Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115172
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.contributorDepartment of Applied Mathematics-
dc.creatorYang, M-
dc.creatorGuan, X-
dc.creatorShi, M-
dc.creatorLi, B-
dc.creatorWei, C-
dc.creatorYiu, KFC-
dc.date.accessioned2025-09-15T02:22:41Z-
dc.date.available2025-09-15T02:22:41Z-
dc.identifier.urihttp://hdl.handle.net/10397/115172-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Yang, M., Guan, X., Shi, M., Li, B., Wei, C., & Yiu, K.-F. C. (2025). Distributed Model Predictive Formation Control for UAVs and Cooperative Capability Evaluation of Swarm. Drones, 9(5), 366 is available at https://doi.org/10.3390/drones9050366.en_US
dc.subjectCooperative capability evaluationen_US
dc.subjectDistributed model predictive control (DMPC)en_US
dc.subjectFormation controlen_US
dc.subjectUnmanned aerial vehicles (UAVs)en_US
dc.titleDistributed model predictive formation control for UAVs and cooperative capability evaluation of swarmen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume9-
dc.identifier.issue5-
dc.identifier.doi10.3390/drones9050366-
dcterms.abstractThis paper utilizes the distributed model predictive control (DMPC) method to investigate the formation control problem of unmanned aerial vehicles (UAVs) in the obstacle environment and establishes cooperative capability evaluation metrics of the swarm. Based on the DMPC approach, the formation cost function is constructed to adjust the relative positions and velocities of UAVs, ensuring the desired formation. Additionally, to address the obstacle avoidance problem in the formation, the obstacle avoidance function is designed to provide safe formation control in the obstacle environment. To evaluate the cooperative capability of UAVs, we design evaluation metrics from multiple dimensions to reflect the swarm’s cooperative capability. Finally, the simulation results show the effectiveness of the formation control method with obstacle avoidance and the applicability of the swarm’s cooperative capability evaluation metrics.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationDrones, May 2025, v. 9, no. 5, 366-
dcterms.isPartOfDrones-
dcterms.issued2025-05-
dc.identifier.scopus2-s2.0-105006787272-
dc.identifier.eissn2504-446X-
dc.identifier.artn366-
dc.description.validate202509 bcch-
dc.description.oaVersion or Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the National Natural Science Foundation of China under Grant U24B20156.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
drones-09-00366.pdf5.32 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version or Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.