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Multi-frame Resolution-enhanced Autostereoscopic
System for On-machine Three-dimensional Surface
Metrology
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Abstract—This paper presents a multi-frame resolution-
enhanced autostereoscopic system for the on-machine
measurement of three-dimensional surfaces. It takes advantage of
the vibration from the machine tool during the on-machine
measurement process to acquire multiple frames of the target
surface with offsets, thereby achieving resolution enhancement. A
multi-frame resolution-enhanced deep-learning model is
developed to generate resolution-enhanced raw elemental images
which significantly improve the measurement resolution of the
system. The performance of the system is evaluated by
experiments and the results show that the spatial resolution of the
measurement data is enhanced by four times with improved
measurement accuracy.

Index Terms—surface metrology, autostereoscopy, deep learning.

I. INTRODUCTION

HE wuse of three-dimensional surfaces in the

development of products to realize specifically designed

optical and mechanical functions has become more
widespread. Applications can be found in various industries
such as biomedical [1], optics [2], acrospace [3], energy, etc.
The increasing geometrical complexity of 3D surfaces creates
considerable challenges in regard to their measurement,
particularly for on-machine measurement. Surface dimensional
measurement techniques encompass contact methods and
noncontact methods. Contact profilometers utilize a stylus [4]
that traverses the surface in vertical and lateral motions, thereby
capturing the distance between points and the contact force
exerted, ensuring accurate and precise measurements. To
enhance resolution, especially for micro-structured surfaces,
finer tips have been developed [5]. Zhang et al. [6] presented a
smart sampling strategy for a touch-trigger on-machine probe
to enhance the identification capability regarding defect areas.
The strategy determines an optimum distribution of sample
points and incorporates supplementary sampling in regions with
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defects. Zhu et al. [7] incorporated a tracking head based on
scanning tunneling microscopy, a high-aspect ratio probe, and
multi-axis moving stages in order to enhance the accuracy of
on-machine measurements. Although various high-precision
on-machine measurement systems have been proposed, their
performance is influenced by the machine kinematic errors and
susceptible to machine vibration [8]. Nonetheless, contact
profilometers are limited by their time-consuming data
acquisition process and the potential for surface damage due to
the contact nature of the probe, particularly on soft or delicate
materials. In contrast, non-contact profilometers, which are
predominantly optical-based, have been the focus of extensive
research, employing techniques such as interferometry [9],
deflectometry [10], structured light [11], confocal microscopy
[12], etc. The advantage of non-contact profilometers lies in
their ability to measure surfaces without exerting additional
force or causing any effects on the surfaces. Noncontact
methods are more flexible to implement and require less time
consumption and system complexity, especially for small
measured parts with microstructures.

Autostereoscopic 3D surface metrology based on the light
field theory is an emerging noncontact surface detection
technology that utilizes a micro-lens (MLA) array that is
incorporated into a single-lens imaging system to capture the
raw 3D information of the measured surface in a single
snapshot. This enables faster data acquisition for the on-
machine measurement and real-time inspection. A real-time
inspection using light field microscopy was achieved. This was
made by transforming light-fields back into depth information,
with the assistance of a view-channel-depth machine learning
network [13]. A semantic segmentation light-field system was
developed, by utilizing an end-to-end convolutional neural
network [14] which efficiently extracts angular-spatial features
from light field data. The system's ability to perform efficient
semantic segmentation enhances the potential applications of
light field technologies.
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To improve the  autostereoscopic  measurement
performance, a system-associated direct extraction of disparity
information (DEDI) method [15] is used for 3D surface
reconstruction, where disparity patterns based on the parallax
information of the recorded data were presented to enhance the
accuracy of depth estimation, providing a turnkey solution for
the on-machine microstructure measurement of 3D surfaces. A
calibration model, grounded in epipolar space theory, was
presented [16] to ascertain the relationship between measured
points and epipolar-space parameters for depth reconstruction.
A method based on the point spread function [17] was
developed to ascertain the spatial location of the MLA by
analyzing the overlap of elemental images, thereby achieving
more precise digital refocusing to enhance measurement
accuracy. To augment the accuracy of disparity retrieval and
improve the quality of surface reconstruction, a learning-based
method [18] was proposed to achieve adaptive focus volume
aggregation from digitally refocused data.

However, the resolution of this measurement system has
been limited due to the division of the image sensor's pixels into
multiple small areas by the numerous small apertures of the
MLA. Additionally, these segmented small areas of pixels need
to undergo a matching process and screening process before the
final 3D point cloud of the target surface can be generated. In
other words, the final resolution of the measurement system is
directly influenced by the resolution of each segmented small
area. The segmentation caused by the MLA undoubtedly has an
adverse impact on the final resolution of the measurement
system. Research aimed at enhancing the angular resolution of
autostereoscopic data has been explored in [19, 20], including
resolution enhancement methods for plenoptic cameras and a
semi-supervised learning paradigm to improve data efficiency.
Due to the superiority of deep learning in image processing,
various learning models for resolution enhancement of blurry,
noisy, and low-quality images have emerged. These models are
implemented using data-driven, model-based, or unsupervised
approaches. However, these methods may tend to produce finer
artifacts to visually appeal to human perception, which could
result in inaccurate details for precise measurements. As a
result, the development of an effective method for accurate
spatial-resolution recovery of autostereoscopic data is essential
to further improve measurement performance.

This study introduces a multi-frame resolution-enhanced
autostereoscopic system designed to enhance the resolution of
measurement systems for on-machine measurement of 3D
surfaces. The system capitalizes on the inevitable vibrations of
machine tools, which can induce local blurring in images
captured during the on-machine process, by utilizing these
subtle displacements to acquire multiple frames of the target
surface with slight offsets within a brief timeframe. After the
enhancement process, the measurement data obtained are of
high resolution, featuring clear and sharp details. This
improvement enhances the precision and accuracy of the
autostercoscopic measurements. The multi-frame resolution
enhancement is achieved by utilizing the sub-pixel information
contained in different frames with slight displacement, along

with a deep learning-based resolution-enhanced network and
training process. The processed resolution-enhanced image can
reconstruct the 3D surface with significant improvements in
both lateral and axial resolution. The performance of the
proposed method and system is evaluated through experiments
conducted on a sample with a micro-structured surface. A
learning-based unfolding super-resolution network (USRNet)
[21] is employed as a comparison benchmark in the experiment,
owing to its effective enhancement of low-resolution images
and its commendable generalizability. The proposed method is
found to be able to enhance spatial resolution and improve
measurement accuracy.

II. MULTI-FRAME RESOLUTION-ENHANCED AUTOSTEREOSCOPIC
MEASUREMENT

Fig. 1 is a schematic diagram of the system of multi-frame
resolution-enhanced autosterecoscopy for on-machine 3D
surface measurement, including the recording and
reconstruction processes. Different spatial locations of the
elemental lenses in an MLA cause small differences in viewing
angles in the elemental images received on the image sensor
(known as disparities). The disparity information can be used to
calculate the 3D information about the target surface and this is
the reconstruction process. A quantitative expression of a
specific point’s disparity is determined based on the parameters
of the system setup including the pixel size of the image sensor,
the pitch of the MLA, the gap (the distance between the MLA
and the image sensor), and the dimensional variation along the
depth direction.
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Fig. 1. Working principle of multi-frame resolution-enhanced
autostereoscopic metrology for on-machine 3D surface
measurement.
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This quantitative disparity information, both in the lateral
and depth directions, is transferred from the recording process
to the reconstruction process. The corresponding points, which
are the image points from different Els, originate from an
identical single object point in the object space (red points in
Fig. 1) and satisfy the quantitative relationship between
disparity information and system parameters. Corresponding
points need to be accurately chosen based on the match of pixel
information and its neighbourhood in Els and form the 3D
digital reconstruction at corresponding spatial locations. The
reconstructed and object spaces are symmetrical both in the
lateral and axial directions according to the reversibility of
optical rays.

Since vibration from the machine tool between the target
surfaces and the measurement system is unavoidable during the
on-machine measurement process, such vibration causes a
small movement at the micrometer scale towards the image
sensors so that each of the measurement frames records a
composition of different optical signals as shown in Fig. 1. Due
to the finite sampling rate of the image sensor, the subtle
displacement resulting from vibration may cause local blurring
in the recorded images. Given that each frame represents a
down-sampled result of the recorded scene, points
corresponding to the same object point across different frames,
along with their neighboring pixels, exhibit distinct grayscale
values and pixel gradients. These local features and subpixel
information can be used to compensate for the low-resolution
signals and reconstruct high-resolution data. In this sense, high-
resolution (HR) images can be reconstructed by analyzing and
processing the different pixel representations of multiple
frames.

As illustrated in Fig. 2, two different frames are recorded for
the same object but with a slight displacement. The pixel
distribution of the two frames, which refers to the pixel values
of the target surfaces, differs when the object appears in
different positions on the image sensor. After registration and
fusion, the redundant pixel information is combined, forming a
new pixel distribution in a sub-pixel space. The new pixel
distribution is processed in the reconstruction process. A high-
resolution frame with sharp edge information and details is
generated from multiple frames.
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Fig. 2. Multi-frame resolution-enhancement process.

The two key issues to address in the multi-frame resolution-
enhancement problem are registration and reconstruction.
Conventional methods usually rely on a priori knowledge to
extract features from the multiple frames and achieve
registration based on these features. Fusion is accomplished
through a series of designed kernels based on experiments or
expert experiences. However, the measurement images often

contain various types of noise, such as Gaussian noise, salt and
pepper noise, and smudge noise, caused by factors like
illumination, exposure, condition of the lenses, etc. As a result,
conventional methods often struggle to extract effective
features from the images and reconstruct high-resolution
images with high robustness. It is inspiring to utilize deep
learning to generate resolution-enhanced Els by accurately
registering and reconstructing high-resolution images. To this
end, a multi-frame resolution-enhanced model based on a deep-
learning network is developed to super-resolve low-resolution
(LR) measurement image stacks into high-resolution images
with denoising and clear details.

III. MULTI-FRAME RESOLUTION-ENHANCED DEEP LEARNING
MODEL

To generate resolution-enhanced Els based on multiple
frames of low-resolution Els, a deep learning network is
developed. A supervised training process is used to generate
resolution-enhanced images based on image data collected
under various conditions, light intensity, recording device, etc.

A. Model framework

As shown in Fig. 3, the proposed multi-frame resolution-
enhanced deep learning model consists of four components: a
single-frame resolution-enhanced network, a registration
network, an auxiliary-frame resolution-enhanced network, and
a series of convolutional layers for post-processing. Fig. 3
shows a schematic diagram of the model. The captured multiple
frames are split into a base frame, and auxiliary frames. The
output of the high-resolution image has the same geometrical
position as the base frame and the auxiliary frames are used to
provide redundant sub-pixel information. The base frame is first
up-sampled using Bilinear interpolation so that the spatial
dimension is increased to a desired value. The up-sampled base
frame is then input to the single-frame resolution-enhanced
network, where the input frame is converted into a stack of
high-dimensional single-frame features through the processing
of the convolutional layers and activation functions. These
features are used for subsequent processing. All the frames,
including the base frame and the auxiliary frames, are input into
the registration network for alignment. Although the
displacement detection and registration can also be achieved by
traditional methods such as Scale Invariant Feature Transform
(SIFT) [22], these methods are more sensitive to the noises that
are unavoidable during on-machine measurement due to
various illumination, vibration, and machining environment. In
addition, the registration network can realize an end-to-end
training and inference fashion, eliminating the need for extra
preprocessing of the raw measurement data.

Displacement between frames may lead to blur and image
artifacts during the convolutional operation, as points
corresponding to the same object may possess different
coordinates across multiple frames. Different views of the same
object point may not align within a single convolutional kernel,
resulting in image artifacts and blurred regions, as shown in Fig.
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4. However, through translating, these points can be effectively
aligned within a unified kernel window, leading to the
noticeable elimination of image artifacts. Consequently, an
affine transformation between these frames is essential to
mitigate the effects during convolution. Since these frames only
undergo slight displacement, it is assumed that only translation
occurs. According to the affine transformation matrix, the
registration process is formulated as:

0 ex xAi
y =10 1 Hy Yai (1)
1 0 0 1 1

where 7(x,,,v,) is one of the auxiliary frames and 7(x,,,7,,)

X 1

is the corresponding registered frame which has been aligned
with the base frame. €, and @, are the translation parameters

in the x and y directions, respectively. The output of the
registration network is the translation parameters (er ) lgy ) . The

translation distribution predicted by the registration network
aligns with the pixel displacement in the training data. Random
translations can be introduced into the training data to simulate
various vibration amplitudes for different devices.
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Fig. 3. Multi-frame resolution-enhanced deep-learning model.

To effectively reduce the dimensionality of the input frames
while retaining key information, max-pooling filters are used in
the registration network. Fully connected layers are followed in
the convolutional layers to realize the prediction of the

translation parameters. The Tanh (hyperbolic tangent)
activation function is used to compress the output translation
parameters within the range of [-1, 1]. The output auxiliary
frames are aligned with the base frame through registration.
Similar to the single-frame super-resolution route mentioned
earlier, the aligned auxiliary frames are up-sampled and input
into the auxiliary-frame resolution-enhanced network.
Consequently, these auxiliary frames are converted into a stack
of multi-frame features. These two stacks of features, namely
the single-frame features and the multi-frame features, are
merged and then input into the post-processing convolutional
layers. After the post-processing layers, a high-resolution image
is reconstructed. All the aforementioned sub-networks utilize a
residual connection architecture (ResB in Fig. 3) to prevent
gradient vanishing.
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In the proposed convolutional layers, a kernel size of 3 is
employed to reduce the number of network weights. Images are
downscaled to a 64%x64 resolution prior to input into the
registration network, ensuring consistent predictions of the
translating parameters. Given that the registration network's
output is a relative translation value, the reduction in image
dimensions does not impact the efficacy of the desired affine
transformation. Except for the registration network, which uses
Rectified Linear Unit (ReLU) and Tanh activation functions, all
the other sub-networks employ Leaky ReLU as their activation
functions. Research [23, 24] has shown the superiority of Leaky
ReLU for super-resolution applications.

B. Model training

The behaviour of the neural network is invariably influenced
by the distributions of the input and ground truth; thus,
denoising is facilitated by introducing noise into the raw
measurement data, thereby transforming the data distribution
into a noisy one. Subsequently, the network is trained to
estimate the maximum a posteriori probability for the retrieval
of high-resolution information from the data with noise. To this
end, a supervised training process is used based on image data
collected under various conditions, light intensity, recording
device, etc. The training data are first down-sampled as the
input, and the raw data are used as ground truth. To achieve a
clearer reconstruction, noises are added on the input data to



> Ms. No. TIM-24-03452 <

simulate the noises in realistic environments. Hence, the
objective of the proposed multi-frame resolution-enhanced
network is not only to recover the high-resolution information
but also to achieve denoising.

The loss function is comprised of three parts: reconstruction
loss, gradient loss, and perceptual loss. Reconstruction loss
measures the errors between the reconstructed high-resolution
images and the corresponding ground truth using mean absolute
errors as the criterion. To preserve the edge information in the
reconstructed images, the gradient loss compares the gradients
of the ground truth and the reconstructed images in the
horizontal and vertical directions. The resulting errors are used
to calculate the gradient loss. The perceptual loss [25]
quantifies the feature distance between the ground truth and the
reconstructed images. This is done by extracting features using
a pre-trained VGG network [26], which is a widely-used trained
network developed by the Visual Geometry Group at the
University of Oxford. The total loss function is formulated as:

L:}XP“—A+WJ“—VJ‘
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where I"™ is the high-resolution images reconstructed by the
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proposed network, [ is the corresponding ground truth, and
#(-) denotes the VGG network. In addition, the training data

are augmented by rotation, flipping, and random cropping to
realize thorough training of the proposed network.

C. Implementation details

In this work, the measurement images are super-resolved
and up-scaled 4-fold. The number of total input frames is 4. The
single-image resolution-enhanced network and the auxiliary-
frame resolution-enhanced network both contained two residual
blocks. The post-processing layers contained two residual
blocks.

The training data are collected by a 2D imaging system and
a Lytro Illum commercial light-field camera. Since a single EI
captured by the proposed measurement system has a limited
number of pixels, the data obtained by the Lytro Illum camera
and the 2D system with higher resolution can provide much
richer pixels to achieve more effective training of the
resolution-enhanced model that learns the mapping function
from the low-resolution images to high-resolution images.
Multiple scenes that include various samples such as sphere
surfaces, machining parts, bonding wires, and other objects
containing complex surfaces are captured under different
illumination conditions for the construction of the training
dataset. Each scene contains 4 frames with slight displacement.
For more efficient learning using the limited measurement data,
the up-scale factor is set to 2 during training. The well-trained
model is employed to enhance the resolution by 4 times during
inference. Data augmentation is conducted by rotating the
training data by 45, 90, 135, 180, 225, 270, and 315 degrees,
flipping them from left to right or from up to down, and
cropping the data into random-size patches.

Due to the autosterecoscopic system's constraints in
illumination and recording conditions, the raw data utilized as
ground truth for network training often encompass noise and
blur, which obstruct the network's ability to super-resolve
sharper and clearer details. Moreover, acquiring high-quality,
high-resolution autostereoscopic data is challenging. In
response to this, the training process incorporates various noise
types, including Gaussian noise, local mosaic processing, and
local blurring, into the recorded data, enabling the network to
learn the recovery of finer details from these noised data. This
noise is applied randomly across different regions and at
varying levels, further augmenting the finite dataset. However,
introducing additional noise alters the original distribution of
the autostercoscopic data, potentially resulting in the super-
resolved data containing extraneous image artifacts. To
mitigate this, finetuning is conducted to adjust the network
weights on the original dataset without introducing noise. In
other words, the finetuning dataset contains a reduced number
of training samples, attributable to the omission of
augmentation, but maintains the same distribution as the raw
autostereoscopic data. The perceptual loss's penalty coefficient
is set to 0.01 throughout finetuning, directing the network's
focus toward the pixel-level discrepancies between the
recovered results and the ground truth to minimize the
emergence of unintended artifacts. A comparative analysis
presented in Fig. 5 involves the network trained on augmented
noisy data without finetuning, the network directly trained on
the original dataset, and the finetuned network. Although
training directly on the dataset without noise augmentation can
yield similar or even higher PSNR and SSIM metrics, the
resulting images tend to exhibit blurred edges and may even
display a sawtooth effect. The model trained on noisy data
without finetuning is prone to generating more artifacts and
noise due to the misidentification of noise as salient features. In
contrast, the images produced after finetuning possess sharper
and clearer edges, preserving the original structure of the
surfaces.

The input patch size is set to 128. The model is implemented
using PyTorch and trained using NVIDIA RTX 2080 GPUs.
The Adam optimizer [27] is used during backpropagation, and

the initial learning rate is set to 10~*. The learning rate decays
every 10 training epochs.

D. Surface reconstruction

The depth estimation process is based on the direct
extraction of disparity information method [15], disparity
patterns, and shape from focus via digital refocusing [28], as
shown in Fig. 6. Digital refocusing is first performed using the
recorded autostereoscopic data, allowing for the acquisition of
a stack of refocused images. The corresponding points should
be focused at a specific depth plane, which is equivalent to
finding focus regions in the refocused image stack. A focus
measure operator is used to detect focus points in every
refocused image, resulting in the obtainment of a focus volume.
After smoothing and denoising the focus volume, a preliminary
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depth map is estimated using the winner-take-all strategy. An
all-in-focus image can be obtained based on the preliminary
estimation. To further refine the estimated depth, guided
filtering is applied to the preliminary estimation based on the
all-in-focus image. Outlier points caused by incorrect
estimation, such as small locally convex or concave regions in
the depth map, are further removed using pre-defined
thresholds based on the assumption of continuous surfaces. As
a result, desired depth maps, point clouds, and the
corresponding all-in-focus images can be acquired from the
low-resolution (LR) or high-resolution (HR) autostereoscopic
measurement data.

-
-
i

Fig. 5. An ablation study for the evaluation of the finetuning
improvement. (a) is the reference scenes super-resolved by 4
folds, and (b) ~ (e) are local enlargements extracted from the
results of the Bilinear interpolation, the model trained on the
noised dataset without finetuning, the model trained directly on
the original dataset, and the model initially trained on the noised
dataset then finetuned on the original dataset, respectively.
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Fig. 6. Framework of the surface reconstruction process from
the autostereoscopic measurement data.
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IV. EXPERIMENTS

A. System setup for on-machine measurement

As shown in Fig. 7, a prototype of the multi-frame
resolution-enhanced autostercoscopic 3D surface measurement
system is built to perform on-machine 3D surface measurement.

The whole system is mounted on the motion stage of a Moore
Nanotech 350FG ultra-precision machine. The overall field of
view (FOV) of the measurement system is 625 pm diagonally
based on the offline calibration of the system in terms of the
overall magnification of the objective lens and zoom lens, and
the actual used image sensor size.

To evaluate the accuracy and resolution of the
autostereoscopic system, a series of measurement experiments
is conducted on a 3D micro-structured sample. The sample is
mounted on the air bearing work spindle of the machine.

g Zoom
Il Imaging
System

Autostereoscopic |
Metrology Sensor

Fig. 7. On-machine measurement through a multi-frame
resolution-enhanced autostereoscopic 3D surface measurement
system.

Multiple frames of the Els of the sample with offsets of
pixels are captured during the on-machine measurement
process. The offsets among the multiple collected frames are
analyzed based on pixel values and greyscale projection. The
results show that the sub-pixel level offsets between the
different frames happened during the on-machine measurement
which qualifies for the proposed multi-frame resolution-
enhanced method.

To investigate the frame jitter caused by the vibration of the
machine tool, the SIFT descriptor is used to determine the pixel-
level shifting among multiple continuous frames captured
during the measurement. The first frame is used as the
reference, and the other frames are matched with the reference
frame to detect small displacements. Key points of the reference
frame and the other frames are detected and computed using the
SIFT descriptor and detector. The matching is achieved using
the FLANN (Fast Library for Approximate Nearest Neighbors)
method. Since the SIFT detector can achieve detection on a sub-
pixel scale, the sub-pixel-level distances between the matched
points can be determined, thus identifying the frame jitter. To
decrease the effects resulting from inaccurate matching, a total
of 500 groups of matched points from the reference frame and
the detected frame are used for analysis. To eliminate the effects
resulting from noise, the same displacement detection is
performed on noised data, which are generated by adding extra
Gaussian noise to the reference frame. The average grayscale
difference per pixel between the noised data and the reference
data is on the same scale as the grayscale difference among the
multi-frame data, ensuring the validity of the comparison. The
difference is 0.950 per pixel between the noised data and the
reference, and 0.931 per pixel between the multiple frames. The
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results of the multi-frame data and the noised data are shown in
Fig. 8, where a total of 5 frames, excluding the reference frame,
are involved. The red lines represent the pixel displacement of
the noised data, and the blue lines represent the pixel
displacement of the multi-frames. The results demonstrate that
sub-pixel displacement occurs during the on-machine
measuring process. Hence, the on-machine measurement data
adhere to the aforementioned multi-frame super-resolution
assumption and can achieve resolution enhancement on a sub-
pixel level.

B. Experimental analysis

Fig. 9 provides a quantitative comparison between the
learning-based super-resolution method USRNet [21] and the
proposed method. The original images, which serve as ground
truth, are downscaled by a factor of two for the resolution
enhancement experiments. The figure displays the super-
resolved outputs alongside their respective error maps. The
Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM) serve as the evaluation
metrics. Five samples recorded by the autostereoscopic system
are analyzed, with the average metrics for all data presented in
Table 1. Additionally, data captured by a two-dimensional
vision device under vibration are utilized to validate the
proposed method's effectiveness. The results clearly indicate
that the proposed method outperforms in terms of higher PSNR
and SSIM scores across all tested scenes.
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Fig. 8. Jitter analysis of the multiple measurement frames
captured during the on-machine process (blue lines) and the
noised data generated by imposing Gaussian noises (red lines).

Since the goal of resolution enhancement is to strengthen the
feature points on the measured surfaces for more precise
matching, evaluating the outcomes solely based on PSNR and
SSIM is insufficient. A qualitative comparison among Bilinear,
USRNet, and the proposed method is illustrated in Fig. 10,
where the input data are expanded by a factor of four. Fig. 10
also includes local enlargements of the scenes, demonstrating
that the proposed method achieves superior visual sharpness for
high-frequency information. It is clear that the proposed method
excels in enhancing high-frequency signals, typically the edges
or key points of the measured sample, which are crucial for
depth estimation in the shape-from-focus process. Enhancing

these high-frequency signals aids in the accuracy of focus
measurement on the refocused image stack, ensuring that
corresponding points are detected at the correct depth plane.

Ground Truth USRNet Proposed

PSNR 35.509 SSIM 0.938  PSNR38.752 SSIM 0.962

B

SSIM 0.942

Samplel

SampleZ
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PSNR 32.446 SSIM 0.941  PSNR 37.589
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DATA FROM 2D SENSOR
1

SSIM 0.973

SSIM 0585
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Fig. 9. Quantitative comparison on resolution-enhancement
results by USRNet and the proposed. Error maps are exhibited
to assess the discrepancies between the super-resolved
outcomes and the ground truth.

TABLE I
QUANTITATIVE ANALYSIS (PSNR/SSIM) ACROSS FIVE
SAMPLES RECORDED BY THE MEASURING SYSTEM

USRNet The Proposed
Samplel 35.740/0.953 38.931/0.970
Sample2 32.849/0.956 35.554/0.977
Sample3 32.296/0.924 36.742/0.973
Sample4 29.972/0.940 33.697/0.976
Sample5 33.301/0.975 36.722/0.981

Based on the autostercoscopy theory, digital refocusing is
able to reconstruct a series of image slices with various focus
depths so that the height of the measured sample is able to be
detected. In terms of the detection of the focus region so as to
determine the desired depth information, a Sobel filter is used
as the focus measure operator. A curve of the focus levels is



> Ms. No. TIM-24-03452 <

obtained, and the peak value of the curve can be detected. Fig.
11 presents the digitally refocused images from low-resolution
data alongside those obtained from the high-resolution data
acquired by the proposed method, permitting a qualitative
evaluation of the enhancements in the refocused images. The
corresponding edge detection results, which are used for the
identification of focus points, are displayed next to the local
enlargements of the refocused images, vividly demonstrating
the improvements in the focus detection process achieved by
the high-resolution data.

Bilinear ~ USRNet Proposed Bilinear USRNet Proposed

il iy

Fig. 10. Qualitative comparison on resolution-enhancement
results using various methods, including Bilinear, USRNet, and
the proposed. Local Enlargements are presented additional to
evaluate the enhancement for the details

Fig. 11 also includes local enlargements of the scenes,
demonstrating that the proposed method achieves superior
visual sharpness for high-frequency information. It is clear that
the proposed method excels in enhancing high-frequency
signals, typically the edges or key points of the measured
sample, which are crucial for depth estimation in the shape-
from-focus process. Enhancing these high-frequency signals
aids in the accuracy of focus measurement on the refocused
image stack, ensuring that corresponding points are detected at
the correct depth plane.

Fig. 12 shows a comparison between the conventional
single-frame method and the proposed multi-frame resolution-
enhanced deep-learning method through the all-in-focus image
generated during shape from focus, the depth estimation results,
and the point clouds, which vividly verify the resolution
enhancement of the proposed method. A measurement result
from a commercial measurement product — Zygo Nexview
Optical profiler is presented as the reference. The resolution of
each EI both in lateral and axial directions is enhanced by 4
folds. Disparity information is extracted from the stack of
refocused images. For example, the focusing of the top and
bottom surfaces in the refocused images shown in Fig. 12 (a)
and (b) facilitates the determination of the depth of points
located on these two surfaces. Subsequent to this, depth
reconstruction and refinement are executed in accordance with
the process shown in Fig. 6. For evaluative purposes, depth
maps derived from both low-resolution and high-resolution

data, along with their respective three-dimensional point
clouds, are exhibited. Beyond the increased density of points
afforded by multi-frame high-resolution data, the defects
present in the low-resolution data are mitigated by the proposed
multi-frame enhancement technique.

(a) Refocused () LR (c) LREdges  (d} HR

(¢) HR Edges

a7

Fig. 11. Digital refocused results from low-resolution (LR) and
high-resolution (LR) data, alongside their edge detection
results, which ascertain the accuracy of the shape-from-focus
method. (a) Refocused images. (b) Refocused images from the
LR data. (c) Edge detection results of (b). (d) Refocused images
from the multi-frame HR data. (e) Edge detection results of (d).

Fig. 13 shows the error maps analyzed by the iterative
closest point (ICP) method which compares measured data
acquired via repeated measurements. The repeatability of the
proposed method displays better performance in terms of the
standard deviation of 10 repeated measurements. However, it is
still found that the deviation at the edges of the surface profile
is much larger in both the single-frame and multi-frame
systems. This could be resulted from the capability of the focus
measurement operator which is sensitive to high-frequency
signals. These signals may not only be edges and key points but
could also be noise. Hence, further investigations and research
for robust and adaptive focus measurement operators can
further benefit the improvement of depth estimation accuracy
for autostereoscopic measurement.

V. CONCLUSION

In this paper, the development of a multi-frame resolution-
enhanced autostereoscopic system for on-machine 3D surface
measurement is presented. The system takes advantage of the
machine vibration together with a multi-frame resolution-
enhanced deep-learning model to acquire multiple frames of the
target surface profile with offsets to enhance the resolution and
accuracy of on-machine 3D surface measurement. The results
of performance evaluation show that the proposed system
achieves higher measurement accuracy than the conventional
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single-frame system in repeated measurements. The proposed
method also improves the intensity of point cloud data with the
additional improvement of measurement accuracy and
robustness. Future work is suggested to concentrate on the
focus detection method, which typically plays a crucial role in
the surface reconstruction process utilizing shape-from-focus
techniques. Additionally, devising a more robust method for
directly retrieving depth information from autostereoscopic
signals may also be a potential direction.
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Fig. 12. Comparison of surface reconstruction results from
single-frame (SF) system and multi-frame (MF) system. (a) A
refocused image with the top surface in focus. (b) A refocused
image with the bottom surface in focus. (¢) The reference
surface profile. (d) The depth map reconstructed by the SF
system using low-resolution data. (¢) The refined result of (d).
(f) The point cloud generated by the SF system. (g) The refined
result of (f). (h) The depth map reconstructed by the MF system
using high-resolution data. (i) The refined result of (h). (j) The
point cloud produced by the MF system. (k) The refined result

of (j).

(a) Standard deviation of
the single-frame method

(b) Standard deviation of
the multi-frame method

mean = 1.531 um
Fig. 13. Standard deviation of repeated measurements using (a)
the traditional single-frame method and (b) proposed multi-
frame resolution-enhanced method.

mean = 1.378 pm
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