3. Modified APF Methods

Although the basic principles of APF have been widely discussed, including in our
introductory review, we briefly revisit APF here due to its relevance to our proposed method.
Traditional APF approaches are known for their simplicity and real-time responsiveness,
but they often encounter difficulties such as local extreme and poor global guidance in
high-dimensional spaces.

Recent studies have proposed several improvements to overcome these issues, such
as integrating APF with sampling-based methods, dynamic repulsive fields, or adaptive
potential functions. These strategies aim to retain the efficiency of APF while improving its
global planning capability [20,21]. Inspired by this line of work, our algorithm incorporates
a modified APF module to guide local sampling and enhance obstacle avoidance.

3. Path-Planning Algorithm Design
3.1. Problem Formulation in Joint Space

Firstly, this paper defines the path-planning problem in the joint space. In joint space,
each degree of freedom of the robotic manipulator, including all movable joints and the
end-effector, is represented as one dimension. As defined in Equation (1), each node g is a
set of joint angles with a dimension of d, where g € R¥ is treated as a column vector after
transposition, and d represents the number of DOF of the manipulator.

Each node g in the tree structure corresponds to a specific configuration of the manip-
ulator in the joint space. The goal point g, is defined as a set of joint angles, representing
the desired final pose of the manipulator. The root node groot Of the tree is set to the
initial configuration.

By continuously expanding the tree and searching for a feasible path, the algorithm
ultimately outputs a sequence of nodes, where each node contains a set of joint angles. This
sequence clearly describes the manipulator’s trajectory from the starting configuration to
the target configuration and provides a well-defined input for subsequent motion control.

T
q:[ql P o (1)

3.2. Hybrid Gaussian Sampling Method

In the sampling process, this paper introduces a Gaussian distribution-based guided
sampling strategy on top of the traditional RRT framework. The Gaussian distribution is
a common and practical continuous probability distribution, and its probability density
function is defined in (2):

) = (-0, @

oV 27T

where y determines the center position of the distribution. The variance ¢ defines the
spread and dispersion range of the distribution. A larger variance results in a wider
sampling range, providing stronger global exploration ability for the algorithm; conversely,

Sensors 2025, 25, 4370

7 of 25

a smaller variance causes the samples to be more concentrated around the mean, favoring
local search and fine-tuning.

In this study, the mean y is set to the target point g, and each joint angle is sam-
pled around this center. In the joint space, the joint angles corresponding to each node
will gradually approach the target configuration in a collision-free manner. The value
of ¢ is dynamically adjusted according to the specific situation encountered during the
path-planning process. When the algorithm encounters more complex or obstacle-dense
environments, o will be increased accordingly, allowing the sampling points to cover a
wider area and enhancing the exploration capability. This helps to prevent the algorithm
from becoming trapped in local regions.

Compared to traditional uniform random sampling, the Gaussian-guided sampling
method proposed in this paper significantly improves the convergence speed of the algo-
rithm in high-dimensional joint space. It increases the probability of effective expansions
toward the target region while reducing invalid searches and collision failures, thereby
enhancing the overall efficiency of the path-planning process.

3.3. Modified Repulsive Force Function

Although the aforementioned Gaussian-guided sampling method can improve the
directional tendency of sampling points and make them more concentrated around the
target, it does not inherently introduce explicit obstacle avoidance capability. In complex
environments or high-dimensional joint spaces, relying solely on random or Gaussian
sampling still tends to produce a large number of invalid sampling points that fall into
obstacle regions, leading to low search efficiency. The algorithm may get stuck around
obstacles and fail to quickly find a feasible path.

To address this issue, this paper further introduces the repulsive force function from
the APF method into the expansion strategy and modifies it to be applicable in high-
dimensional joint spaces. The mechanism of the repulsive force is to generate a “repelling
effect” around obstacle regions, causing sampling points to be generated further away from
obstacles. This effectively reduces the probability of sampling points falling into obstacle
regions or near obstacle boundaries.

In traditional APF methods, the repulsive force function typically increases in an
exponential or quadratic form concerning the distance between the sampling point and
the obstacle. However, directly applying such functions in high-dimensional spaces can
lead to excessive computational overhead or cause large gradient oscillations. In this work,
based on the characteristics of the joint space, the repulsive force function is carefully
adjusted in terms of parameters and functional form. This ensures that it retains effective
obstacle avoidance capability while avoiding overly strong repulsive forces that could
lead to unstable or oscillatory paths. In this way, the sampling points can maintain goal-
directed guidance while also acquiring a certain level of obstacle avoidance ability, thereby
further improving the search efficiency and robustness of the algorithm in complex, high-
dimensional environments.

The first point to note is that in joint space, variations in joint angles do not have a
linear correspondence with the end-effector’s position in Cartesian space. In other words,
increasing or decreasing a joint angle does not directly result in the end-effector moving
away from or closer to an obstacle. Therefore, traditional repulsive force functions based
on Euclidean distance cannot be directly applied in joint space.

In joint space, simply adjusting a single joint angle does not achieve the same “pushing
away” effect as in Cartesian space, and may even lead to movement directions contrary to
the desired obstacle avoidance behavior. Therefore, it is necessary to redesign and adjust

Sensors 2025, 25, 4370

8 of 25

the form and action mechanism of the repulsive force function to make it suitable for path
planning in high-dimensional joint space.

Accordingly, this paper initially defines the repulsive force function for each joint in
joint space as Equation (3):

oo (st~ 4’ 40 =

7 dl(q) > dO

NI—
-

3)

urep,i =

o

where krep is the repulsive force coefficient, which can be adjusted according to specific
application scenarios and obstacle avoidance requirements. d;(g) represents the distance
from the i-th point of the current joint configuration to the nearest obstacle, and dy denotes
the effective range of the repulsive force. When the distance is less than or equal to d,
the repulsive force function takes effect; when the distance exceeds d, the repulsive force
becomes zero. A smaller repulsive range dj helps to prevent the same joint from being
influenced by conflicting repulsive forces from multiple obstacles simultaneously, thus
avoiding confusion in force direction and ensuring the clarity and stability of the repulsive
effect. This contributes to a smoother and more reliable obstacle avoidance process in the
joint space.

In addition, it is important to address the directionality issue mentioned earlier. In
joint space, simply increasing or decreasing joint angles does not allow one to directly
determine whether such adjustments will move the end-effector or joint position away
from obstacles. Since there is no linear relationship between joint angle changes and the
corresponding position in Cartesian space, an incorrect adjustment direction may cause the
sampling point to move closer to the obstacle, increasing the risk of collision. To address
this, a disturbance-based direction verification mechanism is introduced in this paper.
Before each sampling or joint angle adjustment, the Cartesian position of the joint must first
be calculated, as shown in Equation (4). By obtaining the joint’s position in Cartesian space
and evaluating distance changes under small perturbations, the algorithm can determine
whether the current adjustment direction is beneficial for moving away from the obstacle,
thereby ensuring the correctness and effectiveness of the obstacle avoidance direction.

Xi

pi=|yi| = [13 0} : <k1jl Tllf—1(l7k)> :

Zj

(4)

_ o O O

where p; € R3 denotes the position of the i-th joint in the world coordinate frame, and
(x,;,z;) are its Cartesian coordinates. Each T¥ | (qx) € SE(3) represents the homogeneous
transformation matrix from frame k—1 to frame k, determined by the joint variable gx. The
cumulative transformation from the base to the i-th joint is obtained through the ordered
product [Ti_, T,’(‘_1 (qx). The resulting transformation is applied to the local origin point
[0001]7, and the final position p; is extracted by projecting the resulting homogeneous
vector using the projection matrix [I3 0], where I3 denotes the 3 x 3 identity matrix.
Based on this, we further perform disturbance testing on each joint angle to determine
the correct adjustment direction. Specifically, a small positive and negative perturbation
is applied to each joint, and the resulting change in distance to the nearest obstacle is
compared. If the distance to the obstacle increases after a positive perturbation, this
direction is considered beneficial for obstacle avoidance, and the sign is set to positive;
otherwise, it is set to negative. Finally, the directional signs corresponding to each joint are

Sensors 2025, 25, 4370 9 of 25

combined into a direction vector, which is used to guide obstacle avoidance adjustments in
the joint space. The definitions are given in Equations (5) and (6):

. +1, ifd(q;+6) > d(q; —9)
sign. = (5)
—1, otherwise

T
dir = [sign1 sign, - signd} (6)

Therefore, the final repulsive force function is defined in Equation (7):

o [(ly =) e dine o) <dy %
repi —
0/ dl(q) > dO

The second issue that needs to be addressed arises from the structure of the robotic
manipulator. In most cases, changing the angle of the current joint g; does not directly alter
the Cartesian position of that joint itself. To achieve positional changes of the current joint
in Cartesian space, it is necessary to adjust the angle of the preceding joint. Therefore, the
repulsive force ultimately acts on the (i — 1)-th joint. The corresponding repulsive force is

defined in Equation (8):
1 1 1
Fooitir:o b=k — — —) —— . dir;
rep, link,i 1+ rep (A dO) dﬁnk diriny (8)

where dj;, denotes the minimum distance between the discretized sampling point on the
link and the obstacle, and diry; is the optimal avoidance direction calculated through
bidirectional perturbation testing.

In addition, there are more stringent constraints to be considered. For certain ma-
nipulator structures, adjusting only the previous joint angle generally allows changes in
the vertical (up-and-down) direction. To generate an effective lateral repulsive force, the
angle of the base joint would need to be adjusted. However, this paper does not adopt
such a method, since applying excessive repulsive forces onto a single joint often leads to
instability and prevents achieving the desired obstacle avoidance effect.

The third issue is the local extreme problem, which is a common challenge in the APF
method, as shown in Figure 3. When the robot, the obstacle, and the goal point lie on
the same straight line, the attractive force and the repulsive force may reach a balance at
a certain point, resulting in a net force of zero. However, at this equilibrium point, the
sampling node remains near the goal region without progressing toward the target. In this
situation, the robot is unable to continue moving toward the goal, causing the algorithm to
become stuck and unable to escape from the local extreme, thus negatively impacting the
feasibility and global optimality of the path-planning process.

To address this issue, in this paper, the repulsive force computation is incorporated
into the expansion step rather than the sampling step. Specifically, the algorithm first
performs Gaussian-distributed random sampling around the goal point and then applies
the repulsive force adjustment during the node expansion phase. This modifies the original
APF formulation:

Fiotal = Fatt + Frep)

and transforms it into a two-step process: one part is guided by the goal point by the
proposed goal-biased method, and the other part is a local adjustment to avoid obstacles
based on repulsive force feedback, as illustrated in Figure 4. By adopting this approach,
each expansion step is influenced by both the sampling point and the distance to the goal,

Sensors 2025, 25, 4370

10 of 25

dynamically adjusting the direction of tree growth. Because the process of adding the
attractive and repulsive forces has been canceled, this significantly reduces the occurrence
of local extreme and improves the robustness of the algorithm.

Represents the current
joint configuration in
the planning process.

Denotes the goal

* configuration that the
planner is attempting to
reach.

qgoal . Indicates the location of

an obstacle in the
environment.

O Defines the boundary of
the repulsive field
generated by the
obstacle.

——+ Represents the
attractive force pulling
the joint toward the
goal configuration.

Obstacle

—— Represents the
repulsive force pushing
the joint away from the
obstacle.

Gjoint
F rep

Figure 3. An illustration of the local extreme problem in the APF method.

Figure 4. An illustration of the APF Sampling and Guidance Phase break into two parts.

3.4. Expansion Strategy

To improve the search efficiency, the proposed algorithm adopts a bidirectional tree
expansion strategy (Bidirectional RRT) for path construction. Tree A is rooted at the start
configuration in the joint space and extends towards the direction of the goal configuration.
Conversely, Tree B is rooted at the goal configuration and expands in the direction guided
by the latest node of Tree A. Unlike the traditional RRT-Connect method, the proposed algo-
rithm expands each tree only once in every iteration. This strategy effectively prevents Tree
B from getting trapped in local regions with repeated iterations in complex environments,
thereby enhancing the overall success rate and efficiency of path planning.

Compared to the traditional unidirectional RRT, the dual-tree strategy does not incur
additional computational complexity in theory. Both methods have an approximate time
complexity of O(N log N), where N is the number of sampled nodes and log N accounts
for nearest-neighbor search. In practice, however, the proposed bidirectional approach
often exhibits superior computational efficiency. This is primarily because two trees collab-
oratively explore the configuration space and tend to connect more rapidly, especially in
high-dimensional or cluttered environments. Furthermore, by limiting each tree to a single

Sensors 2025, 25, 4370

11 of 25

expansion per iteration, the proposed strategy reduces redundant explorations and avoids
unnecessary growth in confined regions, thus accelerating convergence and improving the
success rate without introducing a performance loss.

To further enhance the performance of bidirectional expansion, an adaptive step-
size strategy is integrated into the planning process. The step size J is initially set to 0.2,
allowing for faster expansion in open regions when no collisions are detected. As the
collision counter increases, J is gradually reduced to 0.1 to enable more precise motion near
obstacles, thereby improving local adaptability and collision avoidance, as illustrated in
Figure 5.

The initial configuration
where the RRT starts
growing.

* The goal configuration
that the tree attempts to
reach.

The step size
is increasing

goal

. Existing nodes already
added to the exploration
tree.

., Grand
|
I
I
I
|
|
1
|

The step size is
reducing

Qnew

O A newly generated node
resulting from
extending gear toward

Grana by a fixed step
. size.
ObStacle . A random sample

drawn from the
Qnear configuration space.

— Valid edges in the
Ginit current tree structure
connecting existing
nodes.

—-= A potential extension
from gncar TO Grana

Figure 5. Schematic of the proposed bidirectional expansion strategy.Tree A starts from the initial
configuration and grows toward the goal, while Tree B grows from the goal towards the latest node
of Tree A. Each tree expands only once per iteration to avoid repeated expansion failures in local
regions. An adaptive step-size mechanism is also employed to accelerate expansion in open space
and improve precision near obstacles.

3.5. Collision Checking Strategy

In our implementation, collision checking is based on evaluating joint configurations
via forward kinematics to obtain the corresponding Cartesian positions of the manipulator’s
joints and links. Since obstacles are defined in a 3D workspace, collision evaluation is
ultimately conducted in Cartesian space. For each sampled configuration, the 3D positions
of all six joints are computed, and two levels of collision checking are applied. First, each
joint position must maintain a minimum clearance from all obstacles. Second, each link is
modeled as the straight segment between two adjacent joints and checked to ensure that
all points along the link maintain a specified minimum distance from obstacles. During
the RRT extension process, dense interpolation in joint space is performed, and each
intermediate configuration is validated through forward kinematics for both joint and
link collision clearance. These clearance thresholds can be tuned according to the actual
dimensions of the manipulator’s joints and links. Only when all intermediate steps satisfy
the clearance constraints will the extension be accepted. This ensures that the entire planned
trajectory remains collision-free with respect to the manipulator’s real physical model.

The final form of the proposed GBAPF-RRT* algorithm is described in Algorithm 1.

Sensors 2025, 25, 4370

12 of 25

Algorithm 1 The proposed GBAPF-RRT*

Require: Start configuration gstart, goal configuration Igoals maximum iterations N, step
size Ag, threshold ¢
Ensure: A feasible path from gstart t0 ggoa (if found)
1: Initialize trees: T4 < {qstart}, Tp < {qgoal }
2: fori =1to N do > — Expand Tree A —
3: 4 < GaussianSample()
. qrand ple qgoall o

4: Gy Nearest(TA,qémd)

5: qr{?ew — eXtend(Qéear/ qénd/ AQ)

6: if not CollisionFree (g, Ji,,) then

7: continue

8: end if

9: G — Gh + Prep(qfew) > Apply repulsive force
10: Add g4, to T4, connect with g,

> — Expand Tree B—
11: q8 4 + GaussianSample(ga.,,, o)
12: qBear < Nearest(Tg, g5 ;)
13: qu?ew — eXtend(qgear/ qfandr AQ)
14: if not CollisionFree(g5,,,, 42..,) then
15: continue
16: end if
17: qgew — qgew + Frep(quw)
18: Add g8, to Tg, connect with g5,
> — Try to Connect —

19: if Distance(gluy, gEew) < € then
20: return ExtractPath(Ty, Tg)
21: end if
22: end for

23: return Failure

4. Probabilistic Completeness

Probabilistic completeness is defined as the property that, if a feasible collision-free
path exists in the current environment, the algorithm is guaranteed to find such a path
given infinite iterations.

In the proposed algorithm, a Gaussian-based sampling strategy is adopted, where
samples are drawn around the goal configuration g according to (2).

According to this formulation, as the standard deviation ¢ increases, the distribution
becomes flatter and the sampling range expands. Theoretically, when o — oo, the Gaussian
distribution approximates a uniform distribution within the joint space limits.

Under this condition, the sampling mechanism effectively degenerates into uniform
exploration over the free configuration space, thus aligning with the classical probabilistic
completeness guarantees of RRT and RRT*. In our implementation, an adaptive sampling
mechanism is introduced: when consecutive sampling attempts fail due to collisions, the
value of ¢ is gradually increased. This enables a smooth transition from goal-biased local
exploration to global uniform sampling.

In addition to the Gaussian-based sampling strategy, the proposed GBAPF-RRT*
algorithm incorporates a modified repulsive force mechanism inspired by the APF method.
It is important to note that the repulsive force adjustment is applied during the expansion
phase rather than the sampling phase. Specifically, random sampling remains unbiased
and probabilistically complete, ensuring that any region of the free configuration space has
a nonzero probability of being sampled over infinite iterations.

The APF-based repulsive correction merely influences the direction of local expansion
around sampled points, providing a bias toward obstacle avoidance. However, it does

Sensors 2025, 25, 4370

13 of 25

not restrict or exclude any feasible regions from being eventually sampled or explored.
Consequently, the global exploratory capability of the algorithm is preserved.

Furthermore, an adaptive mechanism is introduced whereby the influence of the
repulsive force diminishes as the sampling radius expands. As the standard deviation
o of the Gaussian distribution increases, the sampling behavior asymptotically approx-
imates uniform random exploration, and the relative effect of the repulsive correction
becomes negligible.

Therefore, considering the independence of the sampling process and the non-
exclusionary nature of the local expansion adjustment, the proposed GBAPF-RRT* al-
gorithm maintains probabilistic completeness. Given sufficient iterations, it is guaranteed
to find a feasible collision-free path with probability one, satisfying the formal definition of
probabilistic completeness.

5. Simulation

To present the simulation experiments more clearly and systematically, we first de-
scribe the simulation setup in Section 5.1. The proposed algorithm is then applied to two
distinct scenarios, i.e., complex obstacle cluster.

5.1. Simulation Setup

In this study, the base of the manipulator is placed in the center of an obstacle cluster
on the map, with the objective of evaluating the algorithm’s performance in obstacle
avoidance and path planning from an initial pose to a specified target pose. Two different
simulation environments are designed, both within a 50 cm x 50 cm x 50 cm grid space.
The first environment features a complex cluster of small obstacles, while the second
includes a narrow entrance, simulating challenging terrain and confined spaces commonly
encountered in real-world scenarios. All experiments are conducted on a Windows 10
operating system, running on a hardware platform equipped with a 12th Gen Intel Core
i7-12700KF processor (base frequency 3.6 GHz) (Santa Clara, CA, USA) and 32 GB dual-
channel DDR5 memory.

The standard Denavit-Hartenberg (DH) parameters of the manipulator are defined in
Table 1, and the joint coordinate systems are illustrated in Figure 6.

Table 1. Standard DH Parameters of the manipulator with 6-DOF.

Link i 0; d; [m] a; [m] «; [rad]
1 0 0.05 0 -z
2 0 0 0.1294 0
3 0 0 0.1294 0
4 0 0 0.05 0
5 0 0 0 0
6 0 0 0 0

In the simulation, we compare four different path-planning algorithms: the standard
RRT*, bi-directional RRT*, Goal-Biased RRT*, and the proposed GBAPF-RRT* algorithm.
Each algorithm is tasked with planning a collision-free path from a given initial pose to a
specified target pose through this complex environment.

Key performance metrics, including planning time, success rate, path length, and
the number of sampling nodes are recorded and analyzed. These indicators are used
to comprehensively evaluate the performance and applicability of each algorithm under
complex obstacle conditions.

Sensors 2025, 25, 4370

14 of 25

0.1

—0.1.

—0.2

0.3
0.2
0.1

Y

Figure 6. Visualization of the manipulator’s coordinate frames. The coordinate frames shown
here are generated by the MATLAB R2024a SerialLink function, which uses a visualization style
resembling the modified DH convention. Each joint frame is labeled with its respective Xj, Y;, and
Z; axes. Joints 5 and 6 represent the end-effector’s rotational and gripper actuation components,
respectively. To improve the clarity of the visualization, the joint angles were adjusted to separate the
overlapping frames.

Given the high-dimensional, multi-degree-of-freedom, and non-linear constrained
nature of the joint space, the complexity of the search process increases significantly. To
ensure a fair comparison under consistent conditions, the maximum number of iterations
for all planning algorithms is uniformly set to 30,000. If an algorithm fails to find a valid
path within this limit, it is deemed a failure case, and the corresponding path length is
recorded as zero. This evaluation criterion ensures consistency in statistical analysis and
enables a quantitative assessment of failed attempts. In addition, to ensure fairness for
different algorithms, all the algorithms adopt the same collision detection function and are
tested with identical start and goal configurations. This setup guarantees that the variations
of the final result depend only on the performance of the algorithms themselves.

5.2. Simulation 1: Complex Obstacle Cluster Environment

The first simulation is conducted in an environment composed of a combination of
multiple small-scale obstacles and one or more large obstacles, as illustrated in Figure 7.
This setup is designed to emulate realistic, cluttered environments that include both densely
packed local obstacles and large-scale barriers, thus imposing significant challenges on
both global and local path-planning capabilities. Moreover, the visualization of the planned
trajectories is illustrated in Figure 8, which clearly shows that the proposed algorithm can
effectively achieve obstacle avoidance.

Sensors 2025, 25, 4370

15 of 25

-~ -
0. -

Y
5705 Y 05 ~05 X

Figure 7. The first simulation map with the manipulator at the start configuration. And the surround-

ing colored blocks represent static obstacles.

—0.2

—0.5 0 0.5
Y

(d)

Figure 8. The output trajectories generated by the proposed GBAPF-RRT* algorithm are illustrated,
based on the environment setup of Simulation 1. The manipulator is shown at its final goal configu-
ration. Each node of the RRT tree is connected by gray dashed lines to represent the manipulator’s
link configurations along the planned path. The orange, yellow, and green solid lines correspond to
the trajectories of joint 3, joint 4, and joint 6 (end-effector), respectively. A red dot marks the initial
position of the end-effector. The subfigure (a) provides a general 3D perspective, while subfigures
(b-d) show the same trajectory projected onto the X-Y, X-Z, and Y-Z planes, respectively.

Figure 9a shows the comparison of runtime performance across different algorithms in
this simulation environment. The proposed GBAPF-RRT* algorithm clearly outperforms the
baseline methods in terms of computational efficiency, demonstrating faster convergence
and significantly reduced computation time, particularly in complex obstacle scenarios.

Sensors 2025, 25, 4370

16 of 25

These results highlight the effectiveness of the guided sampling strategy and the enhanced
node expansion mechanism.

Figure 9b presents the path length comparison among the evaluated algorithms. Al-
though some baseline methods are capable of generating valid paths, they often produce
unnecessary detours or redundant segments, leading to longer path lengths. In contrast,
the GBAPE-RRT* algorithm consistently produces shorter and smoother trajectories while
maintaining a high success rate. This demonstrates its superior search quality and im-
plicit path optimization ability. Furthermore, smooth and concise paths are particularly
beneficial for practical manipulator motion execution, as they enhance motion continu-
ity, reduce energy consumption, and ultimately improve the overall applicability of the
proposed algorithm.

Runtime per Run Path Length per Run

N
o
=]

ERRT*
EBi-RRT*
[EG-Bi-RRT*
EmMGBAPF-RRT*

IN)
=]
]

o
=]

o
)

Path Length

Run Number Run Number
(@) (b)
Figure 9. Comparison of runtime (a) and path length (b) for four algorithms over ten trials. A path

length of zero indicates failure to find a valid trajectory. The results are obtained from trials conducted
in Simulation 1.

5.3. Simulation 2: Constrained Manipulation Through Structural Openings

The second simulation scenario is designed in an environment featuring a vertical
structural obstacle with a rectangular opening, as shown in Figure 10. The corresponding
planned trajectories are visualized in Figure 11. This setup is intended to simulate realistic
operational conditions where a manipulator must reach through constrained passages
or apertures in structural elements. Such environments are commonly encountered in
industrial tasks involving access through maintenance windows, workstation cutouts,
or openings in protective housings for tasks such as assembly, inspection, or pick-and-
place operations.

0.4
0.4.

Figure 10. The second simulation map with the manipulator at the start configuration. And the
surrounding colored blocks represent static obstacles.

Sensors 2025, 25, 4370

17 of 25

Compared to open-space navigation, this type of task introduces additional challenges,
such as restricted entry space, higher motion precision requirements, and tighter constraints
on the end-effector’s orientation. Successfully navigating through narrow openings neces-
sitates enhanced robustness in path planning and greater spatial accuracy, particularly in
confined, cluttered, or semi-enclosed environments.

Figure 12a presents a comparison of the computation times of each algorithm in
this simulation environment. It can be clearly seen that the proposed GBAPF-RRT* al-
gorithm maintains a significant advantage in time efficiency, generating feasible paths
within shorter durations. In scenarios with narrow openings and limited maneuvering
space, its guided sampling mechanism effectively enhances search directionality and
accelerates convergence.

Additionally, Figure 12b shows the path length comparison across the algorithms.
While some traditional methods are able to complete the task, the resulting paths often
include unnecessary detours or lack smoothness, compromising overall path quality. In
contrast, GBAPF-RRT* consistently achieves high success rates while generating more
compact and continuous trajectories. This contributes to lower control complexity and
energy consumption during execution, further highlighting the algorithm’s strength in
path optimization and its practical value in constrained robotic applications.

0.5

Joint connection (dashed)
Joint 3 trajectory
Joint 4 trajectory

Joint 6 trajectory
* End-effector start

5
—0.5 0 0.5

(b)

04 04

0.2 0.2

—02} —02}

—0.4+

-0.5 0 0.5

(© (d)

Figure 11. The output trajectories generated by the proposed GBAPF-RRT* algorithm are illustrated,
based on the environment setup of Simulation 2. The manipulator is shown at its final goal configu-
ration. Each node of the RRT tree is connected by gray dashed lines to represent the manipulator’s
link configurations along the planned path. The orange, yellow, and green solid lines correspond to
the trajectories of joint 3, joint 4, and joint 6 (end-effector), respectively. A red dot marks the initial
position of the end-effector. The subfigure (a) provides a general 3D perspective, while subfigures
(b—d) show the same trajectory projected onto the X-Y, X-Z, and Y-Z planes, respectively.

Sensors 2025, 25, 4370 18 of 25

Runtime per Run Path Length per Run
3000

mRRT*
BI-RRT*
2500 [=G-Bi-RRT*
_ GBAPF-RRT*
2000

N
a
=]

N
o
S

(sec

1500

ime

Path Length
g

o
S

Runt

1000

o =1 11Y919Y!

500

o
=]

Run Number Run Number

(a) (®)

Figure 12. Comparison of runtime (a) and path length (b) for four algorithms over ten trials. A path
length of zero indicates failure to find a valid trajectory. he results are obtained from trials conducted
in Simulation 2.

5.4. Results and Discussion

Table 2 presents the experimental results for the Simulation 1 map. In terms of
runtime, it can be observed that as the algorithms evolve progressively based on the
original RRT* framework, their performance improves accordingly. To reflect the real-time
requirements in practical applications, all algorithms were constrained with a maximum of
30,000 iterations. Consequently, some algorithms failed to generate a valid collision-free
path within this limit in certain runs. With respect to path length, the proposed algorithm
demonstrates a significantly shorter average path, reducing path length by approximately
60% compared to conventional goal-biased bidirectional algorithms, while maintaining a
high success rate.

Table 2. Runtime and path length statistics on Map 1 (10 runs).

Algorithm Liin Linax laz;g tmin (8) tiax (5) tuvg (8) Msuccess
RRT* 0 0 0 1780 1795 1788 0
Bi-RRT* 0 245 24 1670 3380 3184 1
G-Bi-RRT* 63 122 82 12 117 46 10
GBAPF-RRT* 20 34 28 1 8 4 10

Table 3 shows the results for the Simulation 2 map. In this more challenging scenario,
the runtime of all algorithms increased substantially. This is mainly due to the higher
number of required samples when navigating through narrow passages in joint space to
ensure collision-free paths. Moreover, the parent rewiring mechanism in RRT* under dense
sampling conditions contributes to a considerable increase in computational cost. Despite
these challenges, the proposed GBAPF-RRT* algorithm still outperforms the other methods
in both path length and success rate, demonstrating superior robustness and adaptability
in constrained environments.

Table 3. Runtime and path length statistics on Map 2 (10 runs).

Algorithm Linin Linax lavg tmin (8) tmax (8) tavg (8) Msuccess
RRT* 0 0 0 1410 1430 1412 0
Bi-RRT* 0 300 30 1300 2700 2538 1
G-Bi-RRT* 95 203 135 28 156 81 10
GBAPF-RRT* 30 36 34 3 9 6 10

To further analyze the stability and variance of different algorithms, boxplots of run-
time, path length, and sample nodes are presented in Figure 13. The top row corresponds
to Simulation 1, while the bottom row shows the results from Simulation 2. From the

Sensors 2025, 25, 4370

19 of 25

plots, it is evident that GBAPF-RRT* not only achieves the lowest median runtime but
also exhibits the smallest interquartile range in both maps, indicating high stability and
consistency. In contrast, G-Bi-RRT* displays a larger variance in runtime and sample nodes,
especially in the more complex Simulation 2 scenario. The classical RRT* and Bi-RRT*
perform poorly in both success rate and path quality, as reflected by their zero-valued
distributions. Overall, the boxplots further validate the effectiveness and robustness of the
proposed method across different environments.

Based on the results presented above, it is evident that the proposed algorithm demon-
strates significant improvement across both simulation maps. For the Simulation 1 map, the
algorithms lacked goal point guidance and could not reach the goal configuration within
the iteration limit, as seen from RRT* and Bi-RRT* having the success rates of 0% and 10%,
respectively. According to the recorded data, these algorithms often exhausted all iterations
without adequately exploring the joint space. The key point here is the high-dimensional
space. For a 6-DOF manipulator, the number of possible joint configurations is extremely
large, and random exploration alone becomes inefficient for traversing such the entire space.
For the Simulation 2 map, this scenario requires the manipulator to pass through a narrow
rectangular opening, which in 3D motion requires the manipulator to first fold inward
and then extend forward. However, such coordinated motion is particularly difficult to
achieve using sampling-based planners. If the algorithm only has the goal point guidance,
it will most likely be stuck in front of the wall and waste a lot of iterations. Even with
the assistance of repulsive function, the planner pushes the joint backward vertically but
does not actually fold the manipulator in a way that is similar to human behavior. Under
such conditions, an alternative strategy involving end-effector path planning followed
by inverse kinematics may offer a more effective solution for identifying feasible joint
configurations of the whole manipulators.

Runtime Distribution (Boxplot) Path Length Distribution (Boxplot) Sample Node Distribution (Boxplot)
10000 100000
pe

O
¥
— +

1000 - 10000 -

1000 -

Runtime (sec)
Sample Nodes

* | i E|
g

RRT* BI-RRT* GBIRRT GBAPF-RRT® RRT* BiRRT" GBILRRT GBAPF-RRT RRT* BI.RRT" GBIRRT GBAPF-RRT®

Runtime Distribution (Boxplot) Path Length Distribution (Boxplot) Sample Node Distribution (Boxplot)
10000 100000
300 1 1

1000 -

200 + 1 10000 - +

Runtime (sec)
Path Length
‘Sample Node:

100 1000 -

=] - == =

1t 100 -

RRT* BI-RRT* G-BiRRT* GBAPF-RRT* RRT* Bi-RRT* GBIRRT' GBAPF-RRT* RRT* BI-RRT* G-BiRRT* GBAPF-RRT*

Figure 13. Boxplots of runtime, path length, and sample nodes for all algorithms. The top row
corresponds to Simulation 1 and the bottom row to Simulation 2. Red “+” symbols indicate outliers.

To further validate the theoretical analysis of expansion strategies, we conduct a
comparative study using identical configurations, differing only in the expansion method
by whether it is single-tree or dual-tree. The results, summarized in Tables 4 and 5, highlight
the practical efficiency gains of the proposed dual-tree approach.

Sensors 2025, 25, 4370

20 of 25

Table 4. Comparison of single-tree expansion with dual-tree expansion on GBAPF-RRT* in Simulation

1 map.
Algorithm Linin Linax luvg tinin (S) tmax () tuvg (s) Msyccess
Single Tree 24 32 28 12.13 25.10 17.66 5
Dual-Tree 26 30 27 2.01 4.40 3.18 5

Table 5. Comparison of single-tree expansion with dual-tree expansion on GBAPF-RRT* in Simulation

2 map.
Algorithm lmin Linax luz;g tiin (s) tmax (8) tuvg (s) Msyccess
Single Tree 31 37 33 2.92 35.41 17.17 5
Dual-Tree 32 45 38 4.00 15.15 7.70 5

In the Simulation 1 map, the dual-tree strategy demonstrates a substantial advantage
in computational efficiency, reducing the average planning time from 17.66 s to 3.18 s while
achieving comparable path lengths and maintaining a 100% success rate. This confirms the
benefit of cooperative exploration in cluttered environments, where two trees can effectively
divide the search space and converge more quickly.

In the Simulation 2 map, the performance gap narrows. Although the dual-tree
approach still achieves full success, it exhibits longer average paths and moderately reduced
computational gains compared to the single-tree variant. This observation aligns with
a known limitation of bidirectional planners: difficulty in navigating through narrow
passages, where synchronizing the growth of both trees becomes more challenging.

Despite this, the dual-tree expansion consistently avoids any computational overhead
and often accelerates convergence in practice. These empirical results complement the
theoretical analysis, confirming that the dual-tree strategy retains the O(Nlog N) time
complexity while improving planning efficiency across diverse environments.

However, one inherent limitation of the dual-tree approach lies in the quality of the con-
nection point between the two trees. Since each tree optimizes its own path independently,
the final path is formed by stitching two locally optimized subpaths. If the connection point
does not lie on the globally optimal trajectory, the resulting path may deviate slightly from
the global optimum. Nevertheless, this trade-off is often acceptable in practice given the
significant gains in planning efficiency, as evidenced in both simulation scenarios.

In summary, the proposed GBAPF-RRT* algorithm is specifically designed for motion
planning in high-dimensional joint spaces. It demonstrates strong performance in handling
narrow passages and complex obstacle distributions. The proposed algorithm achieves
shorter paths and faster runtimes while maintaining a high success rate, showing great
potential for practical robotic applications.

6. Real World Experiment
6.1. Experiment Setup

To evaluate the practical feasibility of the proposed algorithm for collision-free motion
planning in real-world environments, a series of physical experiments were conducted.
The experimental platform consists of a common commercially available 6-DOF robotic
manipulator, characterized by sufficient kinematic flexibility, precise joint control, and a
moderate payload capacity, making it suitable for validating high-dimensional planning
strategies. The manipulator is equipped with a Jetson Nano onboard computer (NVIDIA
Corporation, Santa Clara, CA, USA) running Ubuntu 18.04. Additionally, an RGB camera
was originally mounted on the end-effector to localize target objects. However, the cam-

Sensors 2025, 25, 4370

21 0f 25

era module was removed during the experiments in order to minimize the end-effector
volume and improve clearance in confined spaces. The final size of the end-effector was
approximately 8 cm x 5 cm x 5 cm. An illustration of the robotic platform is shown in
Figure 14.

Figure 14. (a) Overview of the robotic manipulator platform. (b) Detailed view of the end-effector
gripper, including dimensional annotations.

Initially, the experimental environment was constructed in MATLAB R2024a, where a
simulated obstacle map was defined with dimensions corresponding to the real-world setup.
The robot’s kinematic model strictly follows the DH parameters, as detailed in Table 1,
which is a standard approach for modeling articulated manipulators. It should be noted
that the DH-based model, as is typical, does not explicitly include the physical length of the
end-effector gripper, which is treated as an external tool frame. This modeling approach
ensures structural consistency while allowing effective simulation-based planning.

In terms of trajectory planning, results were first obtained through simulations. The
proposed algorithm was used to generate a collision-free path, where each node in the RRT*
tree corresponds to a target joint configuration. These configurations, consisting of six joint
angles, were sequentially transmitted to the manipulator’s controller, which then executed
them on the physical robot to ensure smooth and continuous motion. It is important
to note that, in the MATLAB simulation, the end-effector was modeled as the final joint
without accounting for the actual physical length of the gripper. This simplification led to
a discrepancy between the simulated and real-world end-effector positions. To address
this, the placement of obstacles in the physical environment was manually adjusted. This
ensured consistent and reliable execution of the planned trajectories in the real-world setup.

6.2. Real-World Experiment 1: Narrow Vertical Gap

The first experiment was conducted in an environment featuring a narrow vertical
gap with a fixed opening size of 8 cm x 6.5 cm, which posed a significant challenge by
requiring the manipulator to precisely adjust its posture to navigate through the constrained
space. As illustrated in Figure 15a shows the modeled environment in MATLAB, while
Figure 15b—d sequentially present the actual trajectories executed by the manipulator in the
real-world setting. The manipulator successfully followed the pre-planned path without
any collisions. Over ten repeated trials, the algorithm consistently generated feasible
trajectories that were accurately executed by the manipulator, achieving a 100% success
rate. No notable deviations were observed between the planned and actual trajectories,
highlighting the robustness of the proposed method in constrained environments.

Sensors 2025, 25, 4370

22 of 25

08 L - _
06 ~ 0o
04 <

(b)

(c) (d)
Figure 15. (a) Modeled environment 1 in MATLAB. (b-d) Sequential snapshots of the manipulator
executing the planned trajectory in the real-world environment.

6.3. Real-World Experiment 2: Rectangular Opening

In the second scenario, the manipulator was required to pass through a narrow
rectangular opening with dimensions of 8 cm x 6.5 cm. The environment map used in this
experiment as shown in Figure 16a, while Figure 16b—d sequentially display the execution
of the planned trajectory in the real-world setup. This scenario is designed to test the
algorithm’s ability to generate feasible trajectories under tight spatial constraints. Because
of slight differences between the model and the real manipulator, such as the length of
the end-effector, the manipulator occasionally experienced minor tip collisions during
execution.The randomness of the planning algorithm also led to different paths across trials.
Even so, whenever a valid path was found, the manipulator followed it closely without
major deviation. If no feasible path was found at first, the planner restarted automatically
until success. Once a valid trajectory was available, the manipulator completed the task
smoothly. These results show that the proposed method remains reliable and effective,
even under real-world uncertainties and modeling differences.

Sensors 2025, 25, 4370 23 of 25

(d)

Figure 16. (a) Modeled environment 2 in MATLAB. (b-d) Sequential snapshots of the manipulator
executing the planned trajectory in the real-world environment.

7. Conclusions

This paper proposes an improved path-planning algorithm based on the joint space,
termed GBAPF-RRT*. The proposed method introduces two important advantages. First, a
goal-biased sampling mechanism is incorporated to improve the random sampling strategy
of RRT*, effectively reducing the generation of invalid nodes and enhancing sampling
efficiency. Second, an adaptive repulsion function, specifically designed for the characteris-
tics of joint space, is developed to strengthen obstacle avoidance capabilities and improve
overall path smoothness. These improvements collectively enable efficient, stable, and
collision-free path planning. Lastly, extensive experiments were conducted on two repre-
sentative environments. The results demonstrate that, compared with several mainstream
RRT* variants, the proposed GBAPF-RRT* algorithm achieves significant improvements
in both planning time and path length. In particular, it exhibits higher success rates and
stronger robustness in environments with complex structures and constrained spaces.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L.; software, Y.L.; validation, Y.L. and
Y.Y; formal analysis, Y.L.; investigation, Y.L.; resources, Y.L.; data curation, Y.L.; writing—original
draft preparation, Y.L.; writing—review and editing, Y.L., Y.Y. and K.L.; visualization, Y.L. and
Y.Y.; supervision, K.L. and C.-Y.W.; project administration, C.-Y.W,; funding acquisition, C.-Y.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Research Centre of Unmanned Autonomous Systems, the
Hong Kong Polytechnic University (P0046487) and the Research Centre for Low Altitude Economy,
the Hong Kong Polytechnic University (P0054124).

Institutional Review Board Statement: Not applicable.

Sensors 2025, 25, 4370 24 of 25

Informed Consent Statement: Not applicable.

Data Availability Statement: The original datasets of this study are outlined within the article. For
further inquiries, please contact the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ranzani, T.; Cianchetti, M.; Gerboni, G.; Falco, I.D.; Menciassi, A. A soft modular manipulator for minimally invasive surgery:
Design and characterization of a single module. IEEE Trans. Robot. 2016, 32, 187-200. [CrossRef]

2. Zanchettin, A.M.; Ceriani, N.M.; Rocco, P; Ding, H.; Matthias, B. Safety in human-robot collaborative manufacturing environ-
ments: Metrics and control. IEEE Trans. Autom. Sci. Eng. 2016, 13, 882-893. [CrossRef]

3. Qiao,].; Wu, H,; Yu, X. High-precision attitude tracking control of space manipulator system under multiple disturbances. IEEE
Trans. Syst. Man Cybern. Syst. 2021, 51, 4274-4284. [CrossRef]

4. Lin, Z; Wu, K; Shen, R; Yu, X,; Huang, S. An efficient and accurate A-star algorithm for autonomous vehicle path planning.
IEEE Trans. Veh. Technol. 2024, 73, 9003-9008. [CrossRef]

5. Buzachis, A,; Celesti, A.; Galletta, A.; Wan,].; Fazio, M. Evaluating an application aware distributed Dijkstra shortest path
algorithm in hybrid cloud/edge environments. IEEE Trans. Sustain. Comput. 2022, 7, 289-298. [CrossRef]

6. Prasad, N.L.; Ramkumar, B. 3-D Deployment and trajectory planning for relay based UAV assisted cooperative communication
for emergency scenarios using Dijkstra’s algorithm. IEEE Trans. Veh. Technol. 2023, 72, 5049-5063. [CrossRef]

7. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Department of Computer Science,
Iowa State University: Ames, IA, USA, 1998.

8. Kavraki, L.E.; Svestka, P; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566-580. [CrossRef]

9. Kavraki, L.E; Kolountzakis, M.N.; Latombe,].C. Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Autom.
1998, 14, 166—171. [CrossRef]

10. Zhang, W.; Shan, L.; Chang, L.; Dai, Y. SVF-RRT*: A stream-based VF-RRT* for USVs path planning considering ocean currents.
IEEE Robot. Autom. Lett. 2023, 8, 2413-2420. [CrossRef]

11. Moon, C.b.; Chung, W. Kinodynamic planner dual-tree RRT (DT-RRT) for two-wheeled mobile robots using the rapidly exploring
random tree. IEEE Trans. Ind. Electron. 2015, 62, 1080-1090. [CrossRef]

12. Fan, J.; Chen, X.,; Wang, Y.; Chen, X. UAV Trajectory planning in cluttered environments based on PF-RRT* algorithm with
goal-biased strategy. Eng. Appl. Artif. Intell. 2022, 114, 105182. [CrossRef]

13. Novosad, M.; Penicka, R.; Vonasek, V. CTopPRM: Clustering topological PRM for planning multiple distinct paths in 3D
environments. IEEE Robot. Autom. Lett. 2023, 8, 7336-7343. [CrossRef]

14. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 2016, 40, 1079-1093.
[CrossRef]

15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November-1 December 1995; Volume 4, pp. 1942-1948. [CrossRef]

16. Feng, Z.; Zhou, L.; Qi, J.; Hong, S. DBVS-APF-RRT*: A global path planning algorithm with ultra-high speed generation of initial
paths and high optimal path quality. Expert Syst. Appl. 2024, 249, 123571. [CrossRef]

17. Tran, B.; Xue, B.; Zhang, M. A new representation in PSO for discretization-Based feature selection. IEEE Trans. Cybern. 2018,
48,1733-1746. [CrossRef]

18. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671-680. [CrossRef]

19. Ezugwu, A.ESS,; Adewumi, A.O,; Frincu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm for
traveling salesman problem. Expert Syst. Appl. 2017, 77, 189-210. [CrossRef]

20. Wang, Z.; Zhao, X.; Zhang, |J.; Yang, N.; Wang, P; Tang,].; Zhang, J.; Shi, L. APF-CPP: An artificial potential field based multi-robot
online coverage path planning approach. IEEE Robot. Autom. Lett. 2024, 9, 9199-9206. [CrossRef]

21. Yang, H.;He, Y,; Xu, Y;; Zhao, H. Collision avoidance for autonomous vehicles based on MPC with adaptive APF. IEEE Trans.
Intell. Veh. 2024, 9, 1559-1570. [CrossRef]

22. Ying, K.C.; Pourhejazy, P.; Cheng, C.Y.; Cai, Z.Y. Deep learning-based optimization for motion planning of dual-arm assembly
robots. Comput. Ind. Eng. 2021, 160, 107603. [CrossRef]

23. Gao, Q. Yuan, Q.; Sun, Y.; Xu, L. Path planning algorithm of robot arm based on improved RRT* and BP neural network
algorithm. . King Saud Univ.—Comput. Inf. Sci. 2023, 35, 101650. [CrossRef]

24. Wang, Y;; He, Z,; Cao, D.,; Ma, L, Li, K; Jia, L.; Cui, Y. Coverage path planning for kiwifruit picking robots based on deep

reinforcement learning. Comput. Electron. Agric. 2023, 205, 107593. [CrossRef]

http://doi.org/10.1109/TRO.2015.2507160
http://dx.doi.org/10.1109/TASE.2015.2412256
http://dx.doi.org/10.1109/TSMC.2019.2931930
http://dx.doi.org/10.1109/TVT.2023.3348140
http://dx.doi.org/10.1109/TSUSC.2021.3071476
http://dx.doi.org/10.1109/TVT.2022.3224304
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/70.660866
http://dx.doi.org/10.1109/LRA.2023.3245409
http://dx.doi.org/10.1109/TIE.2014.2345351
http://dx.doi.org/10.1016/j.engappai.2022.105182
http://dx.doi.org/10.1109/LRA.2023.3315539
http://dx.doi.org/10.1007/s10514-015-9518-0
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.eswa.2024.123571
http://dx.doi.org/10.1109/TCYB.2017.2714145
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1109/LRA.2024.3432351
http://dx.doi.org/10.1109/TIV.2023.3337417
http://dx.doi.org/10.1016/j.cie.2021.107603
http://dx.doi.org/10.1016/j.jksuci.2023.101650
http://dx.doi.org/10.1016/j.compag.2022.107593

Sensors 2025, 25, 4370 25 of 25

25.

26.

27.

28.

29.

30.

31.

Srinivasu, PN.; Bhoi, A.K.; Jhaveri, R.H.; Pandya, S.; Das, A.K. Probabilistic deep Q network for real-time path planning in
censorious robotic procedures using force sensors. J. -Real-Time Image Process. 2021, 18, 1773-1785. [CrossRef]

Francis, A.; Faust, A.; Chiang, H.T.L.; Hsu,].; Kew,].C.; Fiser, M.; Lee, T.W.E. Long-range indoor navigation with PRM-RL. IEEE
Trans. Robot. 2020, 36, 1115-1134. [CrossRef]

Liu, Y;; Zhou, Z; Sang, H.; Yu, S.; Yan, Y.; Er, M.]. Efficient exploration of mobile robot based on DL-RRT and AP-BO. IEEE Trans.
Instrum. Meas. 2024, 73, 8505109. [CrossRef]

Kuffner, J.J.; LaValle, SM. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24-28 April 2000; pp. 1-7.

Ma, H.; Meng, F; Ye, C.; Wang, J.; Meng, M.Q.H. Bi-Risk-RRT based efficient motion planning for autonomous ground vehicles.
IEEE Trans. Intell. Veh. 2022, 7, 722-733. [CrossRef]

Salzman, O.; Halperin, D. Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE Trans. Robot. 2016,
32,473-483. [CrossRef]

Arslan, O.; Berntorp, K.; Tsiotras, P. Sampling-based algorithms for optimal motion planning using closed-loop prediction. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May-3 June 2017;
pp- 4991-4996.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11554-021-01122-x
http://dx.doi.org/10.1109/TRO.2020.2975428
http://dx.doi.org/10.1109/TIM.2024.3418090
http://dx.doi.org/10.1109/TIV.2022.3152740
http://dx.doi.org/10.1109/TRO.2016.2539377

	Introduction
	Related Work
	Basic Algorithm
	RRT
	RRT Star

	Improved Version
	Dual-Tree Methods
	Goal-Biased Methods
	Modified APF Methods

	Path-Planning Algorithm Design
	Problem Formulation in Joint Space
	Hybrid Gaussian Sampling Method
	Modified Repulsive Force Function
	Expansion Strategy
	Collision Checking Strategy

	Probabilistic Completeness
	Simulation
	Simulation Setup
	Simulation 1: Complex Obstacle Cluster Environment
	Simulation 2: Constrained Manipulation Through Structural Openings
	Results and Discussion

	Real World Experiment
	Experiment Setup
	Real-World Experiment 1: Narrow Vertical Gap
	Real-World Experiment 2: Rectangular Opening

	Conclusions
	References

