Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115406
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorGao, Sen_US
dc.creatorLi, Den_US
dc.creatorCheung, CFen_US
dc.date.accessioned2025-09-23T03:16:51Z-
dc.date.available2025-09-23T03:16:51Z-
dc.identifier.issn0018-9456en_US
dc.identifier.urihttp://hdl.handle.net/10397/115406-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication S. Gao, D. Li and C. Fai Cheung, "Multiframe Resolution-Enhanced Autostereoscopic System for On-Machine 3-D Surface Metrology," in IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1-9, 2024, Art no. 5037909 is available at https://doi.org/10.1109/TIM.2024.3472890.en_US
dc.subjectAutostereoscopyen_US
dc.subjectDeep learningen_US
dc.subjectSurface metrologyen_US
dc.titleMultiframe resolution-enhanced autostereoscopic system for on-machine 3-D surface metrologyen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Multi-frame Resolution-enhanced Autostereoscopic System for On-machine Three-dimensional Surface Metrologyen_US
dc.identifier.volume73en_US
dc.identifier.doi10.1109/TIM.2024.3472890en_US
dcterms.abstractThis article presents a multiframe (MF) resolution-enhanced autostereoscopic system for the on-machine measurement of 3-D surfaces. It takes advantage of the vibration from the machine tool during the on-machine measurement process to acquire multiple frames of the target surface with offsets, thereby achieving resolution enhancement. A MF resolution-enhanced deep-learning model is developed to generate resolution-enhanced raw elemental images which significantly improve the measurement resolution of the system. The performance of the system is evaluated by experiments and the results show that the spatial resolution of the measurement data is enhanced four times with improved measurement accuracy.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on instrumentation and measurement, 2024, v. 73, 5037909en_US
dcterms.isPartOfIEEE transactions on instrumentation and measurementen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85206324337-
dc.identifier.eissn1557-9662en_US
dc.identifier.artn5037909en_US
dc.description.validate202509 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera4081-
dc.identifier.SubFormID52035-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Gao_Multiframe_Resolution_Enhanced.pdfPre-Published version3.19 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.