Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/115926
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Data Science and Artificial Intelligence | - |
| dc.creator | Liu, Q | - |
| dc.creator | Fan, L | - |
| dc.creator | Wu, XM | - |
| dc.date.accessioned | 2025-11-18T06:48:01Z | - |
| dc.date.available | 2025-11-18T06:48:01Z | - |
| dc.identifier.isbn | 979-8-4007-1331-6 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/115926 | - |
| dc.description | WWW '25: The ACM Web Conference 2025, Sydney NSW Australia, 28 April 2025 - 2 May 2025 | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | The Association for Computing Machinery | en_US |
| dc.rights | This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). WWW Companion ’25, Sydney, NSW, Australia | en_US |
| dc.rights | ©2025 Copyright held by the owner/author(s). | en_US |
| dc.rights | The following publication Liu, Q., Fan, L., & Wu, X.-M. (2025). Legommenders: A Comprehensive Content-Based Recommendation Library with LLM Support Companion Proceedings of the ACM on Web Conference 2025, Sydney NSW, Australia (pp. 753-756) is available at https://doi.org/10.1145/3701716.3715305. | en_US |
| dc.subject | Content-based recommendation | en_US |
| dc.subject | Library | en_US |
| dc.subject | LLM for RS | en_US |
| dc.title | Legommenders : a comprehensive content-based recommendation library with LLM support | en_US |
| dc.type | Conference Paper | en_US |
| dc.identifier.spage | 753 | - |
| dc.identifier.epage | 756 | - |
| dc.identifier.doi | 10.1145/3701716.3715305 | - |
| dcterms.abstract | We present Legommenders, a unique library designed for content-based recommendation that enables the joint training of content encoders alongside behavior and interaction modules, thereby facilitating the seamless integration of content understanding directly into the recommendation pipeline. Legommenders allows researchers to effortlessly create and analyze over 1,000 distinct models across 15 diverse datasets. Further, it supports the incorporation of contemporary large language models, both as feature encoder and data generator, offering a robust platform for developing state-of-the-art recommendation models and enabling more personalized and effective content delivery. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | In WWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025, p. 753-756. New York, NY: The Association for Computing Machinery, 2025 | - |
| dcterms.issued | 2025 | - |
| dc.identifier.scopus | 2-s2.0-105009235085 | - |
| dc.relation.ispartofbook | WWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025 | - |
| dc.relation.conference | International World Wide Web Conference [WWW], | - |
| dc.publisher.place | New York, NY | en_US |
| dc.description.validate | 202511 bcch | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_Scopus/WOS | en_US |
| dc.description.fundingSource | Self-funded | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | CC | en_US |
| Appears in Collections: | Conference Paper | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 3701716.3715305.pdf | 1.24 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



