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Abstract
The next Point-of-Interest (POI) recommendation has gained signifi-
cant research interest, focusing on learning users’ mobility patterns
from sparse check-in data. Existing POI recommendation models
face two main constraints. First, most models are based on Eu-
clidean space and struggle with capturing the inherent hierarchical
structures in historical check-ins. Second, various transition seman-
tics in both one-hop and sequential transitions cannot be properly
utilized to understand user movement trends. To overcome the
above limitations, we introduce rotation operations in hyperbolic
space, enabling the joint modeling of hierarchical structures and
various transition semantics to effectively capture complex mobility
patterns. Specifically, a novel hyperbolic rotation-based recommen-
dation model HMST is developed for the next POI recommendation.
To our knowledge, this is the first work to explore the hyperbolic
rotations for the next POI recommendation tasks. Extensive experi-
ments on three real-world datasets demonstrate the superiority of
our proposed approach over the various state-of-the-art baselines.

CCS Concepts
• Computing methodologies → Artificial intelligence; • In-
formation systems → Data mining.
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1 Introduction
In recent years, location-based social networks (LBSNs) such as
Foursquare have experienced rapid growth. In these social networks,
users share their locations by checking in at Points-of-Interest
(POIs). With the increasing availability of check-in data, POI recom-
mendation [25] has been extensively investigated, helping users to
explore their surroundings better and discover interesting locations
based on their preferences. Among various POI recommendation
tasks, next-POI recommendation [4, 21] is one of the most exten-
sively studied recommendation tasks, aiming to suggest POIs for a
user to visit subsequently given the recent check-in trajectory.

With the rapid advancement of machine learning, methods [7, 30,
34, 37, 50] that leverage various learning techniques have achieved
huge improvements in POI recommendation tasks. Among these,
methods [13, 34, 43] utilize graph representation learning to ex-
plore complex relations between entities in check-in data, such
as users, POIs, and categories. These approaches construct node
representations to model personalized movements and predict the
next location a user might visit. While effective, most existing meth-
ods operate in Euclidean space, which limits their ability to cap-
ture complex patterns due to the inherent properties of Euclidean
geometry [22]. In contrast, Feng et al. [9] demonstrated that the
distributions of various entities have inherent hierarchical patterns
and proposed HME to learn entity representations in hyperbolic
space. Although hyperbolic representations offer greater expressive
power than their Euclidean counterparts, HME treats all relation-
ships equally and fails to capture the rich transition semantics in
consecutive location visits, leading to limited prediction perfor-
mance. Therefore, the potential of leveraging hyperbolic space for
the next POI recommendation requires further exploration.

Multiple transition semantics occur simultaneously when users
move between two POIs. In addition to the locations, user move-
ments involve category and region transitions. Beyond user pref-
erences, these transition semantics are crucial for understanding
personalized movement patterns. The dense transition patterns in
category and region semantics further provide additional informa-
tion that mitigates the sparsity of POIs. Thus, integrating various
transition semantics is essential for accurate recommendations. Fur-
thermore, we identified two types of transitions in check-in data as
is shown in Figure 1. The first is the one-hop transition between
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Figure 1: Illustration of various transition semantics and two
types of transitions in check-in data.

two POIs, capturing global correlations of POI transitions from his-
torical check-in data. The second is the sequential transition that
denotes multi-hop continuous movements within a user trajectory.
This type of transition reflects the dynamic dependencies of user
movements across multiple POIs and is vital for personalized rec-
ommendations. Leveraging both types of transitions can effectively
enhance the performance of POI recommendation tasks.

Motivated by this, we propose a new approach to model complex
transition semantics in hyperbolic space. Specifically, our goal is to
simultaneously preserve latent hierarchical structures and capture
diverse transition semantics to enhance the accuracy of mobility
predictions. However, achieving this is nontrivial due to several
challenges. First, appropriate operations are required to model tran-
sition relations with diverse semantics. Previous methods often
relied on Euclidean space operations to fuse different representa-
tions and incorporate various types of information. However, these
operations cannot be directly applied to hyperbolic space, as they
fail to effectively preserve hierarchical features. Second, various
transition semantics in both one-hop and sequential transitions
should be fully considered, effectively extracting semantics from
both transition types to depict user movement trends. Moreover,
all extracted transition semantics should be effectively utilized to
make final recommendations.

To address these challenges, we explore rotation operations in
hyperbolic space. That is, we first preserve latent hierarchical pat-
terns to create expressive embeddings for users, POIs, categories,
and regions. Then, we apply rotation transformations to these em-
beddings to capture various transition semantics. This approach
offers several advantages for the POI tasks. Rotation operations
do not change the norms of hyperbolic vectors, thus maintaining
latent hierarchies. Diverse transition semantics can be effectively
captured through different rotation angles. In this way, we encode
transition semantics in distinct rotation matrices and utilize them
to make recommendations.

In this work, we propose a new recommendation model HMST
for the next POI recommendation. HMST consists of four main
components. First, it captures user preferences by learning hyper-
bolic user and POI embeddings from user-POI interactions. Second,
it encodes one-hop transition semantics, POI, category, and region
transitions, into three learnable rotation matrices. Third, given a
user trajectory, it constructs trajectory representations to extract

dynamic dependencies via hyperbolic attention operation and com-
bines the learned rotation matrices to capture sequential transition
semantics. Finally, it predicts the next POI, category, and region
using recommendation scores calculated based on hyperbolic dis-
tances between trajectory representations and entity embeddings.

The main contributions are summarized as follows:
• We incorporate rotation operations in hyperbolic space to
modelmulti-semantic transitions for the next POI recommen-
dation. That is, we propose an effective approach to jointly
preserve hierarchical structures and capture multi-semantic
transitions in user mobility behaviors.

• We develop a hyperbolic rotation-based recommendation
model HMST for the next POI recommendation, which con-
tains heterogeneous graph learning and Lorentzian trajec-
tory learning. To our knowledge, this is the first work to
explore hyperbolic representations and rotation operations
for the POI tasks.

• We conduct extensive experiments on three real-world check-
in datasets, and empirical results demonstrate that HMST sig-
nificantly outperforms various baselines, which indicates the
advantages of the hyperbolic spaces and rotation techniques.
Our code is available at https://github.com/PlaymakerQ/
HMST.

2 Related Work
2.1 Next-POI Recommendation
The next POI recommendation task has attracted extensive research
interest. Recent representative solutions include recurrent neural
networks [19, 50], graph neural networks [13, 33, 34, 37, 43], and
transformers [7, 41, 48]. For example, [37] introduces a hypergraph
convolutional network to incorporate trajectory similarity. To cap-
ture collaborative signals from other users, [41] constructs a trajec-
tory flow graph and designs a graph-enhanced transformer model
for predicting a user’s future mobility. [34] develops an adaptive
graph representation network, which utilizes POI representations
and an attention aggregation to capture the spatial-temporal de-
pendencies. By using long and short-term preferences, [7] pro-
poses a shared trajectory encoder for learning check-in sequences.
However, these methods are based on Euclidean spaces where the
hierarchical structures cannot be well preserved.

By providing auxiliary information for sparse POI-level data,
hierarchical structures have been explored to enhance the next
POI recommendation, including POI categories [44, 47, 49] and
geographical regions [18–20, 36]. For instance, Nicholas et al. [19]
develop a hierarchical multi-task graph recurrent network (HMT-
GRN), using beam search to explore different user-region matri-
ces. Different from existing approaches that use different levels
of sequential transition separately, we introduce a novel strategy:
utilizing hyperbolic space to capture the hierarchical structures
and leveraging rotation operations to reflect the multi-semantic
transitions simultaneously.

2.2 Hyperbolic Recommender Systems
To capture complex hierarchical patterns, hyperbolic learning tech-
niques have been introduced for recommendation tasks [26, 29]. Re-
cent developments include knowledge-aware recommendation [3,
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6, 45], social recommendation [31, 42], session-based recommen-
dation [11], and news recommendation [32]. For example, collab-
orative filtering techniques are combined with hyperbolic space
[16, 39, 40], outperforming the conventional collaborative Filter-
ing methods. Yang et al. [42] developed an HGSR framework to
jointly consider the user-user and user-item relations. Notably, a
hyperbolic metric embedding approach [9] is proposed for next-POI
recommendation, which considers user, item, region, and category
into the same Poincaréball model. Although can effectively model
complex graph structures, existing studies usually focus on learning
hyperbolic node representations, ignoring rich transition semantics
in users’ mobility behaviors.

2.3 Rotation Techniques
The rotation techniques were originally designed to learn various
relations patterns in the knowledge graph learning problems [5, 24,
27]. To further incorporate underlying hierarchical structures in the
knowledge graph, hyperbolic rotations have been developed [1] for
knowledge graph embedding. Motivated by the rotated Lorentzian
graph embedding model [8], [23] utilizes rotation transformation
to model asymmetric diffusion patterns in information cascades.
Different from these studies, we attempt to explore the rotation
operations to capture the rich multiple transition semantics in both
one-hop transition and sequential transition in check-in data.

3 Preliminary
3.1 Notations and Problem Definition
LetU,L, C, and R be the set of users, POIs, categories, and regions,
respectively. A POI 𝑙 is a location typically associated with geo-
graphical coordinates and a category 𝑐 ∈ C to denote its function.
Regions in R are constructed by dividing the entire area based on
collected geographical coordinates to identify the region 𝑟 a POI 𝑙
belongs to. A check-in 𝑞 = (𝑢, 𝑙, 𝑡, 𝑐, 𝑟 ) records that a user 𝑢 visits a
specific POI 𝑙 at timestamp 𝑡 , 𝑐 and 𝑟 denote the category and region
information of 𝑙 , respectively. A check-in trajectory 𝑠𝑢

𝑖
records all

check-ins generated by a user 𝑢 in a certain period1 which can be
viewed as a sequence 𝑠𝑢

𝑖
= {𝑞1, 𝑞2, · · · , 𝑞𝑚}.

From historical check-ins, we could further extract different
relations that have been shown effective in the next POI recom-
mendation. In this work, we use edges to represent these entities
and relations. (1) User-POI edge 𝑒𝑢,𝑙 := (𝑢, 𝑙): If a user 𝑢 has visited
a POI 𝑙 , there is a User-POI edge (𝑢, 𝑙) to indicate the interaction
between the user and POI. User-POI interactions often indicate user
preferences. We use E𝑈𝐿 to denote the set of all user-POI edges.
(2) POI-POI edge 𝑒𝑙1,𝑙2 := (𝑙1, 𝑙2): Two locations 𝑙1 and 𝑙2 visited
by a user within 6 hours are assumed to exhibit distinct sequen-
tial patterns [9]. In this way, we can extract all one-hop transition
relations in the edge set E𝐿𝐿 .

Next POI Recommendation Problem. Given a set of historical
check-ins and a user’s recent trajectory 𝑠𝑢

𝑖
= {𝑞1, 𝑞2, · · · , 𝑞𝑚},

the purpose of the next-POI recommendation is to recommend a
potential POI 𝑙𝑚+1 ∈ L that the user 𝑢 would visit next.

1Similar to [41], we partition all check-ins of a specified user into check-in trajectories
by 24-hour intervals.

3.2 Preliminary Knowledge
Hyperbolic Geometry. In this work, we adopt the Lorentz model

for describing hyperbolic spaces. A 𝑛-dimensional Lorentz model
is defined as the Riemannian manifold L𝑛

𝛽
= (H𝑛

𝛽
, 𝑔

𝛽
x ) with a neg-

ative curvature −1/𝛽 , where 𝛽 > 0 is the curvature parameter
and 𝑔𝛽x = diag( [−1, 1, 1, · · · , 1]) is the metric tensor. When 𝛽 = 1,
the Lorentz space equals the unit hyperboloid model. The point
set in the Lorentz model is defined as L𝑛

𝛽
= {x ∈ R𝑛+1 |⟨x, x⟩L =

−𝛽}, where x = (𝑥0, 𝑥1, · · · , 𝑥𝑛) is 𝑛 + 1 dimensional vector with

𝑥0 =

√︃
𝛽 +∑𝑑

𝑖=1 𝑥
2
𝑖
> 0. ⟨x, y⟩L = −𝑥0 · 𝑦0 +

∑𝑛
𝑖=1 𝑥𝑖 · 𝑦𝑖 denotes

the Lorentzian scalar product. Particularly, the squared Lorentzian
distance between x, y ∈ L𝑛

𝛽
is defined as:

𝑑2L (x, y) = −2𝛽 − 2⟨x, y⟩L . (1)

Recent work [2, 15] proved that the squared Lorentzian distance
could effectively depict hierarchical data.

For any x ∈ L𝑛
𝛽
, there exists a 𝑛-dimensional vector space TxL𝑛𝛽 ,

referred to as the tangent space centered at x. The exponential
map exp𝛽x : L𝑛𝛽 → TxL𝑛𝛽 and the logarithmic map log𝛽x : TxL𝑛𝛽 →
L𝑛
𝛽
are used to perform mappings between the tangent space and

hyperbolic space [22].
In this paper, we omit 𝛽 and fix its value at 𝛽 = 1. We use the

origin o as a reference point to perform tangent space transforma-
tions expo (·) and logo (·) between L𝑛 and ToL𝑛 . For more details
about hyperbolic space, please refer to the survey paper [22].

Rotation. The rotation was originally proposed for knowledge
graph embedding [27]. Since rotations are hyperbolic isometries [1],
they can be applied to hyperbolic spaces. The rotation operation
can be described by a block-diagonal matrix, which is defined as:

RotΘ = diag
(
R
(
𝜃𝑟,1

)
,R

(
𝜃𝑟,2

)
, · · · ,R

(
𝜃𝑟,𝑛/2

))
, (2)

where Θ = {𝜃𝑟,1, · · · , 𝜃𝑟,𝑛/2} are the rotation parameters. The 2 × 2
block R(𝜃𝑟,𝑖 ) is calculated as:

R(𝜃𝑟,𝑖 ) =
[
cos(𝜃𝑟,𝑖 ) − sin(𝜃𝑟,𝑖 )
sin(𝜃𝑟,𝑖 ) cos(𝜃𝑟,𝑖 )

]
. (3)

In this work, we use Rot(x) to denote applying rotation operation
on a given hyperbolic vector x ∈ L𝑛 , and all parameters of rotation
matrices are learnable.

4 The Proposed Method
4.1 Overview of Framework
Figure 2 shows the framework of the proposed model HMST, which
comprises four components. Firstly, we exploit user-POI interac-
tions to extract user preferences in hyperbolic embeddings. Second,
we model three kinds of one-hop transition semantics simultane-
ously with three learnable rotation matrices to capture global tran-
sition relations between two POIs. Third, we apply the Lorentzian
attention mechanism to model dynamic dependencies in the check-
in trajectory and combine its output with learned transition rotation
matrices to generate trajectory representations with correspond-
ing semantics. In this manner, both the hierarchical structures and
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Figure 2: Illustration of the framework of HMST. HMST has four components. First, user-POI interaction captures user
preference information. Second, multi-semantic one-hop transition models one-hop user movements with three semantics.
Third, multi-semantic sequential transition captures dynamic dependencies and models continuous multi-hop movements
with three semantics. Finally, multi-task prediction recommends the next possible POI, category, and region, respectively.

diverse transition semantics can be captured in two types of tran-
sitions, enabling comprehensive multi-semantic transitions to en-
hance recommendation accuracy. Lastly, we perform the next POI,
category, and region recommendations by calculating the scores
based on hyperbolic distances.

4.2 User-POI Interaction
In our work, each entity (user, POI, region, and category) is assigned
a hyperbolic embedding vector in the Lorentz model L𝑛 .

We first capture user preference information from all observed
historical user-POI interactions, i.e., all edges {(𝑢, 𝑙) | (𝑢, 𝑙) ∈ E𝑈𝐿}.
Notably, user-POI interactions often exhibit power-law distribu-
tions, indicating implicit hierarchical structures that can be effec-
tively captured through hyperbolic embeddings. Inspired by the
classic network embedding methods [10, 28], we learn user-POI
interactions in an unsupervised manner using a specially designed
score function with rotation operations. For each user 𝑢 ∈ U, a
preference rotation matrix Rot𝑢 is assigned to more effectively cap-
ture the user’s preference information. The key idea is that when a
pair (𝑢, 𝑙) is directly connected, their embeddings, after a rotation
transformation, should be closer in the embedding space.

Specifically, for an observed edge 𝑒𝑢,𝑙 = (𝑢, 𝑙) ∈ E𝑈𝐿 , the user
node has a hyperbolic embedding u ∈ L𝑛 , and the POI node has
an embedding l ∈ L𝑛 . A score function 𝑆 (·) is used to measure the

preference score between 𝑢 and 𝑙 as:

𝑆 (𝑢, 𝑙) = −𝑑2L (u𝑅, l) + 𝑏𝑢 + 𝑏𝑙 , (4)

where u𝑅 = Rot𝑢 (u) is the user embedding after rotation operation
of Rot𝑢 . The probability Pr(𝑒𝑢,𝑙 ) of observing the edge (𝑢, 𝑙) can be
calculated using the score function 𝑆 (𝑢, 𝑙) as follows:

Pr(𝑒𝑢,𝑙 ) =
exp(𝑆 (𝑢, 𝑙))∑

𝑙𝑘 ∈L exp(𝑆 (𝑢, 𝑙𝑘 ))
. (5)

Note that directly calculating Eq. (6) is computationally expensive,
as all nodes in L must be enumerated. To address this, we employ
the widely used negative sampling technique. This allows us to
estimate Eq. (6) in logarithmic form as follows:

log Pr(𝑒𝑢,𝑙 ) ≈ log𝜎 (𝑆 (𝑢, 𝑙)) +
∑︁
𝑙𝑘 ∈N

log𝜎 (−𝑆 (𝑢, 𝑙𝑘 )) , (6)

where 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ) is the Sigmoid function and N is the set
of random sampled negative nodes.

The goal is to maximize the joint probability of all user-POI
interactions to learn the user and POI embeddings, as well as the
preference rotation parameters. Assuming that each edge 𝑒𝑢,𝑙 ∈
E𝑈𝐿 is independent, the log probability is calculated as follows:

O𝑢𝑙 =
∑︁

𝑒𝑢,𝑙 ∈E𝑈𝐿

log Pr(𝑒𝑢,𝑙 ) . (7)
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That is, we optimize O𝑢𝑙 to capture the preferences of all users from
the user-POI interactions.

4.3 Multi-semantic One-hop Transition
We then model one-hop multi-semantic transitions using the edge
set {(𝑙𝑎, 𝑙𝑏 ) | (𝑙𝑎, 𝑙𝑏 ) ∈ E𝐿𝐿} to capture global user movements. Multi-
semantic considers not only the transition between locations 𝑙𝑎
and 𝑙𝑏 , but also the transitions in their category (𝑐𝑙𝑎 , 𝑐𝑙𝑏 ) and re-
gion (𝑟𝑙𝑎 , 𝑟𝑙𝑏 ) information, helping to mitigate POI data sparsity by
leveraging the less sparse category and region information.

We propose a novel approach using various rotation operations
to capture location, category, and region transitions for an observed
user movement 𝑙𝑎 → 𝑙𝑏 simultaneously. Here, rotation operations
are adopted since they can flexibly represent various transition
relationships while preserving latent hierarchical patterns.

Similar to the way for learning user-POI interactions, we further
incorporate category and region transition information when max-
imizing the joint probability of observing all location transitions
{(𝑙𝑎, 𝑙𝑏 ) | (𝑙𝑎, 𝑙𝑏 ) ∈ E𝐿𝐿}. We first model each semantic transition
and then combine them for one-hop multi-semantic transition.

We use three trainable rotation matrices Rot𝑙𝑙 , Rot𝑐𝑐 , and Rot𝑟𝑟
to capture location, category, and region transition, respectively.
Analogous to Eq. (4) and (6), the probability of POI-POI sequential
transition in the log form can be calculated as:

log Pr(𝑒𝑙𝑎,𝑙𝑏 ) ≈ log𝜎 (𝑆 (𝑙𝑎, 𝑙𝑏 )) +
∑︁

𝑙𝑘 ∈N𝑙𝑎

log𝜎 (−𝑆 (𝑙𝑎, 𝑙𝑘 )) , (8)

𝑆 (𝑙𝑎, 𝑙𝑏 ) = −𝑑2L (l𝑅𝑎 , l𝑏 ) + 𝑏𝑙𝑎 + 𝑏𝑙𝑏 , (9)

where l𝑅𝑎 = Rot𝑙𝑙 (l𝑎), 𝑏𝑙𝑎 , 𝑏𝑙𝑏 are POI specific biases. Similarly, the
logarithmic probability of the category transition is calculated as:

log Pr(𝑒𝑐𝑎,𝑐𝑏 ) ≈ log𝜎 (𝑆 (𝑐𝑎, 𝑐𝑏 )) +
∑︁

𝑐𝑘 ∈N𝑐𝑎

log𝜎 (−𝑆 (𝑐𝑎, 𝑐𝑘 )) , (10)

𝑆 (𝑐𝑎, 𝑐𝑏 ) = −𝑑2L (c𝑅𝑎 , c𝑏 ) + 𝑏𝑐𝑎 + 𝑏𝑐𝑏 , (11)

where, where c𝑅𝑎 = Rot𝑐𝑐 (c𝑎), 𝑏𝑐𝑎 , 𝑏𝑐𝑏 are category specific biases.
The logarithmic probability of the region transition is

log Pr(𝑒𝑟𝑎,𝑟𝑏 ) ≈ log𝜎 (𝑆 (𝑟𝑎, 𝑟𝑏 )) +
∑︁

𝑟𝑘 ∈N𝑟𝑎

log𝜎 (−𝑆 (𝑟𝑎, 𝑟𝑘 )) , (12)

𝑆 (𝑟𝑎, 𝑟𝑏 ) = −𝑑2L (r𝑅𝑎 , r𝑏 ) + 𝑏𝑟𝑎 + 𝑏𝑟𝑏 , (13)

where, where r𝑅𝑎 = Rot𝑟𝑟 (r𝑎), 𝑏𝑟𝑎 , 𝑏𝑟𝑏 are region specific biases.
N𝑙𝑙 , N𝑐𝑐 , and N𝑟𝑟 are related sampled negative node sets. Hence,
the overall one-hop multi-semantic transition for 𝑙𝑎 → 𝑙𝑏 can be
calculated by combining probabilities across all semantics:

log Pr𝑚𝑠𝑡 (𝑙𝑎 → 𝑙𝑏 ) = log Pr(𝑒𝑙𝑎,𝑙𝑏 ) + log Pr(𝑒𝑐𝑎,𝑐𝑏 )
+ log Pr(𝑒𝑟𝑎,𝑟𝑏 ) . (14)

After that, the objective function to maximize the joint probabil-
ity of observing all one-hop multi-semantic transitions is:

O𝑚𝑠𝑡 =
∑︁

(𝑙𝑎,𝑙𝑏 ) ∈E𝐿𝐿

log Pr𝑚𝑠𝑡 (𝑙𝑎 → 𝑙𝑏 ). (15)

We maximize 𝑂𝑚𝑠𝑡 to learn the embeddings and parameters of
three rotation matrices. In this way, we effectively encode global
one-hop transition relations with different semantics.

4.4 Multi-semantic Sequential Transition
One-hop transition is insufficient for making personalized next
POI recommendations, as it fails to capture the complex dynamic
dependencies within a user’s check-in trajectory. To effectively
predict users’ future mobility, it is essential to explore sequential
transition patterns across multiple consecutive locations. These
dynamic dependencies help us better understand user movement
patterns over time. Hence, we incorporate the sequential transitions
to make final recommendations.

Unlike previous methods [41] that directly fuse all information,
which lacks interpretability, our method leverages learned embed-
dings and various global transition semantics to refine the trajectory
modeling process. Since trajectory transitions also involve location,
category, and region information, it is natural to combine the men-
tioned semantics to enhance the final recommendations.

Given trajectory 𝑠 = {𝑞1, 𝑞2, · · · , 𝑞𝑚} of a user 𝑢, we first fuse
the check-in representations and then generate the trajectory em-
bedding s which will be used for predict the next POI.

The ckeck-in representation q𝑖 ∈ L𝑛 of a check-in record 𝑞𝑖 =
(𝑢, 𝑙𝑖 , 𝑐𝑖 , 𝑟𝑖 ) can be represented as:

q𝑖 = expo
(
logo (u) + logo (l𝑖 ) + logo (c𝑖 ) + logo (r𝑖 )

)
, (16)

where u, l𝑖 , c𝑖 , and r𝑖 represent the user, POI, category, and region
embeddings, respectively, log(·) and exp(·) are mappings between
the tangent space at space origin ToL𝑛 and the Lorentz model L𝑛 .

We extract and summarize the dependencies of historical check-
ins in the trajectory by a Lorentzian attention module. Using the
last check-in as the query, we integrate all the historical check-ins
to calculate the trajectory embedding s:

s =
√︁
𝛽 ·

∑𝑚
𝑖=1 𝛼𝑖q

v
𝑖��| |∑𝑚

𝑖=1 𝛼𝑖q
v
𝑖
| |L

�� , (17)

𝛼𝑖 =

exp
(
−𝑑2

L (qq𝑚,qk𝑖 )√
𝑛

)
∑𝑚
𝑘=1 exp

(
−𝑑2

L (qq𝑚,qk
𝑘
)

√
𝑛

) , (18)

where qq = HL𝑞 (q), qk = HL𝑘 (k) and qq = HL𝑣 (q). Note that
HL(·) denotes the Lorentzian linear layer [2].

Moreover, we combine s with various transition rotation matri-
ces to obtain trajectory representations with different transition
semantics. Specifically, we compute s𝑙𝑙 = Rot𝑙𝑙 (s), s𝑐𝑐 = Rot𝑐𝑐 (s),
and s𝑟𝑟 = Rot𝑟𝑟 (s). Finally, using these trajectory representations,
we integrate global one-hop transitions and sequential transition
information with latent hierarchical features to make the final next
POI recommendations.

4.5 Multi-task Prediction
After capturing transition information from both one-hop and se-
quential aspects, we predict the next location a user might visit.
Unlike methods that focus solely on predicting the next POI, our
approach also predicts potential transitions between categories and
regions. Using the learned trajectory representations with specific
semantics, we simultaneously predict the next POI, category, and
region. In other words, we integrate the results of multiple tasks to
make the final recommendation.
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Table 1: Dataset statistics.

#User #POI #Cat #Check-in #Trajectory

NYC 1,048 4,981 318 103,941 14,130
TKY 2,282 7,833 290 405,000 65,499
CA 3,957 9,690 296 238,369 45,123

For a given trajectory, we calculate the next POI recommendation
score based on the hyperbolic distance between the trajectory rep-
resentation and all POI embeddings. The next POI recommendation
score for POI 𝑙𝑖 is calculated as:

𝑦𝑙𝑖 = exp
(
− 𝑑2L (s𝑙𝑙 , l𝑖 )

)
+ 𝑏𝑙𝑖 , (19)

where 𝑏𝑙𝑖 is the recommendation bias for 𝑙𝑖 . Similarly, we can com-
pute the recommendation score for the next category 𝑐 𝑗 and region
𝑟𝑘 respectively as:

𝑦𝑐 𝑗 = exp
(
− 𝑑2L

(
s𝑐𝑐 , c𝑗

) )
+ 𝑏𝑐 𝑗 , (20)

𝑦𝑟𝑘 = exp
(
− 𝑑2L (s𝑟𝑟 , r𝑘 )

)
+ 𝑏𝑟𝑘 . (21)

In practice, given a trajectory 𝑠 , the recommendation scores for
POI, category, and region are combined into vectors: y𝑙𝑙 ∈ R1×|L | ,
y𝑐𝑐 ∈ R1×|C | , and y𝑟𝑟 ∈ R1×|R | , respectively. Accordingly, we
calculate three cross-entropy losses O𝑙 , O𝑐 , and O𝑟 to train our
model’s ability to predict the next POI, category, and region.

The overall loss function O is the combination of the user-POI
interaction learning objective O𝑢𝑙 , one-hop multi-sematnic transi-
tion objective O𝑚𝑠𝑡 and all recommendation objectives O𝑙 , O𝑐 , and
O𝑟 , which is calculated as:

O = −(O𝑢𝑙 + O𝑚𝑠𝑡 ) + O𝑙 + O𝑐 + O𝑟 . (22)

We minimize O to train our model, optimizing it using the efficient
Riemannian Adam algorithm [14].

5 Experiments
5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments on three commonly used
real-word datasets FourSquare-NYC [38], FourSquare-TKY [38]
and Gowalla-CA [46]. Each dataset is divided into training, vali-
dation, and test sets in chronological order with a ratio of 80% for
training, 10% for validation, and 10% for testing. The statistics of
datasets are shown in Table 1.

5.1.2 Experimental Setups. We use similar evaluation protocal
as [41]. The curvature parameter 𝛽 is set to 1. The default batch
size is 128. The number of dimensions 𝑛 is set to 64. The number of
negative samples is set to 10. We use Top-k Accuracy Rates (Acc@k)
and Mean Reciprocal Rank (MRR) as evaluation metrics. k is set
to 5 and 10. Our method is implemented in Python on a Ubuntu
server equipped with an Intel(R) i9-10900X 3.70GHz CPU and two
NVIDIA GTX 4090 GPUs.

5.1.3 Baselines. We compare HMST with the following 9 methods
to evaluate its effectiveness. The baselines can be categorized into
two main classes:

(1) Euclidean methods: LSTM [12], PLSPL [35], GETNext [41],
AGRAN [34], CLSPRec [7],MCN4Rec [17]. GETNext, AGRAN,
CLSPRec, and MCN4Rec are four recent baselines.

(2) Hyperbolic methods:HME [9],HICF [39],HGSR [42]. Note
that HICF and HGSR were not originally designed for POI rec-
ommendation, and we thus adapted them for our task. For HGSR,
we establish user-user connections based on similarities of user
preferences.

5.2 Experimental Results
5.2.1 Overall Performance. We first compare HMST with 9 base-
lines to investigate its capability for the next POI recommendation.
The overall results are displayed in Table 2, showing the evalua-
tion metrics on three datasets. The baselines are divided into two
groups: models in Euclidean space and models in hyperbolic space.
We have several observations. First, our proposed HMST model
outperforms all Euclidean models. Note that the state-of-the-art
POI recommendation methods are based on Euclidean spaces, such
as the GETNext, AGRAN, CLSPRec, and MCN4Rec. These meth-
ods adopt graph and sequence modeling approaches, achieving
significant improvements over previous methods. HMST builds
on a similar principle and outperforms them due to two key as-
pects: our method comprehensively captures latent hierarchical
patterns through hyperbolic representations and models various
transition semantics via rotation operations. Second, our approach
also demonstrates significant advantages when compared to meth-
ods based on hyperbolic space. Though HICF and HGSR are the
latest hyperbolic recommendation methods, they are not specifi-
cally designed for POI recommendations and cannot incorporate
the complex dependencies in user check-in trajectories, resulting
in limited performance. Third, our model achieves much better re-
sults than the hyperbolic next POI recommendation approach HME.
This is because HME focuses solely on modeling node embeddings
in hyperbolic space, which is lacking in depicting multi-semantic
transitions and capturing dynamic relationships effectively. Overall,
HMST outperforms all baselines on three datasets, highlighting the
effectiveness of using rotation operations in hyperbolic space for
the next POI recommendation.

5.2.2 Ablation Study. In this section, we conduct a comprehensive
ablation study to investigate the effectiveness of our design princi-
ples. Specifically, we conduct the following ablation settings: (1)w/o
hyperbolic. Implement HMST in Euclidean space. (2) w/o UPI.
Remove user-POI interaction. (3) w/o MOP. Remove the whole
multi-semantic one-hop transition module. (4) w/o MSP. Remove
the whole multi-semantic sequential transition module. (5) W/O
rotation. Remove all rotation operations. (6) w/o C&R. Remove
all category and region transition information.

The results of ablation studies are reported in Table 3 where met-
rics Acc@5 and MRR are reported. Taking the complete HMST as
the baseline, we make the following observations. The result w/o
hyperbolic shows that both metrics drop significantly because
the underlying hierarchical structures cannot be effectively cap-
tured in Euclidean space, indicating the advantages of hyperbolic
space. The result w/o UPI highlights the importance of modeling
user preferences. When user preferences are not effectively cap-
tured, the model’s performance declines significantly. The result
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Table 2: Overall performance comparison in Acc@k and MRR on three datasets. The best scores are in boldface and the second
best scores are underlined.

NYC TKY CA

Acc@5 Acc@10 MRR Acc@5 Acc@10 MRR Acc@5 Acc@10 MRR

LSTM 0.3276 0.3895 0.2299 0.3276 0.4087 0.2431 0.2100 0.2641 0.1442
PLSPL 0.4399 0.5323 0.2961 0.3983 0.4804 0.2934 0.2642 0.3343 0.1847

GETNext 0.4997 0.6017 0.3478 0.4432 0.5383 0.3148 0.3050 0.3853 0.2073
AGRAN 0.4598 0.5508 0.3175 0.4075 0.4967 0.2907 0.2859 0.3879 0.1990
CLSPRec 0.4252 0.5018 0.3132 0.3287 0.3721 0.2463 0.2595 0.3432 0.1917
MCN4Rec 0.4577 0.5368 0.3297 0.4278 0.5052 0.3047 0.2833 0.3589 0.1946

HME 0.4120 0.5409 0.2746 0.3538 0.4460 0.2241 0.2788 0.3650 0.1869
HICF 0.3447 0.4727 0.2161 0.2597 0.3407 0.1677 0.2534 0.3367 0.1675
HGSR 0.4437 0.5512 0.2908 0.3274 0.4542 0.2264 0.2446 0.3214 0.1690

HMST 0.5388 0.6233 0.3567 0.4714 0.5633 0.3315 0.3287 0.4200 0.2309

Table 3: The results of ablation study onNYC andCA datasets.
The best scores are in boldface.

NYC CA

Acc@5 MRR Acc@5 MRR

(1) w/o hyperbolic 0.4976 0.3270 0.2945 0.2150
(2) w/o UPI 0.5231 0.3493 0.3185 0.2190
(3) w/o MOP 0.5182 0.3461 0.2888 0.2077
(4) w/o MSP 0.4477 0.3173 0.3105 0.2114
(5) w/o rotation 0.5190 0.3317 0.3172 0.2273
(6) w/o C&R 0.4765 0.3237 0.3120 0.2253

HMST 0.5388 0.3567 0.3287 0.2309

w/o MOP is associated with the multi-semantic one-hop transi-
tion module. Removing the modeling of global one-hop transitions
causes a drop in both metrics, indicating that global POI transitions
effectively capture movement trends. Similarly, the resultw/o MSP
is related to the multi-semantic sequential transition module. When
the entire sequential transition modeling is removed, all metrics
significantly decline. This highlights the importance of dynamic de-
pendencies and sequential transition semantics in user trajectories
for personalized POI recommendations. Moreover, the result w/o
rotation demonstrates that rotation operations in hyperbolic space
effectively capture complex transition semantics. The final ablation
setting, w/o C&R, represents the results without incorporating
additional transition semantics. The performance decline observed
across both datasets highlights the importance of fully modeling
transition semantics for the next POI recommendation tasks.

In summary, the results of the ablation study suggest that the best
experimental outcomes are achieved when the model is complete.
This underscores the effectiveness of each individual module for
the next POI recommendation.

6 Conclusion
In this study, we explore the use of rotation operations in hyper-
bolic space to address limitations in existing POI recommendation
methods. Our findings demonstrate that rotation transformations

effectively capture multiple transition semantics, enabling the mod-
eling of complex transition patterns in check-in data. Based on this,
we propose a novel hyperbolic rotation-based recommendation
model, HMST, marking the first exploration of hyperbolic rotations
for the next POI recommendation tasks. Our approach first incorpo-
rates user preference information by learning user-POI interactions
to construct expressive user and POI hyperbolic embeddings. It
then applies rotation operations to model location, category, and
region transition semantics in both one-hop and sequential tran-
sitions. The final prediction module simultaneously predicts the
next POI, category, and region. Extensive experiments on three
real-world datasets demonstrate the effectiveness of our proposed
model in capturing complex transition semantics and achieving
accurate recommendation results.
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