Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115143
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Sen_US
dc.creatorZhao, Hen_US
dc.creatorZhong, Yen_US
dc.creatorZhou, Hen_US
dc.date.accessioned2025-09-10T01:09:54Z-
dc.date.available2025-09-10T01:09:54Z-
dc.identifier.issn2049-8764en_US
dc.identifier.urihttp://hdl.handle.net/10397/115143-
dc.language.isoenen_US
dc.rights© The Author(s) 2025. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/ 4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Zhang, S., Zhao, H., Zhong, Y., & Zhou, H. (2025). Why shallow networks struggle to approximate and learn high frequencies. Information and Inference: A Journal of the IMA, 14(3) is available at https://doi.org/10.1093/imaiai/iaaf022.en_US
dc.subjectGeneralized Fourier analysisen_US
dc.subjectGram matrixen_US
dc.subjectLlow-pass filteren_US
dc.subjectRadon transformen_US
dc.subjectRashomon seten_US
dc.subjectShallow neural networksen_US
dc.titleWhy shallow networks struggle to approximate and learn high frequenciesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume14en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1093/imaiai/iaaf022en_US
dcterms.abstractIn this work, we present a comprehensive study combining mathematical and computational analysis to explain why a two-layer neural network struggles to handle high frequencies in both approximation and learning, especially when machine precision, numerical noise and computational cost are significant factors in practice. Specifically, we investigate the following fundamental computational issues: (1) the minimal numerical error achievable under finite precision, (2) the computational cost required to attain a given accuracy and (3) the stability of the method with respect to perturbations. The core of our analysis lies in the conditioning of the representation and its learning dynamics. Explicit answers to these questions are provided, along with supporting numerical evidence.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInformation and inference, Sept 2025, v. 14, no. 3, iaaf022en_US
dcterms.isPartOfInformation and inferenceen_US
dcterms.issued2025-09-
dc.identifier.eissn2049-8772en_US
dc.identifier.artniaaf022en_US
dc.description.validate202509 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextS.Z. was partially supported by start-up fund P0053092 from The Hong Kong Polytechnic University. H.Z. was partially supported by NSF grants (DMS-2309551), and (DMS-2012860). Y.Z. was partially supported by NSF grant (DMS-2309530) and H.Z. was partially supported by NSF grant (DMS2307465).en_US
dc.description.pubStatusPublisheden_US
dc.description.TAOUP (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
iaaf022.pdf3.13 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.