Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115926
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligence-
dc.creatorLiu, Q-
dc.creatorFan, L-
dc.creatorWu, XM-
dc.date.accessioned2025-11-18T06:48:01Z-
dc.date.available2025-11-18T06:48:01Z-
dc.identifier.isbn979-8-4007-1331-6-
dc.identifier.urihttp://hdl.handle.net/10397/115926-
dc.descriptionWWW '25: The ACM Web Conference 2025, Sydney NSW Australia, 28 April 2025 - 2 May 2025en_US
dc.language.isoenen_US
dc.publisherThe Association for Computing Machineryen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). WWW Companion ’25, Sydney, NSW, Australiaen_US
dc.rights©2025 Copyright held by the owner/author(s).en_US
dc.rightsThe following publication Liu, Q., Fan, L., & Wu, X.-M. (2025). Legommenders: A Comprehensive Content-Based Recommendation Library with LLM Support Companion Proceedings of the ACM on Web Conference 2025, Sydney NSW, Australia (pp. 753-756) is available at https://doi.org/10.1145/3701716.3715305.en_US
dc.subjectContent-based recommendationen_US
dc.subjectLibraryen_US
dc.subjectLLM for RSen_US
dc.titleLegommenders : a comprehensive content-based recommendation library with LLM supporten_US
dc.typeConference Paperen_US
dc.identifier.spage753-
dc.identifier.epage756-
dc.identifier.doi10.1145/3701716.3715305-
dcterms.abstractWe present Legommenders, a unique library designed for content-based recommendation that enables the joint training of content encoders alongside behavior and interaction modules, thereby facilitating the seamless integration of content understanding directly into the recommendation pipeline. Legommenders allows researchers to effortlessly create and analyze over 1,000 distinct models across 15 diverse datasets. Further, it supports the incorporation of contemporary large language models, both as feature encoder and data generator, offering a robust platform for developing state-of-the-art recommendation models and enabling more personalized and effective content delivery.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn WWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025, p. 753-756. New York, NY: The Association for Computing Machinery, 2025-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105009235085-
dc.relation.ispartofbookWWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025-
dc.relation.conferenceInternational World Wide Web Conference [WWW],-
dc.publisher.placeNew York, NYen_US
dc.description.validate202511 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
3701716.3715305.pdf1.24 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.