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Abstract: This paper utilizes the distributed model predictive control (DMPC) method
to investigate the formation control problem of unmanned aerial vehicles (UAVs) in the
obstacle environment and establishes cooperative capability evaluation metrics of the
swarm. Based on the DMPC approach, the formation cost function is constructed to adjust
the relative positions and velocities of UAVs, ensuring the desired formation. Additionally,
to address the obstacle avoidance problem in the formation, the obstacle avoidance function
is designed to provide safe formation control in the obstacle environment. To evaluate the
cooperative capability of UAVs, we design evaluation metrics from multiple dimensions
to reflect the swarm’s cooperative capability. Finally, the simulation results show the
effectiveness of the formation control method with obstacle avoidance and the applicability
of the swarm’s cooperative capability evaluation metrics.

Keywords: unmanned aerial vehicles (UAVs); distributed model predictive control (DMPC);
formation control; cooperative capability evaluation

1. Introduction
In recent years, with the increasing complexity of tasks and the growing autonomy

of UAVs, UAVs have gained significant attention from researchers and are widely used
in applications such as target search, tracking, and surveillance [1–4]. Unlike a single
UAV, UAVs offer enhanced mission execution capabilities and adaptability in dynamic
environments. As a result, UAVs can efficiently tackle complex tasks by leveraging the
division of labor and cooperation, demonstrating promising application potential.

Formation flight is a key research area in the cooperation of UAVs, which allows UAVs
to improve overall fuel efficiency and enhance mission execution efficiency. Currently,
there are many methods for generating control input signals in formation control, such as
sliding mode control [5], backstepping control [6], and model predictive control (MPC) [7].
However, sliding mode and backstepping control methods struggle to simultaneously
handle multiple constraints, such as control input, velocity, and safety constraints. In
contrast, MPC effectively handles these constraints and dynamically adjusts control input
through rolling optimization strategies, making it widely applicable in real-world scenarios.

In a group of UAVs, each UAV interacts only with neighbors within its communication
range to acquire local information for decision-making. Due to the high computational
demands and vulnerability to failures, traditional centralized control methods struggle to
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satisfy practical requirements. To address these challenges, DMPC [8,9] combines the rolling
optimization and constraint handling capabilities of MPC with the scalability of distributed
control. In [10], a DMPC algorithm is designed for formation control in three-dimensional
(3D) space under performance constraints. To handle sensor faults and physical limitations,
a distributed sensor-tolerant MPC scheme is proposed in [11]. For the formation flight of
UAVs, a DMPC approach based on a leader-follower structure with unidirectional data
transmission is introduced in [12]. Additionally, the optimal formation control for UAVs
with a leader-follower architecture is investigated in [13], along with developing a two-layer
DMPC controller using neighbor information.

To ensure formation safety, collision avoidance should be integrated into the formation
controller design, enabling UAVs to avoid obstacles and prevent crashes. When detecting
obstacles, the UAVs should adjust their flight path accordingly to ensure timely and effective
avoidance. Therefore, realizing an efficient obstacle avoidance mechanism in formation
control for UAVs is very important. In [14], a virtual target guidance method is designed
and integrated into the DMPC framework to accomplish obstacle avoidance. In [15], an
adaptive differential evolution-based DMPC approach is proposed to enable UAVs to avoid
obstacles and maintain formation in a complex environment. Considering the potential
infeasibility in obstacle avoidance optimization, a relaxed obstacle avoidance constraint is
developed in [16]. By integrating the velocity obstacle method with synchronous DMPC,
the formation control problem of UAVs in the obstacle environment is addressed in [17].
In [18], collision-free functions are embedded in the cost function to ensure avoidance in a
3D environment.

Although introducing obstacle avoidance strategies can ensure the safe flight of UAVs,
excessively high collision avoidance weight may significantly impair their capability to
maintain formation during the avoidance process, even preventing them from returning to
the ideal formation. Therefore, it is essential to establish the swarm’s cooperative capability
evaluation metrics. These metrics reflect the transition of UAVs from disorder to stability
and allow for adjustments to the obstacle avoidance strategy based on evaluation results.
In [19], velocity correlation, internal collision risk, and obstacle collision risk are used to
evaluate the swarm’s capability. Cross-entropy is used in [20] as a metric to assess the
robustness of UAVs. In [21], the swarm cohesiveness and degree of alignment are used to
evaluate the swarm’s capability. In [22], polarization and differentiation metrics are used
to analyze the fission–fusion process of the UAVs. In many studies on formation control,
the tracking UAVs are expected to align their behavior with the tracked UAV. However,
most existing evaluation metrics overlook the influence of the tracked UAV and lack a
comprehensive, multi-dimensional design, leading to incomplete evaluation. Therefore,
the contributions of this paper are summarized as follows:

1. The main contribution is establishing a multi-dimensional evaluation framework that
integrates coordination, communication equilibrium, and safety metrics. The coordi-
nation metric explicitly considers the influence of the tracked UAV, communication
equilibrium is evaluated based on channel capacity, and safety is quantified using
a hierarchical scoring scheme. This framework offers a more comprehensive and
systematic approach to evaluating the swarm’s cooperative capability.

2. To validate the applicability of the proposed evaluation metrics, this paper introduces
a formation control algorithm based on the synchronous DMPC method. This method
allows each UAV to optimize its control strategy independently while maintaining the
overall formation. Moreover, collision avoidance is incorporated into the cost function
to ensure safe formation flight.

The rest of this paper is organized as follows: Section 2 introduces the preliminaries. In
Section 3, we derive the distributed model predictive controller. The swarm’s cooperative
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capability evaluation metrics are designed in Section 4. Section 5 presents numerical
simulation results, and Section 6 concludes this paper.

2. Preliminaries
2.1. Graph Theory

Consider a system of M + 1 UAVs in a 3D environment, consisting of one tracked
UAV and M tracking UAVs. The communication topology is expressed by the graph
G = {V , E ,A}, where V = {1, 2, . . . , M} represents the set of vertices and E ⊆ {(i, j) : i, j ∈
V , i ̸= j} is the edge set indicating the communication relations among the UAVs. The
adjacency matrix is given by A =

[
aij
]
∈ RM×M. If UAV i can receive the data from UAV

j, then (j, i) ∈ E and aij = 1; otherwise, aij = 0. The graph is undirected, meaning that if
aij = 1, then aji = 1. The set of neighbors of UAV i is denoted as Ni = {j ∈ V : (j, i) ∈ E},
and its in-degree is given by Ni = ∑j∈Ni

aij. B = {b1, b2, . . . , bM} ∈ RM×M is a diagonal
matrix. If UAV i can receive the data from the tracked UAV, then bi = 1; otherwise, bi = 0.

2.2. Model of UAV

The UAV i is modeled by the following discrete-time dynamics:pi(k + 1) = pi(k) + ∆Tvi(k) +
∆T2

2
ui(k)

vi(k + 1) = vi(k) + ∆Tui(k)
(1)

where pi(k) = [pi,1(k), pi,2(k), pi,3(k)]T and vi(k) = [vi,1(k), vi,2(k), vi,3(k)]T represent the
position and velocity of UAV i, respectively. ∆T is the sampling period, and ui(k) =

[ui,1(k), ui,2(k), ui,3(k)]T denotes the control input signal of UAV i.
In addition to (1), there are multiple constraints that each UAV needs to meet during

flight. The velocity constraint is defined as follows:

Vmin ≤ ||vi(l|k)|| ≤ Vmax (2)

where vi(l|k) is the predicted velocity of UAV i. Vmin and Vmax are the minimum and
maximum velocities allowed for the UAV.

The flight height constraint is designed as follows:

Ξmin ≤ pi,3(l|k) ≤ Ξmax (3)

where pi,3(l|k) is the predicted height of UAV i. Ξmin and Ξmax are the minimum and
maximum height allowed for the UAV.

The control input constraint is defined as follows:

Umin ≤ ui,r(l|k) ≤ Umax, r = 1, 2, 3 (4)

where ui(l|k) represents the predicted control input of UAV i. Umin and Umax represent the
minimum and maximum control inputs allowed for the UAV.

The inter-UAV collision avoidance constraint is designed as follows:

∥pi(l|k)− p̂j(l|k)∥ ≥ dc,saf (5)

where pi(l|k) and p̂j(l|k) are the predicted position of UAV i and UAV j, respectively. dc,saf

is the safety distance.
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2.3. Problem Formulation

For each UAV, the state is denoted as xi(k) =
[
pT

i (k), vT
i (k)

]T . Then, (1) can be
rewritten as

xi(k + 1) = Axi(k) + Bui(k) (6)

where A =

[
1 ∆T
0 1

]⊗
I3 and B =

[
∆T2

2
∆T

]⊗
I3.

The control goal is to propose a DMPC method that ensures the following:
(1) The control strategy ensures that the tracking UAVs maintain the desired relative

state concerning the tracked UAV, thereby achieving a stable formation.
(2) Tracking UAVs can effectively realize inter-UAV collision avoidance, simultane-

ously avoiding obstacles in the complex environment.
To achieve a stable formation, the formation error of UAV i is defined by considering

its deviation from the tracked UAV and its relative error concerning neighboring UAVs.
Therefore, the formation error of UAV i is defined as

zi(l|k) = bi(xi(l|k)− xr(l|k)− xir) +
M

∑
j=1

aij
(
xi(l|k)− xir − x̂j(l|k) + xjr

)
(7)

where zi(l|k) = [zT
i,p(l|k), zT

i,v(l|k)]T is the formation error, zi,p(l|k) represents the position

error, and zi,v(l|k) denotes the velocity error. xr(l|k) = [pT
r (l|k), vT

r (l|k)]T is the state of the
tracked UAV. pr(l|k) and vr(l|k) represent the position and velocity of the tracked UAV,
respectively. xir = [pT

ir, 0, 0, 0]T and xjr = [pT
jr, 0, 0, 0]T represent the desired relative states

of UAV i and j concerning the tracked UAV, respectively. Additionally, pir and pjr represent
the desired relative positions of UAV i and j concerning the tracked UAV, respectively.

Based on the optimal state x∗j (l + 1|k − 1) of the UAV j at k − 1 time instant, the
assumed state x̂j(l|k) is defined as

x̂j(l|k) =

x∗j (l + 1|k − 1), l ∈ [0, Np − 1]

Ax∗j (Np|k − 1), l = Np
(8)

where Np is the prediction horizon.
Additionally, we define the obstacle avoidance function for UAV i, which considers the

detection range of the UAV and the necessary safety distance from obstacles. The function
adjusts based on the distance between the UAV and the obstacles, increasing the avoidance
behavior as the UAV nears the obstacles.

Hih(l|k) = max
{

exp
(
−

dih(l|k)− do,saf

di,det − do,saf
+ 1
)
− 1, 0

}
(9)

where h denotes the hth obstacle, dih(l|k) =
∥∥[pi,1(l|k), pi,2(l|k)]T − pho

∥∥, and pho represents
the coordinate of the hth obstacle. The detection range of the ith UAV is denoted as di,det.
If the distance between the ith UAV and the hth obstacle exceeds di,det, the function value
is 0, meaning the UAV does not need to consider the obstacle. However, if the distance is
smaller than di,det, the function value increases rapidly.

3. Distributed Model Predictive Controller Design
This section outlines the application of the DMPC algorithm for UAVs. The control input

for each UAV is optimized by solving the constrained optimization problem synchronously.
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3.1. Cost Function

The cost function consists of two terms: formation error Ji,for(k) and obstacle avoidance
function Ji,obs(k). By combining these two factors, the cost function directs the UAV to
maintain the desired formation and avoid obstacles. Specifically, it is defined as

Ji(k) = Ji,for(k) + λi,1 Ji,obs(k) (10)

where λi,1 is the weighting coefficient for obstacle avoidance.
To minimize formation error and maintain the desired formation, the cost function for

each UAV i is defined as the cumulative predicted formation error over a given prediction
horizon Np. This approach guarantees a reduction in stage and terminal errors, enhancing
precision in formation control. Specifically, it is expressed as

Ji,for(k) =
Np−1

∑
l=0

∥zi(l|k)∥2 +
∥∥zi(Np|k)

∥∥2
Pi

(11)

where Pi is a symmetric positive definite matrix.
The obstacle avoidance function is formulated as the cumulative penalty associated

with obstacles over the prediction horizon to guarantee flight safety. This approach quan-
tifies collision risk and ensures that each UAV maintains a safe distance from potential
obstacles. Specifically, it is formulated as

Ji,obs(k) =
Np

∑
l=0

No

∑
h=1

Hih(l|k) (12)

where No indicates the number of obstacles.

3.2. Optimization Problem and Algorithm

The DMPC method utilizes receding horizon optimization to balance different objec-
tives, including formation error and obstacle avoidance. Specifically, the optimal control
input signal ui(l|k) of UAV i is derived by minimizing the following cost function:

min
ui(l|k)

Ji(k) (13)

subject to

xi(0|k) = xi(k) (14a)

xi(l + 1|k) = Axi(l|k) + Bui(l|k) (14b)

Vmin ≤ ||vi(l|k)|| ≤ Vmax (14c)

Ξmin ≤ pi,3(l|k) ≤ Ξmax (14d)

Umin ≤ ui,r(l|k) ≤ Umax (14e)

∥pi(l|k)− p̂j(l|k)∥ ≥ dc,saf (14f)

where (14a) is the initial state constraint of the UAV i, ensuring that the state at time instant
k is its actual state. (14b) represents the dynamics model constraint of the UAV i, describing
its evolution over time based on its current state and control input. In addition, (14c)–
(14f) represent the velocity, flight height, control input, and inter-UAV collision avoidance
constraints, respectively.

Algorithm 1 presents the pseudocode of the DMPC algorithm, where each UAV
independently solves a local optimization problem to determine its optimal control input.
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In the synchronous update scheme, all UAVs simultaneously update their control strategies
at each time instant.

Algorithm 1 DMPC algorithm

Initialization
(1) At the initial time instant k = 0, set the initial state xi(0) of each UAV, the prediction

horizon Np, the sampling period ∆T, the simulation step Ks, and the weighting coefficient
λi,1. In addition, Vmin, Vmax, Ξmin, Ξmax, Umin, Umax, dc,saf, do,saf, and di,det are specified.

(2) The state xr of the tracked UAV is set. Additionally, the desired relative states
between the tracking UAVs and the tracked UAV are specified.
Repeat:
for k ≤ Ks do

(1) The UAV i receives the state data of the tracked UAV or its neighboring UAVs.
(2) The optimal solution is obtained by solving the optimization problem (13).
(3) Apply u∗

i (0|k) to the UAV i.
(4) k = k + 1.

End

4. Cooperative Capability Evaluation Metrics of Swarm
To evaluate the swarm’s cooperative capability, this section proposes evaluation met-

rics based on three dimensions: coordination, communication equilibrium, and safety.

4.1. Coordination

Regarding the swarm’s coordination capability, the metric considers internal consis-
tency and leader guidance impact. Specifically, coordination capability is composed of two
parts: velocity consistency and position matching. These are quantified using exponential
functions of velocity difference and position error, capturing the leader’s role in promoting
swarm coordination.

4.1.1. Velocity Consistency

In formation control, if the velocity difference between different UAVs is too large, it
may cause drastic changes in the relative positions among UAVs, disrupting the formation
and even leading to collisions. Therefore, by quantifying the velocity difference within the
swarm, the velocity consistency of the UAVs can be monitored in real time.

The velocity consistency E1,1(k) is designed as

E1,1(k) =
1
M

M

∑
i=1

ei,v(k) (15)

ei,v(k) = exp(−∥zi,v(k)∥) (16)

where the higher the degree of velocity consistency of the swarm, E1,1(k) is close to 1;
otherwise, E1,1(k) approaches 0.

4.1.2. Position Matching

The position matching is quantified by calculating the difference between the actual
and desired position of the UAVs.

Specifically, the position matching E1,2(k) of the swarm is designed as

E1,2(k) =
1
M

M

∑
i=1

ei,p(k) (17)

ei,p(k) = exp
(
−
∥∥zi,p(k)

∥∥) (18)
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where the higher the position matching of the swarm, E1,2(k) approaches 1; otherwise,
E1,2(k) is close to 0.

4.2. Communication Equilibrium

Communication equilibrium reflects the uniformity of communication quality among
UAVs from the perspective of channel capacity. A high communication equilibrium in-
dicates that the current average communication rate of UAVs is close to the maximum
communication rate, indicating a balanced distribution of communication capability. Con-
versely, a low communication equilibrium implies noticeable disparities in communication
performance, which may reduce the overall cooperativity.

The communication equilibrium E2(k) is defined as

E2(k) =
1
M

M

∑
i=1

ei,c(k)
ei,max(k)

(19)

ei,c(k) =
1
Ni

M

∑
j=1

aijBijlog2
(
1 + αij(k)

)
(20)

where ei,max(k) = max{Bijlog2
(
1 + αij(k)

)
}, j ∈ Ni. Bij denotes the communication band-

width from j to i. αij(k) = Ph2
ij(k)/σ2

ij is the signal-to-noise ratio at UAV i from UAV

j. Assuming all UAVs transmit with the same power P, hij(k) =
√

ρ/∥pi(k)− pj(k)∥2

is the channel gain between UAV i and UAV j, ρ represents the channel power gain at
the reference distance of 1 m, and σ2

ij is the noise power. When E2(k) is close to 1, the
communication capacity of the UAVs in the swarm is more equilibrium. Conversely, if
E2(k) is significantly less than 1, it indicates poor communication between certain UAVs.

4.3. Safety

The safety metric evaluates the swarm’s capacity to take formation safely in the
environment with multiple obstacles, based on the distances between UAVs and nearby
obstacles. A layered scoring approach is employed, assigning safety scores according to
predefined distance intervals, enabling a comprehensive assessment of the swarm’s overall
safety level during obstacle avoidance.

The safety E3(k) is expressed as

E3(k) = min{Sih(k)} (21)

Sih(k) =



0, dih(k) ≤ do,saf

2
(
dih(k)− do,saf

)
di,det − do,saf

, do,saf < dih(k) <
do,saf + di,det

2

1, dih(k) ≥
do,saf + di,det

2

(22)

where the value of E3(k) is obtained by minimizing the safety of all tracking UAVs. When
E3(k) approaches 1, the safety of the swarm is high, indicating that all tracking UAVs
are maintaining sufficient distance from obstacles. Conversely, when E3(k) is close to 0,
it indicates that some tracking UAVs in the swarm are too close to obstacles, posing a
potential collision risk.

5. Simulation Results
Based on the ideas proposed in [23], this section verifies the proposed method’s

effectiveness through various simulation analyzes.
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5.1. Formation Control for UAVs Without and With Obstacles

To validate the effectiveness of the formation control algorithm without and with
obstacles, we select a tracked UAV (0) and ten tracking UAVs (1, 2, . . . , 10) in the simulation.
The communication topology is illustrated in Figure 1.

Figure 1. Communication topology of UAVs.

The initial state of the tracked UAV is designed as [14, 0, 2, 3, 0, 0]T , and it flies at a
constant velocity [3, 0, 0]T . The initial state of ten tracking UAVs, along with the relative
state of UAV i concerning the tracked UAV, are shown in Table 1. In addition, simulation
parameters are designed as shown in Table 2.

Table 1. Initial state and desired relative state.

ID Initial State Desired Relative State

1 [6, 5, 1.8, 2.5, 0, 0]T [−8, 5, 0, 0, 0, 0]T

2 [6,−5, 1.8, 2.5, 0, 0]T [−8,−5, 0, 0, 0, 0]T

3 [2, 10, 1.8, 2.5, 0, 0]T [−12, 10, 0, 0, 0, 0]T

4 [2,−10, 1.8, 2.5, 0, 0]T [−12,−10, 0, 0, 0, 0]T

5 [−2, 15, 1.8, 2.5, 0, 0]T [−16, 15, 0, 0, 0, 0]T

6 [−2,−15, 1.8, 2.5, 0, 0]T [−16,−15, 0, 0, 0, 0]T

7 [−6, 20, 1.8, 2.5, 0, 0]T [−20, 20, 0, 0, 0, 0]T

8 [−6,−20, 1.8, 2.5, 0, 0]T [−20,−20, 0, 0, 0, 0]T

9 [−10, 25, 1.8, 2.5, 0, 0]T [−24, 25, 0, 0, 0, 0]T

10 [−10,−25, 1.8, 2.5, 0, 0]T [−24,−25, 0, 0, 0, 0]T

Table 2. Simulation parameters.

Parameter Value

Weighting coefficient λi,1 100
Prediction horizon Np 5

Sampling period ∆T (s) 0.2
Velocity range [Vmin, Vmax] (m/s) [1, 4]

Height range [Ξmin, Ξmax] (m) [1.5, 2.5]
Control input range [Umin, Umax] (m/s2) [−1.5, 1.5]
Safety distances dc,saf (m) and do,saf (m) 1.2, 2.5

UAV detection range di,det (m) 4
Channel’s power gain ρ (dB) −20

Noise power σ2
ij (dBm) −80

Communication bandwidth Bij (MHz) 1
Transmitted power P (dBm) 10
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Figure 2a displays the 3D formation trajectories of UAVs without obstacles, while
Figure 2b shows the 3D formation trajectories of UAVs with obstacles. In Figure 2a, the
UAVs do not implement the obstacle avoidance strategy during flight because no obstacles
are detected. In Figure 2b, the UAVs detect the obstacle and actively adjust their paths using
the obstacle avoidance strategy, resulting in significant fluctuations in their trajectories.

(a)

(b)

Figure 2. Three-dimensional formation trajectories without and with obstacles: (a) Three-dimensional
formation trajectories without obstacles. (b) Three-dimensional formation trajectories with obstacles.

Figure 3a displays the 2D formation trajectories of UAVs without obstacles, ensuring
that the UAVs maintain a stable formation in the absence of obstacles. In contrast, Figure 3b
shows the 2D formation trajectories of UAVs with obstacles, indicating that the proposed
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strategy allows the tracking UAVs to return to their desired relative positions after avoiding
obstacles. Specifically, UAV 3 and UAV 5 take approximately 0.6 s and 1.2 s to avoid
the first obstacle. In addition, UAV 2 and UAV 4 take approximately 1.2 s to avoid the
second obstacle.

(a)

(b)

Figure 3. Two-dimensional formation trajectories without and with obstacles: (a) Two-dimensional
formation trajectories without obstacles. (b) Two-dimensional formation trajectories with obstacles.

Figure 4a presents the flight velocities of UAVs without obstacles, while Figure 4b
shows the flight velocities of UAVs with obstacles. From Figure 4a,b, it is clear that the
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velocities of tracking UAVs remain within the specified constraints. In addition, as can
be seen in Figure 4b, the velocities of UAVs tend to be consistent in the initial stage,
approaching the flight velocity of the tracked UAV. However, due to the detection of
obstacles during the flight, the velocities exhibit significant fluctuations and stabilize again
after the second obstacle avoidance maneuver.

(a)

(b)

Figure 4. The flight velocities without and with obstacles: (a) The flight velocities without obstacles.
(b) The flight velocities with obstacles.

The swarm’s cooperative capability evaluation results without and with obstacles
are shown in Figure 5. When UAVs fly in an environment without obstacles, metrics
such as velocity consistency, position matching, and communication equilibrium gradually
approach 1, while safety remains consistently at 1. When UAVs fly in the environment
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with obstacles, metrics such as velocity consistency, position matching, and communication
equilibrium exhibit significant fluctuations during obstacle avoidance maneuvers, and then
gradually approach 1 after the second obstacle avoidance maneuver. Additionally, since
UAVs implement obstacle avoidance strategies upon detecting obstacles, safety remains
consistently at 1. These proposed metrics reflect the dynamic changes during swarm flight
and demonstrate the applicability of the metrics design.

(a) (b)

(c) (d)

Figure 5. Swarm’s cooperative capability evaluation results without and with obstacles: (a) Velocity
consistency of swarm. (b) Position matching of swarm. (c) Communication equilibrium of swarm.
(d) Safety of swarm.

To validate the advantages of the swarm coordination evaluation metrics proposed in
this paper, we conduct a comparative analysis with existing velocity consistency and posi-
tion matching metrics that do not account for the state of the tracked UAV. The compared
metrics are shown below:

Ẽ1,1(k) =
1
M

M

∑
i=1

1
Ni

∑
j∈Ni

vi(k) · vj(k)
∥vi(k)∥∥vj(k)∥

(23)

Ẽ1,2(k) =
1
M

M

∑
i=1

exp

(
− 1

Ni
∑

j∈Ni

∥∥pi(k)− pir − pj(k) + pjr
∥∥) (24)
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where (23) is used to judge whether the velocity directions of UAVs are aligned. If the
velocity direction tends to be the same, the value approaches 1. In addition, (24) is used
to judge whether the UAVs maintain a desired formation shape during movement. If the
relative position deviation between UAVs is slight, the value is close to 1.

In Figures 6 and 7, since the tracking UAVs have the same initial velocities and their
relative position errors match the expected values, the compared metrics equal 1. However,
these metrics overlook the influence of the tracked UAV on the swarm’s collective motion,
resulting in incomplete assessment results. Consequently, the metrics values should not
equal 1 at the initial moment. Additionally, the velocity consistency metric evaluates
only directional alignment while disregarding velocity magnitude consistency, leading
to imprecise assessments. In contrast, the coordination metrics presented in this paper
consider the state of the tracked UAV and velocity magnitude, ensuring evaluation results
of coordination that better reflect actual conditions.

(a) (b)

Figure 6. Comparison results of the swarm coordination evaluation metrics without obstacles:
(a) Velocity consistency of the swarm. (b) Position matching of the swarm.

(a) (b)

Figure 7. Comparison results of the swarm coordination evaluation metrics with obstacles: (a) Velocity
consistency of the swarm. (b) Position matching of the swarm.

5.2. Formation Control for UAVs in Different Scenarios

To verify the effectiveness of the proposed method in different scenarios, Table 3 shows
the coordinates of the four groups of obstacles.
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Table 3. The coordinates of obstacles in different scenarios.

Scenario Coordinate for Obstacle 1 Coordinate for Obstacle 2

1 [25, 11]T [55,−6]T

2 [20,−7]T [50, 11]T

3 [25,−13]T [55, 23]T

4 [20,−23]T [50, 17]T

The 3D and 2D formation trajectories of UAVs in different scenarios are demonstrated
in Figures 8 and 9, respectively. It can be seen that the UAVs successfully avoid obstacles in
four scenarios, verifying the effectiveness of the proposed method.

(a) (b)

(c) (d)

Figure 8. Three-dimensional formation trajectories in different scenarios: (a) Three-dimensional
formation trajectories in scenario 1. (b) Three-dimensional formation trajectories in scenario 2.
(c) Three-dimensional formation trajectories in scenario 3. (d) Three-dimensional formation trajecto-
ries in scenario 4.
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(a) (b)

(c) (d)

Figure 9. Two-dimensional formation trajectories in different scenarios: (a) Two-dimensional for-
mation trajectories in scenario 1. (b) Two-dimensional formation trajectories in scenario 2. (c) Two-
dimensional formation trajectories in scenario 3. (d) Two-dimensional formation trajectories in
scenario 4.

The swarm’s cooperative capability evaluation results in different scenarios are shown
in Figure 10. In different scenarios, velocity consistency, position matching, and communi-
cation equilibrium exhibit significant fluctuations during obstacle avoidance maneuvers,
and then gradually approach 1 after the second obstacle avoidance maneuver. Addition-
ally, since UAVs implement obstacle avoidance strategies upon detecting obstacles, safety
remains consistently at 1 in different scenarios.
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(a) (b)

(c) (d)

Figure 10. Swarm’s cooperative capability evaluation results in different scenarios: (a) Velocity
consistency of swarm. (b) Position matching of swarm. (c) Communication equilibrium of swarm.
(d) Safety of swarm.

5.3. Cooperative Capability Evaluation Results Under Different Weighting Coefficients

Although the method proposed in Section 5.1 achieves obstacle avoidance when
λi,1 = 100, the empirically selected weight significantly decreases swarm coordination
and communication equilibrium during obstacle avoidance. Therefore, based on the
established evaluation metrics, we obtained a weight of λi,1 = 43, which ensures swarm
safety E3(k) = 1 while having a minor impact on the other evaluation metrics. Then,
we compared it with several other weighting coefficients. The three groups of weighting
coefficients are shown in Table 4.

Table 4. The weighting coefficient in the cost function.

Case λi,1

1 42
2 43
3 100
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The swarm’s cooperative capability evaluation results under different weighting
coefficients are shown in Figure 11. Compared with Case 1, Case 2 ensures that the safety
of UAVs remains at 1 throughout the flight. Additionally, compared with Case 3, Case 2
maintains safety at 1 while mitigating the excessive decline in velocity consistency, position
matching, and communication equilibrium caused by excessively high obstacle avoidance
weight. This validates the effectiveness of adjusting the obstacle avoidance weight based
on evaluation metrics, ensuring a proper balance between safety and other cooperative
capability metrics.

(a) (b)

(c) (d)

Figure 11. Swarm’s cooperative capability evaluation results under different weighting coefficients:
(a) Velocity consistency of swarm. (b) Position matching of swarm. (c) Communication equilibrium
of swarm. (d) Safety of swarm.

6. Conclusions
In this paper, we propose a formation control algorithm based on synchronized

DMPC. The algorithm integrates formation error and obstacle avoidance into a distributed
optimization framework, ensuring optimal control input for each UAV while satisfying
multiple constraints. To comprehensively evaluate the cooperative capability of the swarm,
we adopt coordination, communication equilibrium, and safety as key evaluation metrics,
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effectively reflecting the swarm’s cooperative capability. Finally, simulation results show
the effectiveness of the designed method.
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