Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115928
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorLi, J-
dc.creatorWang, X-
dc.creatorYan, Y-
dc.creatorLi, H-
dc.creatorLeong, HV-
dc.creatorYu, NX-
dc.creatorLi, Q-
dc.date.accessioned2025-11-18T06:48:04Z-
dc.date.available2025-11-18T06:48:04Z-
dc.identifier.isbn979-8-4007-1331-6-
dc.identifier.urihttp://hdl.handle.net/10397/115928-
dc.descriptionWWW '25: The ACM Web Conference 2025, Sydney NSW Australia, 28 April 2025 - 2 May 2025en_US
dc.language.isoenen_US
dc.publisherThe Association for Computing Machineryen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). WWW Companion ’25, Sydney, NSW, Australiaen_US
dc.rights©2025 Copyright held by the owner/author(s).en_US
dc.rightsThe following publication Li, J., Wang, X., Yan, Y., Li, H., Leong, H. V., Yu, N. X., & Li, Q. (2025). DynaProtect: A Dynamic Factor Influence Learning Framework for Protective Factor-aware Suicide Risk Prediction Companion Proceedings of the ACM on Web Conference 2025, Sydney NSW, Australia is available at https://doi.org/10.1145/3701716.3717510.en_US
dc.subjectBig data processingen_US
dc.subjectProtective factorsen_US
dc.subjectRisk factorsen_US
dc.subjectSocial mediaen_US
dc.subjectSuicide predictionen_US
dc.subjectSuicide risk predictionen_US
dc.titleDynaProtect : a dynamic factor influence learning framework for protective factor-aware suicide risk predictionen_US
dc.typeConference Paperen_US
dc.identifier.spage1785-
dc.identifier.epage1791-
dc.identifier.doi10.1145/3701716.3717510-
dcterms.abstractDespite significant advances in approaches to suicide detection on social media, predicting users' suicide risk in a subsequent state remains challenging. Even though existing works have identified various risk factors to improve detection performance, they often overlook the critical role of protective factors in suicide prevention. To address this limitation, we propose an approach that jointly learns both risk and protective factors to predict users' subsequent suicide risk. Recognizing that the effectiveness of these factors varies across different user patterns, we introduce a dynamic factor influence learning mechanism that captures user-dependent interactions with risk and protective factors. Our experiments demonstrate that the integrated approach significantly enhances suicide risk prediction performance compared to existing methods.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn WWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025, p. 1785-1791. New York, NY: The Association for Computing Machinery, 2025-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105009223492-
dc.relation.ispartofbookWWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025-
dc.relation.conferenceInternational World Wide Web Conference [WWW],-
dc.publisher.placeNew York, NYen_US
dc.description.validate202511 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
3701716.3717510.pdf1.64 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.