Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115543
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorAkbar, MA-
dc.creatorRaza, H-
dc.date.accessioned2025-10-08T01:16:14Z-
dc.date.available2025-10-08T01:16:14Z-
dc.identifier.urihttp://hdl.handle.net/10397/115543-
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.rights© 2025 The Author(s). Published by IOP Publishing Ltden_US
dc.rightsOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence (https://creativecommons.org/licenses/by/4.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US
dc.rightsThe following publication Akbar, M. A., & Raza, H. (2025). Advanced Damping Solutions for Single-Particle Impact Dampers: Exploring Design Parameters with a Linear Contact Approach. Engineering Research Express, 7(3), 035503 is available at https://doi.org/10.1088/2631-8695/ade84c.en_US
dc.subject3D printingen_US
dc.subjectDamping performanceen_US
dc.subjectPassive vibration controlen_US
dc.subjectSingle-particle impact damperen_US
dc.subjectTuned mass damperen_US
dc.titleAdvanced damping solutions for single-particle impact dampers : exploring design parameters with a linear contact approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume7-
dc.identifier.issue3-
dc.identifier.doi10.1088/2631-8695/ade84c-
dcterms.abstractSingle-particle impact dampers (SPIDs) are passive vibration absorbers (PVAs) that enclose a free-moving particle (mass) within a host structural cavity. SPIDs are easier to develop and install than known PVAs, but their nonlinearities complicate parameter selection. Using a linear contact model (LCM), this study identifies additional design parameters to enhance damping. A numerical model of a SPID on a SDOF structure is employed using the LCM to mimic particle-structure interactions. SPID demonstrates exceptional damping performance (amplitude ratio X/Y ≤ 10) throughout a wide variety of design parameters, including dimensionless clearance magnitudes (D = 5–20) and damping ratios (ζ_eq = 0.07–0.45). This differs significantly from traditional tuned mass dampers (TMD), which require a restricted ideal parameter range (e.g., ζ_opt = 0.15 for μ = 0.1) to prevent detuning. For experimental validation, four 3D-printed materials (B10, B15, B20, and B50) with varied stiffness (k = 6.35–48.08 kN m−1) and damping coefficients (c = 5.62–23.88 Ns m−1) are evaluated. SPID lowers resonant amplitudes by up to 57% (e.g., B50 at D ≈ 7.5: simulated X/Y = 8.34 versus experimental X/Y = 9.68), demonstrating the correctness of the numerical model (error: <15%). This study shows that SPID is effective when reducing resonant peaks and simplicity matters more than optimal attenuation.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEngineering research express, Sept 2025, v. 7, no. 3, 035503-
dcterms.isPartOfEngineering research express-
dcterms.issued2025-09-
dc.identifier.scopus2-s2.0-105010037136-
dc.identifier.eissn2631-8695-
dc.identifier.artn035503-
dc.description.validate202510 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TAen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.TAIOP (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Akbar_2025_Eng._Res._Express_7_035503.pdf1.28 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.