Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115925
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorQiao, H-
dc.creatorFeng, S-
dc.creatorZhou, M-
dc.creatorLi, W-
dc.creatorLi, F-
dc.date.accessioned2025-11-18T06:48:01Z-
dc.date.available2025-11-18T06:48:01Z-
dc.identifier.isbn979-8-4007-1331-6-
dc.identifier.urihttp://hdl.handle.net/10397/115925-
dc.descriptionWWW '25: The ACM Web Conference 2025, Sydney NSW Australia, 28 April 2025 - 2 May 2025en_US
dc.language.isoenen_US
dc.publisherThe Association for Computing Machineryen_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0). WWW Companion ’25, Sydney, NSW, Australiaen_US
dc.rights©2025 Copyright held by the owner/author(s).en_US
dc.rightsThe following publication Qiao, H., Feng, S., Zhou, M., Li, W., & Li, F. (2025). Hyperbolic Multi-semantic Transition for Next POI Recommendation Companion Proceedings of the ACM on Web Conference 2025, Sydney NSW, Australia (pp. 1830-1837) is available at https://doi.org/10.1145/3701716.3717802.en_US
dc.subjectHyperbolic representation learningen_US
dc.subjectNext POI recommendationen_US
dc.titleHyperbolic multi-semantic transition for next POI recommendationen_US
dc.typeConference Paperen_US
dc.identifier.spage1830-
dc.identifier.epage1837-
dc.identifier.doi10.1145/3701716.3717802-
dcterms.abstractThe next Point-of-Interest (POI) recommendation has gained significant research interest, focusing on learning users' mobility patterns from sparse check-in data. Existing POI recommendation models face two main constraints. First, most models are based on Euclidean space and struggle with capturing the inherent hierarchical structures in historical check-ins. Second, various transition semantics in both one-hop and sequential transitions cannot be properly utilized to understand user movement trends. To overcome the above limitations, we introduce rotation operations in hyperbolic space, enabling the joint modeling of hierarchical structures and various transition semantics to effectively capture complex mobility patterns. Specifically, a novel hyperbolic rotation-based recommendation model HMST is developed for the next POI recommendation. To our knowledge, this is the first work to explore the hyperbolic rotations for the next POI recommendation tasks. Extensive experiments on three real-world datasets demonstrate the superiority of our proposed approach over the various state-of-the-art baselines.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn WWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025, p. 1830-1837. New York, NY: The Association for Computing Machinery, 2025-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105009240327-
dc.relation.ispartofbookWWW Companion ’25: Companion Proceedings of the ACM: Web Conference 2025-
dc.relation.conferenceInternational World Wide Web Conference [WWW],-
dc.publisher.placeNew York, NYen_US
dc.description.validate202511 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
3701716.3717802.pdf1.15 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.