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Multi-frame Resolution-enhanced Autostereoscopic 
System for On-machine Three-dimensional Surface 

Metrology 
Sanshan Gao, *Da Li, and *Chi Fai Cheung, Member, IEEE 

Abstract—This paper presents a multi-frame resolution-
enhanced autostereoscopic system for the on-machine 
measurement of three-dimensional surfaces. It takes advantage of 
the vibration from the machine tool during the on-machine 
measurement process to acquire multiple frames of the target 
surface with offsets, thereby achieving resolution enhancement. A 
multi-frame resolution-enhanced deep-learning model is 
developed to generate resolution-enhanced raw elemental images 
which significantly improve the measurement resolution of the 
system. The performance of the system is evaluated by 
experiments and the results show that the spatial resolution of the 
measurement data is enhanced by four times with improved 
measurement accuracy. 

Index Terms—surface metrology, autostereoscopy, deep learning. 

I. INTRODUCTION
HE use of three-dimensional surfaces in the 
development of products to realize specifically designed 
optical and mechanical functions has become more 

widespread. Applications can be found in various industries 
such as biomedical [1], optics [2], aerospace [3], energy, etc. 
The increasing geometrical complexity of 3D surfaces creates 
considerable challenges in regard to their measurement, 
particularly for on-machine measurement. Surface dimensional 
measurement techniques encompass contact methods and 
noncontact methods. Contact profilometers utilize a stylus [4] 
that traverses the surface in vertical and lateral motions, thereby 
capturing the distance between points and the contact force 
exerted, ensuring accurate and precise measurements. To 
enhance resolution, especially for micro-structured surfaces, 
finer tips have been developed [5]. Zhang et al. [6] presented a 
smart sampling strategy for a touch-trigger on-machine probe 
to enhance the identification capability regarding defect areas. 
The strategy determines an optimum distribution of sample 
points and incorporates supplementary sampling in regions with 
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defects. Zhu et al. [7] incorporated a tracking head based on 
scanning tunneling microscopy, a high-aspect ratio probe, and 
multi-axis moving stages in order to enhance the accuracy of 
on-machine measurements. Although various high-precision 
on-machine measurement systems have been proposed, their 
performance is influenced by the machine kinematic errors and 
susceptible to machine vibration [8]. Nonetheless, contact 
profilometers are limited by their time-consuming data 
acquisition process and the potential for surface damage due to 
the contact nature of the probe, particularly on soft or delicate 
materials. In contrast, non-contact profilometers, which are 
predominantly optical-based, have been the focus of extensive 
research, employing techniques such as interferometry [9], 
deflectometry [10], structured light [11], confocal microscopy 
[12], etc. The advantage of non-contact profilometers lies in 
their ability to measure surfaces without exerting additional 
force or causing any effects on the surfaces. Noncontact 
methods are more flexible to implement and require less time 
consumption and system complexity, especially for small 
measured parts with microstructures. 

Autostereoscopic 3D surface metrology based on the light 
field theory is an emerging noncontact surface detection 
technology that utilizes a micro-lens (MLA) array that is 
incorporated into a single-lens imaging system to capture the 
raw 3D information of the measured surface in a single 
snapshot. This enables faster data acquisition for the on-
machine measurement and real-time inspection. A real-time 
inspection using light field microscopy was achieved. This was 
made by transforming light-fields back into depth information, 
with the assistance of a view-channel-depth machine learning 
network [13]. A semantic segmentation light-field system was 
developed, by utilizing an end-to-end convolutional neural 
network [14] which efficiently extracts angular-spatial features 
from light field data. The system's ability to perform efficient 
semantic segmentation enhances the potential applications of 
light field technologies.  
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To improve the autostereoscopic measurement 
performance, a system-associated direct extraction of disparity 
information (DEDI) method [15] is used for 3D surface 
reconstruction, where disparity patterns based on the parallax 
information of the recorded data were presented to enhance the 
accuracy of depth estimation, providing a turnkey solution for 
the on-machine microstructure measurement of 3D surfaces. A 
calibration model, grounded in epipolar space theory, was 
presented [16] to ascertain the relationship between measured 
points and epipolar-space parameters for depth reconstruction. 
A method based on the point spread function [17] was 
developed to ascertain the spatial location of the MLA by 
analyzing the overlap of elemental images, thereby achieving 
more precise digital refocusing to enhance measurement 
accuracy. To augment the accuracy of disparity retrieval and 
improve the quality of surface reconstruction, a learning-based 
method [18] was proposed to achieve adaptive focus volume 
aggregation from digitally refocused data. 

However, the resolution of this measurement system has 
been limited due to the division of the image sensor's pixels into 
multiple small areas by the numerous small apertures of the 
MLA. Additionally, these segmented small areas of pixels need 
to undergo a matching process and screening process before the 
final 3D point cloud of the target surface can be generated. In 
other words, the final resolution of the measurement system is 
directly influenced by the resolution of each segmented small 
area. The segmentation caused by the MLA undoubtedly has an 
adverse impact on the final resolution of the measurement 
system. Research aimed at enhancing the angular resolution of 
autostereoscopic data has been explored in [19, 20], including 
resolution enhancement methods for plenoptic cameras and a 
semi-supervised learning paradigm to improve data efficiency. 
Due to the superiority of deep learning in image processing, 
various learning models for resolution enhancement of blurry, 
noisy, and low-quality images have emerged. These models are 
implemented using data-driven, model-based, or unsupervised 
approaches. However, these methods may tend to produce finer 
artifacts to visually appeal to human perception, which could 
result in inaccurate details for precise measurements. As a 
result, the development of an effective method for accurate 
spatial-resolution recovery of autostereoscopic data is essential 
to further improve measurement performance. 

This study introduces a multi-frame resolution-enhanced 
autostereoscopic system designed to enhance the resolution of 
measurement systems for on-machine measurement of 3D 
surfaces. The system capitalizes on the inevitable vibrations of 
machine tools, which can induce local blurring in images 
captured during the on-machine process, by utilizing these 
subtle displacements to acquire multiple frames of the target 
surface with slight offsets within a brief timeframe. After the 
enhancement process, the measurement data obtained are of 
high resolution, featuring clear and sharp details. This 
improvement enhances the precision and accuracy of the 
autostereoscopic measurements. The multi-frame resolution 
enhancement is achieved by utilizing the sub-pixel information 
contained in different frames with slight displacement, along 

with a deep learning-based resolution-enhanced network and 
training process. The processed resolution-enhanced image can 
reconstruct the 3D surface with significant improvements in 
both lateral and axial resolution. The performance of the 
proposed method and system is evaluated through experiments 
conducted on a sample with a micro-structured surface. A 
learning-based unfolding super-resolution network (USRNet) 
[21] is employed as a comparison benchmark in the experiment, 
owing to its effective enhancement of low-resolution images 
and its commendable generalizability. The proposed method is 
found to be able to enhance spatial resolution and improve 
measurement accuracy. 

II. MULTI-FRAME RESOLUTION-ENHANCED AUTOSTEREOSCOPIC 
MEASUREMENT 

Fig. 1 is a schematic diagram of the system of multi-frame 
resolution-enhanced autostereoscopy for on-machine 3D 
surface measurement, including the recording and 
reconstruction processes. Different spatial locations of the 
elemental lenses in an MLA cause small differences in viewing 
angles in the elemental images received on the image sensor 
(known as disparities). The disparity information can be used to 
calculate the 3D information about the target surface and this is 
the reconstruction process. A quantitative expression of a 
specific point’s disparity is determined based on the parameters 
of the system setup including the pixel size of the image sensor, 
the pitch of the MLA, the gap (the distance between the MLA 
and the image sensor), and the dimensional variation along the 
depth direction.  

 
Fig. 1. Working principle of multi-frame resolution-enhanced 
autostereoscopic metrology for on-machine 3D surface 
measurement. 
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This quantitative disparity information, both in the lateral 
and depth directions, is transferred from the recording process 
to the reconstruction process. The corresponding points, which 
are the image points from different EIs, originate from an 
identical single object point in the object space (red points in 
Fig. 1) and satisfy the quantitative relationship between 
disparity information and system parameters. Corresponding 
points need to be accurately chosen based on the match of pixel 
information and its neighbourhood in EIs and form the 3D 
digital reconstruction at corresponding spatial locations. The 
reconstructed and object spaces are symmetrical both in the 
lateral and axial directions according to the reversibility of 
optical rays. 

Since vibration from the machine tool between the target 
surfaces and the measurement system is unavoidable during the 
on-machine measurement process, such vibration causes a 
small movement at the micrometer scale towards the image 
sensors so that each of the measurement frames records a 
composition of different optical signals as shown in Fig. 1. Due 
to the finite sampling rate of the image sensor, the subtle 
displacement resulting from vibration may cause local blurring 
in the recorded images. Given that each frame represents a 
down-sampled result of the recorded scene, points 
corresponding to the same object point across different frames, 
along with their neighboring pixels, exhibit distinct grayscale 
values and pixel gradients. These local features and subpixel 
information can be used to compensate for the low-resolution 
signals and reconstruct high-resolution data. In this sense, high-
resolution (HR) images can be reconstructed by analyzing and 
processing the different pixel representations of multiple 
frames. 

As illustrated in Fig. 2, two different frames are recorded for 
the same object but with a slight displacement. The pixel 
distribution of the two frames, which refers to the pixel values 
of the target surfaces, differs when the object appears in 
different positions on the image sensor. After registration and 
fusion, the redundant pixel information is combined, forming a 
new pixel distribution in a sub-pixel space. The new pixel 
distribution is processed in the reconstruction process. A high-
resolution frame with sharp edge information and details is 
generated from multiple frames. 
 

 
Fig. 2. Multi-frame resolution-enhancement process. 
 

The two key issues to address in the multi-frame resolution-
enhancement problem are registration and reconstruction. 
Conventional methods usually rely on a priori knowledge to 
extract features from the multiple frames and achieve 
registration based on these features. Fusion is accomplished 
through a series of designed kernels based on experiments or 
expert experiences. However, the measurement images often 

contain various types of noise, such as Gaussian noise, salt and 
pepper noise, and smudge noise, caused by factors like 
illumination, exposure, condition of the lenses, etc. As a result, 
conventional methods often struggle to extract effective 
features from the images and reconstruct high-resolution 
images with high robustness. It is inspiring to utilize deep 
learning to generate resolution-enhanced EIs by accurately 
registering and reconstructing high-resolution images. To this 
end, a multi-frame resolution-enhanced model based on a deep-
learning network is developed to super-resolve low-resolution 
(LR) measurement image stacks into high-resolution images 
with denoising and clear details.  

III. MULTI-FRAME RESOLUTION-ENHANCED DEEP LEARNING 
MODEL 

To generate resolution-enhanced EIs based on multiple 
frames of low-resolution EIs, a deep learning network is 
developed. A supervised training process is used to generate 
resolution-enhanced images based on image data collected 
under various conditions, light intensity, recording device, etc. 

 

A. Model framework 
As shown in Fig. 3, the proposed multi-frame resolution-

enhanced deep learning model consists of four components: a 
single-frame resolution-enhanced network, a registration 
network, an auxiliary-frame resolution-enhanced network, and 
a series of convolutional layers for post-processing. Fig. 3 
shows a schematic diagram of the model. The captured multiple 
frames are split into a base frame, and auxiliary frames. The 
output of the high-resolution image has the same geometrical 
position as the base frame and the auxiliary frames are used to 
provide redundant sub-pixel information. The base frame is first 
up-sampled using Bilinear interpolation so that the spatial 
dimension is increased to a desired value. The up-sampled base 
frame is then input to the single-frame resolution-enhanced 
network, where the input frame is converted into a stack of 
high-dimensional single-frame features through the processing 
of the convolutional layers and activation functions. These 
features are used for subsequent processing. All the frames, 
including the base frame and the auxiliary frames, are input into 
the registration network for alignment. Although the 
displacement detection and registration can also be achieved by 
traditional methods such as Scale Invariant Feature Transform 
(SIFT) [22], these methods are more sensitive to the noises that 
are unavoidable during on-machine measurement due to 
various illumination, vibration, and machining environment. In 
addition, the registration network can realize an end-to-end 
training and inference fashion, eliminating the need for extra 
preprocessing of the raw measurement data. 

Displacement between frames may lead to blur and image 
artifacts during the convolutional operation, as points 
corresponding to the same object may possess different 
coordinates across multiple frames. Different views of the same 
object point may not align within a single convolutional kernel, 
resulting in image artifacts and blurred regions, as shown in Fig. 
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4. However, through translating, these points can be effectively 
aligned within a unified kernel window, leading to the 
noticeable elimination of image artifacts. Consequently, an 
affine transformation between these frames is essential to 
mitigate the effects during convolution. Since these frames only 
undergo slight displacement, it is assumed that only translation 
occurs. According to the affine transformation matrix, the 
registration process is formulated as: 

 

1 0
0 1

1 0 0 1 1

Ai x Ai

Ai y Ai

x x
y y
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θ

     
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

  (1) 

where ( ),Ai AiI x y  is one of the auxiliary frames and ( ),Ai AiI x y   
is the corresponding registered frame which has been aligned 
with the base frame. xθ  and yθ  are the translation parameters 
in the x and y directions, respectively. The output of the 

registration network is the translation parameters ( ),x yθ θ . The 

translation distribution predicted by the registration network 
aligns with the pixel displacement in the training data. Random 
translations can be introduced into the training data to simulate 
various vibration amplitudes for different devices. 
 

 
Fig. 3. Multi-frame resolution-enhanced deep-learning model. 
 

To effectively reduce the dimensionality of the input frames 
while retaining key information, max-pooling filters are used in 
the registration network. Fully connected layers are followed in 
the convolutional layers to realize the prediction of the 

translation parameters. The Tanh (hyperbolic tangent) 
activation function is used to compress the output translation 
parameters within the range of [-1, 1]. The output auxiliary 
frames are aligned with the base frame through registration. 
Similar to the single-frame super-resolution route mentioned 
earlier, the aligned auxiliary frames are up-sampled and input 
into the auxiliary-frame resolution-enhanced network. 
Consequently, these auxiliary frames are converted into a stack 
of multi-frame features. These two stacks of features, namely 
the single-frame features and the multi-frame features, are 
merged and then input into the post-processing convolutional 
layers. After the post-processing layers, a high-resolution image 
is reconstructed. All the aforementioned sub-networks utilize a 
residual connection architecture (ResB in Fig. 3) to prevent 
gradient vanishing. 
 

 
Fig. 4. Impact of image translating to the convolution. 
 

In the proposed convolutional layers, a kernel size of 3 is 
employed to reduce the number of network weights. Images are 
downscaled to a 64×64 resolution prior to input into the 
registration network, ensuring consistent predictions of the 
translating parameters. Given that the registration network's 
output is a relative translation value, the reduction in image 
dimensions does not impact the efficacy of the desired affine 
transformation. Except for the registration network, which uses 
Rectified Linear Unit (ReLU) and Tanh activation functions, all 
the other sub-networks employ Leaky ReLU as their activation 
functions. Research [23, 24] has shown the superiority of Leaky 
ReLU for super-resolution applications. 

 

B. Model training 
The behaviour of the neural network is invariably influenced 

by the distributions of the input and ground truth; thus, 
denoising is facilitated by introducing noise into the raw 
measurement data, thereby transforming the data distribution 
into a noisy one. Subsequently, the network is trained to 
estimate the maximum a posteriori probability for the retrieval 
of high-resolution information from the data with noise. To this 
end, a supervised training process is used based on image data 
collected under various conditions, light intensity, recording 
device, etc. The training data are first down-sampled as the 
input, and the raw data are used as ground truth. To achieve a 
clearer reconstruction, noises are added on the input data to 
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simulate the noises in realistic environments. Hence, the 
objective of the proposed multi-frame resolution-enhanced 
network is not only to recover the high-resolution information 
but also to achieve denoising. 

The loss function is comprised of three parts: reconstruction 
loss, gradient loss, and perceptual loss. Reconstruction loss 
measures the errors between the reconstructed high-resolution 
images and the corresponding ground truth using mean absolute 
errors as the criterion. To preserve the edge information in the 
reconstructed images, the gradient loss compares the gradients 
of the ground truth and the reconstructed images in the 
horizontal and vertical directions. The resulting errors are used 
to calculate the gradient loss. The perceptual loss [25] 
quantifies the feature distance between the ground truth and the 
reconstructed images. This is done by extracting features using 
a pre-trained VGG network [26], which is a widely-used trained 
network developed by the Visual Geometry Group at the 
University of Oxford. The total loss function is formulated as: 
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where HRI  is the high-resolution images reconstructed by the 
proposed network, Î  is the corresponding ground truth, and 

( )φ ⋅  denotes the VGG network. In addition, the training data 
are augmented by rotation, flipping, and random cropping to 
realize thorough training of the proposed network. 

 

C. Implementation details 
In this work, the measurement images are super-resolved 

and up-scaled 4-fold. The number of total input frames is 4. The 
single-image resolution-enhanced network and the auxiliary-
frame resolution-enhanced network both contained two residual 
blocks. The post-processing layers contained two residual 
blocks.  

The training data are collected by a 2D imaging system and 
a Lytro Illum commercial light-field camera. Since a single EI 
captured by the proposed measurement system has a limited 
number of pixels, the data obtained by the Lytro Illum camera 
and the 2D system with higher resolution can provide much 
richer pixels to achieve more effective training of the 
resolution-enhanced model that learns the mapping function 
from the low-resolution images to high-resolution images. 
Multiple scenes that include various samples such as sphere 
surfaces, machining parts, bonding wires, and other objects 
containing complex surfaces are captured under different 
illumination conditions for the construction of the training 
dataset. Each scene contains 4 frames with slight displacement. 
For more efficient learning using the limited measurement data, 
the up-scale factor is set to 2 during training. The well-trained 
model is employed to enhance the resolution by 4 times during 
inference. Data augmentation is conducted by rotating the 
training data by 45, 90, 135, 180, 225, 270, and 315 degrees, 
flipping them from left to right or from up to down, and 
cropping the data into random-size patches.  

Due to the autostereoscopic system's constraints in 
illumination and recording conditions, the raw data utilized as 
ground truth for network training often encompass noise and 
blur, which obstruct the network's ability to super-resolve 
sharper and clearer details. Moreover, acquiring high-quality, 
high-resolution autostereoscopic data is challenging. In 
response to this, the training process incorporates various noise 
types, including Gaussian noise, local mosaic processing, and 
local blurring, into the recorded data, enabling the network to 
learn the recovery of finer details from these noised data. This 
noise is applied randomly across different regions and at 
varying levels, further augmenting the finite dataset. However, 
introducing additional noise alters the original distribution of 
the autostereoscopic data, potentially resulting in the super-
resolved data containing extraneous image artifacts. To 
mitigate this, finetuning is conducted to adjust the network 
weights on the original dataset without introducing noise. In 
other words, the finetuning dataset contains a reduced number 
of training samples, attributable to the omission of 
augmentation, but maintains the same distribution as the raw 
autostereoscopic data. The perceptual loss's penalty coefficient 
is set to 0.01 throughout finetuning, directing the network's 
focus toward the pixel-level discrepancies between the 
recovered results and the ground truth to minimize the 
emergence of unintended artifacts. A comparative analysis 
presented in Fig. 5 involves the network trained on augmented 
noisy data without finetuning, the network directly trained on 
the original dataset, and the finetuned network. Although 
training directly on the dataset without noise augmentation can 
yield similar or even higher PSNR and SSIM metrics, the 
resulting images tend to exhibit blurred edges and may even 
display a sawtooth effect. The model trained on noisy data 
without finetuning is prone to generating more artifacts and 
noise due to the misidentification of noise as salient features. In 
contrast, the images produced after finetuning possess sharper 
and clearer edges, preserving the original structure of the 
surfaces. 

The input patch size is set to 128. The model is implemented 
using PyTorch and trained using NVIDIA RTX 2080 GPUs. 
The Adam optimizer [27] is used during backpropagation, and 
the initial learning rate is set to 410− . The learning rate decays 
every 10 training epochs. 

 

D. Surface reconstruction 
The depth estimation process is based on the direct 

extraction of disparity information method [15], disparity 
patterns, and shape from focus via digital refocusing [28], as 
shown in Fig. 6. Digital refocusing is first performed using the 
recorded autostereoscopic data, allowing for the acquisition of 
a stack of refocused images. The corresponding points should 
be focused at a specific depth plane, which is equivalent to 
finding focus regions in the refocused image stack. A focus 
measure operator is used to detect focus points in every 
refocused image, resulting in the obtainment of a focus volume. 
After smoothing and denoising the focus volume, a preliminary 
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depth map is estimated using the winner-take-all strategy.  An 
all-in-focus image can be obtained based on the preliminary 
estimation. To further refine the estimated depth, guided 
filtering is applied to the preliminary estimation based on the 
all-in-focus image. Outlier points caused by incorrect 
estimation, such as small locally convex or concave regions in 
the depth map, are further removed using pre-defined 
thresholds based on the assumption of continuous surfaces. As 
a result, desired depth maps, point clouds, and the 
corresponding all-in-focus images can be acquired from the 
low-resolution (LR) or high-resolution (HR) autostereoscopic 
measurement data. 
 

 
Fig. 5. An ablation study for the evaluation of the finetuning 
improvement. (a) is the reference scenes super-resolved by 4 
folds, and (b) ~ (e) are local enlargements extracted from the 
results of the Bilinear interpolation, the model trained on the 
noised dataset without finetuning, the model trained directly on 
the original dataset, and the model initially trained on the noised 
dataset then finetuned on the original dataset, respectively. 
 

 
Fig. 6. Framework of the surface reconstruction process from 
the autostereoscopic measurement data. 

IV. EXPERIMENTS 

A. System setup for on-machine measurement 
As shown in Fig. 7, a prototype of the multi-frame 

resolution-enhanced autostereoscopic 3D surface measurement 
system is built to perform on-machine 3D surface measurement. 

The whole system is mounted on the motion stage of a Moore 
Nanotech 350FG ultra-precision machine. The overall field of 
view (FOV) of the measurement system is 625 μm diagonally 
based on the offline calibration of the system in terms of the 
overall magnification of the objective lens and zoom lens, and 
the actual used image sensor size.  

To evaluate the accuracy and resolution of the 
autostereoscopic system, a series of measurement experiments 
is conducted on a 3D micro-structured sample. The sample is 
mounted on the air bearing work spindle of the machine. 

  

 
Fig. 7. On-machine measurement through a multi-frame 
resolution-enhanced autostereoscopic 3D surface measurement 
system. 
 

Multiple frames of the EIs of the sample with offsets of 
pixels are captured during the on-machine measurement 
process. The offsets among the multiple collected frames are 
analyzed based on pixel values and greyscale projection. The 
results show that the sub-pixel level offsets between the 
different frames happened during the on-machine measurement 
which qualifies for the proposed multi-frame resolution-
enhanced method. 

To investigate the frame jitter caused by the vibration of the 
machine tool, the SIFT descriptor is used to determine the pixel-
level shifting among multiple continuous frames captured 
during the measurement. The first frame is used as the 
reference, and the other frames are matched with the reference 
frame to detect small displacements. Key points of the reference 
frame and the other frames are detected and computed using the 
SIFT descriptor and detector. The matching is achieved using 
the FLANN (Fast Library for Approximate Nearest Neighbors) 
method. Since the SIFT detector can achieve detection on a sub-
pixel scale, the sub-pixel-level distances between the matched 
points can be determined, thus identifying the frame jitter. To 
decrease the effects resulting from inaccurate matching, a total 
of 500 groups of matched points from the reference frame and 
the detected frame are used for analysis. To eliminate the effects 
resulting from noise, the same displacement detection is 
performed on noised data, which are generated by adding extra 
Gaussian noise to the reference frame. The average grayscale 
difference per pixel between the noised data and the reference 
data is on the same scale as the grayscale difference among the 
multi-frame data, ensuring the validity of the comparison. The 
difference is 0.950 per pixel between the noised data and the 
reference, and 0.931 per pixel between the multiple frames. The 
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results of the multi-frame data and the noised data are shown in 
Fig. 8, where a total of 5 frames, excluding the reference frame, 
are involved. The red lines represent the pixel displacement of 
the noised data, and the blue lines represent the pixel 
displacement of the multi-frames. The results demonstrate that 
sub-pixel displacement occurs during the on-machine 
measuring process. Hence, the on-machine measurement data 
adhere to the aforementioned multi-frame super-resolution 
assumption and can achieve resolution enhancement on a sub-
pixel level. 

B. Experimental analysis 
Fig. 9 provides a quantitative comparison between the 

learning-based super-resolution method USRNet [21] and the 
proposed method. The original images, which serve as ground 
truth, are downscaled by a factor of two for the resolution 
enhancement experiments. The figure displays the super-
resolved outputs alongside their respective error maps. The 
Peak Signal to Noise Ratio (PSNR) and the Structural 
Similarity Index Measure (SSIM) serve as the evaluation 
metrics. Five samples recorded by the autostereoscopic system 
are analyzed, with the average metrics for all data presented in 
Table 1. Additionally, data captured by a two-dimensional 
vision device under vibration are utilized to validate the 
proposed method's effectiveness. The results clearly indicate 
that the proposed method outperforms in terms of higher PSNR 
and SSIM scores across all tested scenes. 
 

 
Fig. 8. Jitter analysis of the multiple measurement frames 
captured during the on-machine process (blue lines) and the 
noised data generated by imposing Gaussian noises (red lines). 
 

Since the goal of resolution enhancement is to strengthen the 
feature points on the measured surfaces for more precise 
matching, evaluating the outcomes solely based on PSNR and 
SSIM is insufficient. A qualitative comparison among Bilinear, 
USRNet, and the proposed method is illustrated in Fig. 10, 
where the input data are expanded by a factor of four. Fig. 10 
also includes local enlargements of the scenes, demonstrating 
that the proposed method achieves superior visual sharpness for 
high-frequency information. It is clear that the proposed method 
excels in enhancing high-frequency signals, typically the edges 
or key points of the measured sample, which are crucial for 
depth estimation in the shape-from-focus process. Enhancing 

these high-frequency signals aids in the accuracy of focus 
measurement on the refocused image stack, ensuring that 
corresponding points are detected at the correct depth plane. 
 
 
 

 
Fig. 9. Quantitative comparison on resolution-enhancement 
results by USRNet and the proposed. Error maps are exhibited 
to assess the discrepancies between the super-resolved 
outcomes and the ground truth. 
 

TABLE I 
QUANTITATIVE ANALYSIS (PSNR/SSIM) ACROSS FIVE 

SAMPLES RECORDED BY THE MEASURING SYSTEM 
 USRNet The Proposed 
Sample1 35.740/0.953 38.931/0.970 
Sample2 32.849/0.956 35.554/0.977 
Sample3 32.296/0.924 36.742/0.973 
Sample4 29.972/0.940 33.697/0.976 
Sample5 33.301/0.975 36.722/0.981 

 
Based on the autostereoscopy theory, digital refocusing is 

able to reconstruct a series of image slices with various focus 
depths so that the height of the measured sample is able to be 
detected. In terms of the detection of the focus region so as to 
determine the desired depth information, a Sobel filter is used 
as the focus measure operator. A curve of the focus levels is 
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obtained, and the peak value of the curve can be detected. Fig. 
11 presents the digitally refocused images from low-resolution 
data alongside those obtained from the high-resolution data 
acquired by the proposed method, permitting a qualitative 
evaluation of the enhancements in the refocused images. The 
corresponding edge detection results, which are used for the 
identification of focus points, are displayed next to the local 
enlargements of the refocused images, vividly demonstrating 
the improvements in the focus detection process achieved by 
the high-resolution data. 
 

 
Fig. 10. Qualitative comparison on resolution-enhancement 
results using various methods, including Bilinear, USRNet, and 
the proposed. Local Enlargements are presented additional to 
evaluate the enhancement for the details 
 

Fig. 11 also includes local enlargements of the scenes, 
demonstrating that the proposed method achieves superior 
visual sharpness for high-frequency information. It is clear that 
the proposed method excels in enhancing high-frequency 
signals, typically the edges or key points of the measured 
sample, which are crucial for depth estimation in the shape-
from-focus process. Enhancing these high-frequency signals 
aids in the accuracy of focus measurement on the refocused 
image stack, ensuring that corresponding points are detected at 
the correct depth plane. 

Fig. 12 shows a comparison between the conventional 
single-frame method and the proposed multi-frame resolution-
enhanced deep-learning method through the all-in-focus image 
generated during shape from focus, the depth estimation results, 
and the point clouds, which vividly verify the resolution 
enhancement of the proposed method. A measurement result 
from a commercial measurement product – Zygo Nexview 
Optical profiler is presented as the reference. The resolution of 
each EI both in lateral and axial directions is enhanced by 4 
folds. Disparity information is extracted from the stack of 
refocused images. For example, the focusing of the top and 
bottom surfaces in the refocused images shown in Fig. 12 (a) 
and (b) facilitates the determination of the depth of points 
located on these two surfaces. Subsequent to this, depth 
reconstruction and refinement are executed in accordance with 
the process shown in Fig. 6. For evaluative purposes, depth 
maps derived from both low-resolution and high-resolution 

data, along with their respective three-dimensional point 
clouds, are exhibited. Beyond the increased density of points 
afforded by multi-frame high-resolution data, the defects 
present in the low-resolution data are mitigated by the proposed 
multi-frame enhancement technique. 
 

 
Fig. 11. Digital refocused results from low-resolution (LR) and 
high-resolution (LR) data, alongside their edge detection 
results, which ascertain the accuracy of the shape-from-focus 
method. (a) Refocused images. (b) Refocused images from the 
LR data. (c) Edge detection results of (b). (d) Refocused images 
from the multi-frame HR data. (e) Edge detection results of (d). 
 

Fig. 13 shows the error maps analyzed by the iterative 
closest point (ICP) method which compares measured data 
acquired via repeated measurements. The repeatability of the 
proposed method displays better performance in terms of the 
standard deviation of 10 repeated measurements. However, it is 
still found that the deviation at the edges of the surface profile 
is much larger in both the single-frame and multi-frame 
systems. This could be resulted from the capability of the focus 
measurement operator which is sensitive to high-frequency 
signals. These signals may not only be edges and key points but 
could also be noise. Hence, further investigations and research 
for robust and adaptive focus measurement operators can 
further benefit the improvement of depth estimation accuracy 
for autostereoscopic measurement. 
 

V. CONCLUSION 
In this paper, the development of a multi-frame resolution-

enhanced autostereoscopic system for on-machine 3D surface 
measurement is presented. The system takes advantage of the 
machine vibration together with a multi-frame resolution-
enhanced deep-learning model to acquire multiple frames of the 
target surface profile with offsets to enhance the resolution and 
accuracy of on-machine 3D surface measurement. The results 
of performance evaluation show that the proposed system 
achieves higher measurement accuracy than the conventional 
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single-frame system in repeated measurements. The proposed 
method also improves the intensity of point cloud data with the 
additional improvement of measurement accuracy and 
robustness. Future work is suggested to concentrate on the 
focus detection method, which typically plays a crucial role in 
the surface reconstruction process utilizing shape-from-focus 
techniques. Additionally, devising a more robust method for 
directly retrieving depth information from autostereoscopic 
signals may also be a potential direction. 

 

 
Fig. 12. Comparison of surface reconstruction results from 
single-frame (SF) system and multi-frame (MF) system. (a) A 
refocused image with the top surface in focus. (b) A refocused 
image with the bottom surface in focus. (c) The reference 
surface profile. (d) The depth map reconstructed by the SF 
system using low-resolution data. (e) The refined result of (d). 
(f) The point cloud generated by the SF system. (g) The refined 
result of (f). (h) The depth map reconstructed by the MF system 
using high-resolution data. (i) The refined result of (h). (j) The 
point cloud produced by the MF system. (k) The refined result 
of (j).  
 

 
Fig. 13. Standard deviation of repeated measurements using (a) 
the traditional single-frame method and (b) proposed multi-
frame resolution-enhanced method. 
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