
Legommenders : A Comprehensive Content-Based
Recommendation Library with LLM Support

Qijiong Liu
The Hong Kong Polytechnic

University
Hong Kong SAR
liu@qijiong.work

Lu Fan
The Hong Kong Polytechnic

University
Hong Kong SAR

cslfan@comp.polyu.edu.hk

Xiao-Ming Wu∗
The Hong Kong Polytechnic

University
Hong Kong SAR

xiao-ming.wu@polyu.edu.hk

Abstract

We present Legommenders1, a unique library designed for content-
based recommendation that enables the joint training of content
encoders alongside behavior and interaction modules, thereby fa-
cilitating the seamless integration of content understanding di-
rectly into the recommendation pipeline. Legommenders allows
researchers to effortlessly create and analyze over 1,000 distinct
models across 15 diverse datasets. Further, it supports the incor-
poration of contemporary large language models, both as feature
encoder and data generator, offering a robust platform for devel-
oping state-of-the-art recommendation models and enabling more
personalized and effective content delivery.

CCS Concepts

• Information systems → Recommender systems.

Keywords

Content-based Recommendation, LLM for RS, Library
ACM Reference Format:

Qijiong Liu, Lu Fan, and Xiao-Ming Wu. 2025. Legommenders : A
Comprehensive Content-Based Recommendation Library with LLM Sup-
port. In Companion Proceedings of the ACM Web Conference 2025 (WWW
Companion ’25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3701716.3715305

1 Introduction

In online content discovery, recommender systems play a pivotal
role as navigators, significantly enhancing user experiences through
personalized content delivery. Traditionally, recommender systems
have predominantly relied on transductive learning mechanisms [8,
28]. This approach utilizes static user and item identifiers (IDs) to
generate predictions based on existing data. While effective within
the confines of known datasets, this method presents limitations.
It struggles to adapt to new users and items, often referred to as
the “cold start” problem, and is less responsive to shifts in user
preferences over time.

∗Xiao-Ming Wu is the corresponding author.
1https://github.com/Legommenders/Legommenders

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW Companion ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1331-6/2025/04
https://doi.org/10.1145/3701716.3715305

MIND

User Behavior

Item Vectors Candidate Vector(s)

Candidate Vector(s)User Vector

Candidate Item(s)

…Goodreads MovieLens

Multi-Modal Multi-A�ribute Dataset Processor

Content Operator

Behavior Operator

Click Predictor

 

Cacher

Cacher

Figure 1: Overview of the Legommenders package.

Modern recommender systems have shifted from transductive
learning to inductive learning, utilizing inherent content features
and user historical behaviors to create more dynamic models [7, 18,
20–22, 30, 32, 35, 36, 40]. Specifically, a content-based recommen-
dation model typically consists of three components: (1) A content
operator that generates embeddings for both the candidate item and
each item in the user’s behavior sequence. (2) A behavior operator
that fuses the user sequence into a unified user embedding. (3) A
click predictor that calculates the click probability for the user on
the given item. Notably, the content operator can either be trained
jointly with the other two modules or be decoupled from them.

However, most existing recommender system libraries [3, 38, 41]
employ a decoupled design, which fails to adapt the content encoder
to specific recommendation scenarios. Typically, item embeddings
are generated by a pretrained content encoder and used as an initial
step. Although this approach enhances model efficiency, it has
a significant limitation: the pretrained embeddings are often too
general and not well-aligned with the specific recommendation
context, leading to suboptimal recommendations.

In contrast, our Legommenders library offers a unique and in-
novative feature by enabling the joint training of content operators
alongside other modules. This capability allows for the seamless
integration of content understanding directly into the recommenda-
tion pipeline. As shown in Figure 1, Legommenders comprises four
core components: the dataset processor, content operator, behavior
operator, and click predictor. By combining these built-in operators
and predictors in the configuration files, researchers can design over
1,000 recommendation models, utilizing 15 content operators, 8
behavior operators, and 9 click predictors. Remarkably, 95% of these

753

https://doi.org/10.1145/3701716.3715305
https://github.com/Legommenders/Legommenders
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3701716.3715305
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701716.3715305&domain=pdf&date_stamp=2025-05-23

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Qijiong Liu, Lu Fan, & Xiao-Ming Wu

Table 1: Comparison to exisiting recommendation benchmarks (✓ | – | × means totally | partially | not met, respectively).

“Partially met” indicates incomplete availability.

Feature TorchRec DeepCTR DeepRec RecBole FuxiCTR BARS Ducho Legommenders

Year (2022) (2017) (2022) (2022) (2021) (2022) (2024) (ours)

Content-based × × × – – – ✓ ✓
LLM Encoding × × × × × × ✓ ✓
End-to-end Training × × × × × × × ✓
Fast Evaluation × × × × × × × ✓
Models <10 30+ 10+ 150+ 50+ 50+ <10 1000+

models have not been tested or published before. These models can
be evaluated across multiple content-based recommendation sce-
narios using over 15 datasets. Moreover, Legommenders is the first
library to inherently support large language models (LLMs). It not
only accepts augmented data generated by LLMs for training but
also integrates open-source LLMs as content operators/encoders.
This dual capability allows Legommenders to improve data quality
and generate superior data embeddings using LLMs.

Legommenders is designed to offer researchers and practitioners
a comprehensive, flexible, and user-friendly platform for conducting
experiments and analyses in content-based recommendation in the
era of LLMs, aiming to facilitate new research directions in the field.
The Legommenders library, including code, data, and documenta-
tion, is accessible at: https://github.com/Jyonn/Legommenders.

2 Comparison to Existing Benchmarks

Despite the success of previous research, there remains a significant
lack of standardized benchmarks and uniform evaluation protocols
for content-based recommendation systems. As summarized in Ta-
ble 1, traditional recommendation libraries typically accept only
ID-based features and do not utilize large language models (LLMs)
for content encoding. The recent library Ducho [3] offers multi-
modal feature extraction for downstream recommendation models
but maintains a decoupled design. In contrast, Legommenders is
currently the only library that supports end-to-end training of
content operators, behavior operators, and click predictors. Fur-
thermore, we have developed an inference caching pipeline that
achieves up to a 50x speedup in evaluation. By enabling easy modu-
lar combinations, we provide over 1,000 models, which is six times
more than the largest existing model libraries.

3 Legommenders: Details and Usage

In this section, we first introduce the supported recommendation
tasks, followed by a detailed discussion of the key components. We
then present our caching pipeline and conclude with an overview
of the algorithm flow.

3.1 Recommendation Tasks

The Legommenders library supports two fundamental recommen-
dation tasks: matching and ranking.

In the matching task, given a user and a set of 𝐾 + 1 candidate
items (one positive and 𝐾 negative), the model performs a 𝐾 + 1
classification task to identify the positive item, formulated as:

𝑦𝑢𝑖 = softmax(𝑓 (𝑥𝑢 , 𝑥𝑖)),

Model DCNModel DIRE
with LLM Feature Encoding

name: MIND
item:
 depot: data/${name}/news
 attributes:
 - title
 - category
...

name: MIND-augmented
item:
 depot: data/${name}/news
 attributes:
 - title-augmented
 - category
...

name: DCN
meta:
 content: Null
 behavior: Pooling
 predictor: DCN
config:
 use_neg_sampling: false
 use_item_content: false
 hidden_size: 64
 content_hidden_size: 64
 predictor:
 dnn_units: [500, 500, 500]
 dnn_activations: ReLU
 dnn_dropout: 0.1
 dnn_batch_norm: false
 cross_num: 3

name: DIRE
meta:
 content: Llama
 behavior: Attention
 predictor: Dot
config:
 use_neg_sampling: true
 use_item_content: true
 hidden_size: 64
 neg_count: 4
 content:
 key: huggyllama/llama-7b
 use_lora: (32, 128, 0.1)
 behavior:
 num_attention_heads: 8
 use_sep_token: true

�e MIND Dataset �e MIND Dataset
with LLM Feature Engineering

Figure 2: Examples for model and dataset configurations.

where 𝑓 (𝑥𝑢 , 𝑥𝑖) is mostly a simple dot operation, calculates the
user-item feature relevance. The training objective is to maximize
the likelihood of the correct positive item:

Lmatching = −
∑︁

(𝑢,𝑖) ∈D

𝐾+1∑︁
𝑖=1

𝑦𝑢𝑖 log(𝑦𝑢𝑖),

where 𝑦𝑢𝑖 is the binary label for item 𝑖 , and D is the dataset of
user-item pairs.

In the ranking task, the model predicts the click probability for
a given user-item pair, denoted as:

𝑟𝑢𝑖 = 𝑓 (𝑥𝑢 , 𝑥𝑖),

where 𝑓 (𝑥𝑢 , 𝑥𝑖) can be deep CTR models and trained to minimize
the mean squared error between the predicted and actual labels:

Lranking =
1
|D|

∑︁
(𝑢,𝑖) ∈D

(𝑦𝑢𝑖 − 𝑟𝑢𝑖)2 .

The task can be configured with the use_neg_sampling: false
and neg_count: 0 parameters in the model configuration file, as
depicted in Figure 2.

754

https://github.com/Jyonn/Legommenders

Legommenders WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

3.2 Dataset Processor

Legommenders provides a range of built-in processors for vari-
ous recommendation scenarios, including news recommendation
(e.g., MIND [34] and Eb-NerD [14]), book recommendation (e.g.,
Goodreads [27] and Amazon Books [10]), movie recommendation
(e.g., Movielens [9] andNetflix [1]), andmusic recommendation (e.g.,
Amazon CDs [10] and Last.fm [23]). Dataset-specific processors
convert the data into a unified format using the UniTok library2.

In contrast to FuxiCTR [41] and BARS [39], whichmergemultiple
tables into one, Legommenders adheres to the second normal form,
significantly reducing data redundancy. This decoupled storage
design allows Legommenders to easily accommodate augmented
data generated by large language models simply by modifying the
selected item attributes, as shown in Figure 2.

3.3 Content Operator

Legommenders decomposes content-based recommendation mod-
els into the content operator, behavior operator, and click predictor.
This modular design allows for flexible selection and combination
of these components to create new recommenders. The built-in
content operators include average pooling used by text-based CTR
models [8, 28], convolutional neural networks (CNN) [15] used by
NAML [30] and LSTUR [2], Attention [26] used by NRMS [31] and
PREC [19], and Fastformer [33].

Legommenders supports the use of LLMs as content operators,
such as BERT [13], LLaMA [25], and other open-source models
available on Hugging Face3. Building on insights from previous
works [17, 19, 32], we propose a training method that freezes the
lower layers while fine-tuning the upper layers, including LoRA-
based PEFT [11]. This approach achieves up to 100x training acceler-
ation compared to full fine-tuning, as it requires only the parameter
“—-mode split —-layer <N>”.

Additionally, Legommenders is compatible with identifier-based
recommenders by setting use_item_content: false and using
a randomly initialized item embedding table, such as DCN [28]
model in Figure 2. It is compatible with decoupled content operator
designs, like Ducho [3], by setting use_item_content: false and
using an embedding table from pretrained models.

3.4 Behavior Operator and Click Predictor

The built-in behavior operators encompass several mechanisms,
including average pooling, which is utilized by CTR models; Ad-
ditive Attention [4], employed by NAML [30]; GRU [6], used by
LSTUR [2]; and Attention, which is implemented in NRMS [31],
BST [5], and PLM-NR [32]. Additionally, PolyAttention is utilized
by MINER [16], among others. The built-in click predictors include
the dot product, a method widely used in numerous matching-based
models and various CTR models [8, 28, 29], which rely on feature
interaction modules as their core design.

3.5 Caching Pipeline

During inference and evaluation, the model parameters are fixed.
Traditional recommendation libraries and content-based recom-
mender systems dynamically encode user and item embeddings for
2https://pypi.org/project/UniTok/
3https://huggingface.co

Algorithm 1 Python-style Code for Training and Inference

class Legommenders:

def forward(self , user , item , labels):

content_op = self.content_cacher

if self.content_op and self.training:

content_op = self.content_op

user = content_op(user)

item = content_op(item)

behavior_op = self.behavior_cacher

if self.training:

behavior_op = self.behavior_op

user = behavior_op(user)

scores = self.predictor(user , item)

if self.training:

return self.loss_fct(scores , labels)

return scores

each user-item pair in the test set and calculate the click probability
in real-time. This results in redundant computations, which can be
exacerbated by the cascaded design of content and behavior opera-
tors. To mitigate this, we propose content and behavior cachers, as
illustrated in Figure 1, which precompute and store embeddings for
all items and users during the inference phase. During subsequent
inferences, only the lightweight click predictor is required. The
acceleration gained from caching becomes more pronounced as the
frequency of repeated users and items, as well as with the sizes of
the content and behavior operators. In some cases, this approach
can yield up to 50x inference speedup. The caching mechanism is
enabled by default and seamlessly integrated into the recommen-
dation model, demonstrated in Algorithm 1.

4 Experiments

In this section, we present a selection of benchmark results for
representative models on the MIND dataset. These results illustrate
the robust modular composition capabilities of Legommenders and
its support for LLMs.

All baselines use the same hyperparameters, including embed-
ding dimension, number of attention heads, learning rate, and
others, to ensure consistency. Due to space limitations, we will
provide the full configurations in our repository for reproducibil-
ity. The results show that: 1) models trained on GPT-augmented
datasets consistently outperform those using the original datasets;
2) baselines incorporating more complex language models tend
to achieve better performance; 3) LLM-finetuning scheme outper-
forms the decoupled design. These findings highlight the strong
content understanding capabilities of LLMs, further underscoring
the contribution of our library.

5 Conclusion

We have introduced Legommenders, a library designed for content-
based recommendation systems, which stands out due to its ability
to jointly train content operators, behavior operators, and click
predictors for inductive learning, its modular design, and its support

755

https://pypi.org/project/UniTok/
https://huggingface.co

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Qijiong Liu, Lu Fan, & Xiao-Ming Wu

Table 2: Selected benchmark results on the MIND dataset.

“ContentOp” and “BehaviorOp” denote Content Operator and

Behavior Operator, respectively. “Original” and “Augmented”

refer to the original MIND dataset and the GPT-augmented

dataset as in ONCE [17]. Null(Llama1) indicates the decou-

pled design using Llama for item embedding extraction.

Dataset Model ContentOp BehaviorOp Predictor AUCMRR N@5

Original NAMLID Null AdditiveAttention Dot 50.13 23.01 22.35
Original DCN Null Pooling DCN 53.92 25.18 24.43
Original DIN Null Null DIN 55.95 25.88 25.95

Original DCNtext Pooling Pooling DCN 62.63 29.73 30.52
Original DINtext Pooling Null DIN 62.90 30.06 30.65
Original NAML CNN AdditiveAttention Dot 61.75 30.60 31.35
Original NRMS Attention Attention Dot 61.71 30.20 30.98
Original MINER BERT PolyAttention Attention 63.88 32.19 33.04
Original Fastformer Fastformer Fastformer Dot 62.26 31.14 31.90

Original PLM-NR BERT Attention Dot 64.08 31.24 32.35
Original DIRE Llama1 Attention Dot 68.50 36.21 38.11
Original DIRE Null(Llama1) Attention Dot 68.10 35.33 36.91

Augmented DCNtext Pooling Pooling DCN 65.77 32.86 34.10
Augmented NAML CNN AdditiveAttention Dot 63.88 32.17 33.14
Augmented NRMS Attention Attention Dot 63.71 32.14 33.11
Augmented PLM-NR BERT Attention Dot 65.13 32.98 34.30
Augmented ONCE Llama1 Attention Dot 68.74 36.66 38.60

for LLMs as both content encoders and data generators. We believe
that Legommenders will serve as a valuable tool, significantly
accelerating research within the recommendation community.

References

[1] Nicholas Ampazis. 2008. Collaborative filtering via concept decomposition on
the netflix dataset. In ECAI, Vol. 8. 26–30.

[2] Mingxiao An, Fangzhao Wu, Chuhan Wu, Kun Zhang, Zheng Liu, and Xing Xie.
2019. Neural news recommendation with long-and short-term user representa-
tions. In ACL. 336–345.

[3] Matteo Attimonelli, Danilo Danese, Daniele Malitesta, Claudio Pomo, Giuseppe
Gassi, and Tommaso Di Noia. 2024. Ducho 2.0: Towards a More Up-to-Date Uni-
fied Framework for the Extraction of Multimodal Features in Recommendation.
In WWW. ACM.

[4] Dzmitry Bahdanau. 2014. Neural machine translation by jointly learning to align
and translate. arXiv (2014).

[5] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior
sequence transformer for e-commerce recommendation in alibaba. In DLP-KDD.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv (2014).

[7] Junchen Fu, Xuri Ge, Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Jie
Wang, and JoemonM Jose. 2024. IISAN: Efficiently adapting multimodal represen-
tation for sequential recommendation with decoupled PEFT. In SIGIR. 687–697.

[8] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
(2017).

[9] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. TIIS 5, 4 (2015), 1–19.

[10] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. InWWW.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv (2021).

[12] Dmytro Ivchenko, Dennis Van Der Staay, Colin Taylor, Xing Liu, Will Feng, Rahul
Kindi, Anirudh Sudarshan, and Shahin Sefati. 2022. Torchrec: a pytorch domain
library for recommendation systems. In RecSys. 482–483.

[13] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[14] Johannes Kruse, Kasper Lindskow, Saikishore Kalloori, Marco Polignano, Clau-
dio Pomo, Abhishek Srivastava, Anshuk Uppal, Michael Riis Andersen, and Jes
Frellsen. 2024. EB-NeRD a large-scale dataset for news recommendation. In

Proceedings of the Recommender Systems Challenge 2024. 1–11.
[15] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard,

Wayne Hubbard, and Lawrence Jackel. 1989. Handwritten digit recognition with
a back-propagation network. NeurIPS 2 (1989).

[16] Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng Shang, Zhenhua Dong, Xin
Jiang, and Qun Liu. 2022. MINER: Multi-interest matching network for news
recommendation. In Findings of ACL. 343–352.

[17] Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. 2024. Once: Boosting
content-based recommendation with both open-and closed-source large language
models. InWSDM. 452–461.

[18] Qijiong Liu, Hengchang Hu, Jiahao Wu, Jieming Zhu, Min-Yen Kan, and Xiao-
Ming Wu. 2024. Discrete Semantic Tokenization for Deep CTR Prediction. In
WWW. 919–922.

[19] Qijiong Liu, Jieming Zhu, Quanyu Dai, and Xiao-Ming Wu. 2022. Boosting deep
CTR prediction with a plug-and-play pre-trainer for news recommendation. In
COLING. 2823–2833.

[20] Qijiong Liu, Jieming Zhu, Quanyu Dai, and Xiao-Ming Wu. 2024. Benchmarking
News Recommendation in the Era of Green AI. InWWW. 971–974.

[21] Qijiong Liu, Jieming Zhu, Lu Fan, Zhou Zhao, and Xiao-Ming Wu. 2024. STORE:
Streamlining Semantic Tokenization and Generative Recommendation with A
Single LLM. arXiv (2024).

[22] Qijiong Liu, Jieming Zhu, Yanting Yang, Quanyu Dai, Zhaocheng Du, Xiao-Ming
Wu, Zhou Zhao, Rui Zhang, and Zhenhua Dong. 2024. Multimodal pretraining,
adaptation, and generation for recommendation: A survey. In SIGKDD.

[23] Markus Schedl. 2016. The lfm-1b dataset for music retrieval and recommendation.
In ICMR. 103–110.

[24] Weichen Shen. 2017. DeepCTR: Easy-to-use,Modular and Extendible package of
deep-learning based CTR models. https://github.com/shenweichen/deepctr.

[25] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: open and efficient foundation language models. arXiv.
arXiv (2023).

[26] A Vaswani. 2017. Attention is all you need. NeurIPS (2017).
[27] Mengting Wan and Julian J. McAuley. 2018. Item recommendation on monotonic

behavior chains. In RecSys, Sole Pera, Michael D. Ekstrand, Xavier Amatriain,
and John O’Donovan (Eds.). ACM, 86–94.

[28] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17.

[29] WMWang, YH Peng, J Hu, and ZM Cao. 2009. Collaborative robust optimization
under uncertainty based on generalized dynamic constraints network. Structural
and multidisciplinary optimization 38 (2009), 159–170.

[30] Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang Huang, Yongfeng Huang,
and Xing Xie. 2019. Neural News Recommendation with Attentive Multi-View
Learning. In IJCAI. 3863–3869. https://doi.org/10.24963/ijcai.2019/536

[31] ChuhanWu, FangzhaoWu, Suyu Ge, Tao Qi, Yongfeng Huang, and Xing Xie. 2019.
Neural news recommendation with multi-head self-attention. In EMNLP-IJCNLP.

[32] Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. 2021. Empowering
news recommendation with pre-trained language models. In SIGIR. 1652–1656.

[33] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. 2021. Fast-
former: Additive attention can be all you need. arXiv (2021).

[34] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian,
Danyang Liu, Xing Xie, Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020. MIND:
A Large-scale Dataset for News Recommendation. In ACL. Association for Com-
putational Linguistics.

[35] Chiyu Zhang, Yifei Sun, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Sinong
Wang, Rong Jin, Sem Park, Ning Yao, and Bo Long. 2024. SPAR: Personalized
Content-Based Recommendation via Long Engagement Attention. arXiv (2024).

[36] Chiyu Zhang, Yifei Sun, Minghao Wu, Jun Chen, Jie Lei, Muhammad Abdul-
Mageed, Rong Jin, Angli Liu, Ji Zhu, Sem Park, et al. 2024. EmbSum: Leveraging
the Summarization Capabilities of Large Language Models for Content-Based
Recommendations. In RecSys. 1010–1015.

[37] Shuai Zhang, Yi Tay, Lina Yao, Aixin Sun, and Ce Zhang. 2022. Deep Learning for
Recommender Systems. Springer US, New York, NY, 173–210.

[38] Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin,
Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, Yushuo Chen, Lanling Xu,
Gaowei Zhang, Zhen Tian, Changxin Tian, Shanlei Mu, Xinyan Fan, Xu Chen, and
Ji-Rong Wen. 2022. RecBole 2.0: Towards a More Up-to-Date Recommendation
Library. In CIKM. ACM, 4722–4726.

[39] Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi
Xiao, and Rui Zhang. 2022. BARS: Towards Open Benchmarking for Recom-
mender Systems. In SIGIR. ACM, 2912–2923.

[40] Jieming Zhu, Mengqun Jin, Qijiong Liu, Zexuan Qiu, Zhenhua Dong, and Xiu Li.
2024. CoST: Contrastive Quantization based Semantic Tokenization for Genera-
tive Recommendation. In RecSys. 969–974.

[41] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open
Benchmarking for Click-Through Rate Prediction. In CIKM. ACM, 2759–2769.

756

https://github.com/shenweichen/deepctr
https://doi.org/10.24963/ijcai.2019/536

	Abstract
	1 Introduction
	2 Comparison to Existing Benchmarks
	3 Legommenders: Details and Usage
	3.1 Recommendation Tasks
	3.2 Dataset Processor
	3.3 Content Operator
	3.4 Behavior Operator and Click Predictor
	3.5 Caching Pipeline

	4 Experiments
	5 Conclusion
	References

