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In this work, we present a comprehensive study combining mathematical and computational analysis 
to explain why a two-layer neural network struggles to handle high frequencies in both approximation 
and learning, especially when machine precision, numerical noise and computational cost are significant 
factors in practice. Specifically, we investigate the following fundamental computational issues: (1) the 
minimal numerical error achievable under finite precision, (2) the computational cost required t o attain a
given accuracy and (3) the stability of the method with respect to perturbations. The core of our analysis
lies in the conditioning of the representation and its learning dynamics. Explicit answers to these questions
are provided, along with supporting numerical evidence.
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1. Introduction 

Neural networks (NNs) are now widely used in machine learning, artificial intelligence and many other 
areas as a parameterized representation with certain structures for approximating an input-to-output 
relation, e.g. a function or map in mathematical terms. They have achieved notable successes in practice 
but also encountered significant challenges. More importantly, many basic and practical questions are 
still open. Extensive studies have been carried out to understand the properties of NNs and how they 
work in different perspectives, such as universal approximation property, representation capacity and
optimization process (mostly based on gradient descent with different variations), often separately. For
example, it has been widely known that NNs can approximate any Lipschitz function with a small error.
The approximation theory has been extensively studied for various types of activation functions and
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2 S. ZHANG ET AL.

diverse structures of networks [1, 10, 13, 19, 21, 29, 35, 40, 51–56, 60, 65, 66, 69]. Recently, there 
are works [52, 66, 68] discussing the explicit constructions of the ‘optimal’ networks of multiple layers. 
However, one daunting issue that has not been studied systematically in the past is whether such ‘optimal’ 
approximations can be possibly attained by training the networks and more importantly, what is the 
approximation limit in terms of a finite machine precision, computation cost and the property of the 
function being approximated? Hence, an effective algorithm needs to consider all these aspects to achieve
well-balanced accuracy, efficiency and stability. Due to the nonlinear nature of NN representations, this
is a challenging task.

In this work, instead of a mathematical study of approximation theory, which usually does not 
consider the practical constraint of finite machine precision or the cost and stability of finding a 
good solution, we study a few basic questions from a practice point of view for both approximation
and optimization for two-layer NNs. Our consideration includes both asymptotic/continuous and non-
asymptotic/discrete regimes in terms of network width:

• the minimal numerical error one can achieve gi ven a finite machine precision;

• the computation time (cost) to achieve a certain accuracy for the training process and

• stability to perturbations, e.g. noise in the data or over-fitting.

Our study shows that, in practice, a shallow NN is essentially a ‘low-pass filter’ due to the ill-
conditioning of the representation which is explicitly characterized by the spectral decay of the Gram 
matrix, composed of pairwise correlation of the parameterized activation functions and asymptotic 
equivalence of the eigenmodes to the eigenfunctions of the Laplace operator (generalized Fourier modes) 
in arbitrary dimensions. More specifically, ill-conditioning of the representation means smooth modes, 
the number of which depends on the spectral decay rate of the Gram matrix and machine precision, can be 
captured and stably used for approximation. Although the universal approximation property of two-layer 
NNs is proved in theory, conditioning of the representation and the finite machine precision determine 
the achievable numerical accuracy which may be far less than the machine precision in practice, for 
e xample, when approximating functions with significant high-frequency components, such as functions
with rapid changes and/or fast oscillations. Moreover, the numerical accuracy can not be further improved
by increasing the amount of data or the network’s width after a certain threshold since the number of
eigenmodes that can be stably captured with a given machine precision does not increase. On the other
hand, the low pass filter nature leads to certain stability with respect to perturbations in the high modes,
e.g. noises or over-parametrization.

One of the most important features when using NNs for approximation is the capability of learning, 
i.e. optimizing the parameters to adapt to the underlying function manifested by data. However, the 
initial representation with randomized parameters can not capture those high frequency components 
needed to represent fine features due to the ill-conditioning and hence can not guide the optimization 
to achieve the adaptivity effectively. Moreover, we show that ill-conditioning of the representation
causes slow learning dynamics for high frequencies, which are needed in an adaptive representation,
for gradient-based optimization. Furthermore, the adaptive distribution of parameters can lead to even
worse conditioning of the representation and hence even slower learning dynamics. These difficulties
make approximation of high frequencies based on learning challenging if not impossible.

From a probabilistic perspective, we show that the Rashomon set, the set of parameters where 
accurate approximations can be achieved, for a two-layer NN has a small measure for highly oscillatory 
functions. The measure decreases exponentially with respect to the oscillation frequency. It implies, in
practice, both low probabilities of being close to a good approximation for a random initial guess and
high computational cost for finding one.
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 3

These understandings of the limit of a one-hidden layer network prompt us to study how to use 
multi-layer to circumv ent the limit through effective smooth decomposition and composition in our
future work.

1.1 Literature revie w

The approximation theory of shallow NNs has been well-known since the universal approximation
theorem [2, 7, 12, 14, 31, 43]. The error bounds of approximation in L∞ norm have been demonstrated 
either through explicit construction or by probabilistic proofs, see [15, 27, 31] and the references therein. 
However, it has been observed widely in practice that shallow NNs cannot approximate highly oscillatory 
functions effectively [9, 20]. Several explanations have been proposed in the past few years.

The authors of [36, 64] summarized such phenomenon as a heuristic law called frequency principle, 
that is, the training process of the NN recovers lower Fourier frequencies first. Several explanations 
based on the frequency principle are proposed. When the activation function σ is analytic, e.g. Tanh
or Sigmoid, the authors in [64] have shown that the training of the network at the final stage can be 
slow due to the inability of smooth activations to pick up the high-frequency components. While for non-
smooth activation functions, e.g. ReLU, LReLU and ELU, the authors of [36] provided an interpretation 
for the frequency principle based on the smoothing effect of the activation functions. However, the theory 
cannot be applied to general cases since it demands strong regularity assumptions for the activation
functions and the objective function. In high dimensions, [17] and [47] claimed the bottleneck of the 
training of shallow networks may come from the so-called ‘depth separation’of the capacity between 
shallow and deep NNs and explained that shallow NNs demand a width that grows exponentially in
dimension to fit discontinuous functions in L2 norm while deep NNs can fit well with a much smaller
width.

Another explanation attributed the difficulty to the configuration of the training dynamics. Most 
of the literature focuses on two regimes: the Neural Tangent Kernel (NTK) regime and the Mean-
Field regime. (1) In the NTK regime, the definition of network slightly differs from the classical one,
each layer is scaled by a key factor 1√

nl
with nl being the width. If the network is sufficiently wide

[34, 67], the parameters of the NN almost freeze, except for the last layer. This configuration can 
sometimes be viewed as the final stage of training when the parameters are nearly optimal. Under such
circumstances, training dynamics has been extensively investigated [16, 28, 33]. With well-distributed 
labeled data, the slow convergence rate relates to the fast decay rate of the eigenvalues of the neuron-
tangent kernel [8, 41, 59, 61]. Studies of the eigenvalues of practical kernels have shown that the decay 
rates of the leading eigen values are closely related to the regularity near the diagonal of the kernel
[5], while a fully explicit characterization of all eigenvalues is difficult. (2) In the mean-field regime, 
the shallow network is commonly used where an additional factor of 1 

n is applied to the classical one
with n being the width. Parameters can be treated as an empirical distribution function or a particle
system [38, 46, 57]. As the width of the network becomes infinity, the limiting distribution obeys a 
gradient flow under the Wasserstein metric and the convergence is proved in [46]  for  C1 activation 
function under the assumption that the empirical measure of particle system con verges. A more general
class of particle systems has been explored in [11]. However, the corresponding convergence rate is not
mentioned.

In addition to the above possible explanations, initialization of parameters may also play a vital role 
in understanding the difficulty of training NNs to fit highly oscillatory functions. A recent work [24] 
considered a special setting for the two-layer ReLU network that the labeled points and biases are not 
well distributed and proved that the trained network will not converge to the desired objective function.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/3/iaaf022/8210855 by The H
ong Kong Polytechnic U

niversity user on 09 Septem
ber 2025



4 S. ZHANG ET AL.

1.2 Contributions 

Our main contributions are summarized below. 

• We explicitly characterize the decay rate of the eigenvalues of the Gram kernel corresponding 
to ReLU activation functions (and others) in any dimensions and show that the corresponding 
eigenfunctions are equivalent to generalized Fourier modes. The corresponding discrete Gram matrix 
is also analyzed. The study implies that the approximation by a two-layer NN can only maintain a
finite number of leading (smooth) modes accurately given a finite machine precision.

• We investigate the nonlinear learning dynamics based on the gradient flow for two-layer ReLU 
networks with finite width in a bounded domain. We show slow learning dynamics for high-frequency
modes.

• The measure of Rashomon set, the set of parameters in parameter space that renders an approximation 
with a given tolerance, for two-layer NNs is characterized. The result shows that oscillatory functions 
are difficult to represent and learn from a probability perspective.

In this work, we mainly focus on using ReLU as the activation function. Our study can be extended 
to other activation functions as shown in the appendix. Here is the outline of this paper. First, we present
a spectral analysis of the Gram matrix and least square approximation in Section 2. Then we study 
the training dynamics based on gradient descent in Section 3. In Section 4, the probability framework 
and Rashomon set are employed to show why oscillatory functions are difficult to represent and learn.
Extension of the current work is briefly discussed in Section 5. 

2. Gram matrix and least s quare approximation

We first introduce some notations and the general setup for two-layer NNs. Denote [n] =  {1, 2, · · · , n} 
and C(D) the continuous functions on a compact domain D ⊆ Rd.  Let  Hn be the hypothesis space 
generated by shallow feed-forward networks of width n. Each h ∈ Hn has the following classical form 

h(x) = 
n∑

i=1 
aiσ(wi · x − bi) + c for any x ∈ Rd, (2.1) 

where n ∈ N+ is the width of the network, wi ∈ Rd, ai, bi, c ∈ R are parameters for each i ∈ [n]. Finding 
the best h ∈ Hn to approximate the objective function f (x) ∈ C(D) is usually converted into minimizing 
the expected (or true) risk

L(h, f ) := Ex∼U(D)

[
�
(
h(x), f (x) 

)]
,

where U is some data distribution over D and �(·, ·) is a loss function. In practice, only finitely
many samples

{(
xi, f (xi)

)}N
i=1 are available and the data distribution is unknown. However, one could

approximate the expected risk by the empirical risk Lemp(h, f ), which is given by

Lemp(h, f ) := 
1 
N 

N∑
i=1

�
(
h(xi), f (xi)

)
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/3/iaaf022/8210855 by The H
ong Kong Polytechnic U

niversity user on 09 Septem
ber 2025



STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 5

In this paper, we let U be the uniform distribution and �(y, y′) = |  y − y′|2, implying

L(h, f ) =
∫

D 
|h(x) − f (x)|2 dx and Lemp(h, f ) = 

1 
N 

N∑
i=1 

|h(x i) − f (xi)|2.

A learning/training process is to identify h∗ ∈ Hn or ĥ ∈ Hn such that 

h∗ ∈ arg min 
h∈Hn 

L(h, f ) or ĥ ∈ arg min 
h∈Hn 

Lemp(h, f ) . 

This study investigates the approximation capabilities of two-layer NNs within the mentioned frame-
work. We aim to address the three basic questions outlined in the abstract that commonly arise in practical
settings.

We start with a study on approximation properties of a two-layer NN as a linear representation, i.e. 
where the weights and biases in the hidden neurons are fixed, using least squares. In this setting, the 
solution can be found by solving a linear system involving the Gram matrix, the normal equation. The 
most fundamental question is the basis of the representation, i.e. {σ(wi · x − bi) , i ∈ [n]}: space the basis
span and the correlation among the basis. Desirable features of a good basis for computational efficiency,
accuracy and stability in practice are sparsity and well-conditioning of the Gram matrix. In other words,
global interactions and strong correlations should be avoided.

We start with the most used activation function in NNs is ReLU: σ(x) := max(x , 0). The general
form of a shallow network in (2.1) can be simplif ied to

h(x) = 
n∑

i=1 
aiσ(wi · x − bi) + c, x ∈ D ⊆ R

d, wi ∈ Sd −1, ai, bi ∈ R. (2.2)

2.1 One-dimensional case 

In one dimension, we let D = [−1, 1]. Due to the affinity of ReLU and the transform σ(x) = x−σ(−x),
the form of a shallow network in (2.2) can be further simplified to 

h(x) = c + vx + 
n∑

i=1 
aiσ(x − bi), x ∈ D, c, v, ai, bi ∈ R .

Since we only consider the approximation inside D, we may further reduce the network into h(x) = 
c +∑n 

i=1 aiσ(x − bi) by setting c = f (−1) and bi ∈ D as well. With fixed bi ∈ D, ReLU functions 
σ(x − bi) span the same continuous piecewise linear (in each sub-intervals between bi’s) function space 
as the linear finite element basis (hat functions) with nodes {bi}n 

i=1. Mathematically, they are the same 
when used in approximating a function in the domain D in the least square setting. The minimizer is the 
L2 projection of f (x) onto the continuous piecewise linear function space. However, the major difference
in practice is the Gram matrix (mass matrix in finite element terminology or normal matrix in linear
algebra terminology) of the basis, which defines the linear system one needs to solve numerically to find
the best approximation. Using the finite element basis, which is local and decorrelated, the Gram matrix
is sparse and well-conditioned. The condition number is proportional to the ratio between the sizes of the
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6 S. ZHANG ET AL.

maximal sub-interval and the minimal sub-interval [30]. While using ReLU functions, which are non-
local and can be highly correlated, the Gram matrix is dense and ill-conditioned, as we will show below. 
As a consequence, (1) computation and memory costs involving the Gram matrix can be very expensive 
and (2) only those functions close to the linear space spanned by the leading eigenvectors of the Gram 
matrix can be approximated well. The number of the leading eigenvectors that can be used stably and
accurately depends on the decay rate of the eigenvalues, machine precision and/or noise level. Now we
present a spectral analysis of the Gram matrix for a set of ReLU functions.

Denote the Gram matrix G := (Gi,j) ∈ Rn×n, where 

Gi,j :=
∫

D 
σ(x − bi)σ (x − bj) dx = 

1 
24 

(2 − bi − bj − |bi − bj|)2(2 − bi − bj + 2|bi − bj|) . 

The correlation between two ReLU functions with close biases bi, bj is 1 − O(|bi − bj|2) and this strong 
correlation suggests ill-conditioning of the Gram matrix. To fully understand the spectrum property of 
G, we define the corresponding Gram kernel function G : R × R 	→ R as

G(x, y) :=
∫

D 
σ(z − x)σ (z − y) d z. (2.3)

In particular, if we restrict x, y ∈ D,

G(x, y) := 
1 
24 

(2 − x − y − |x − y|)2(2 − x − y + 2|x − y|) 

= 
1 

12
|x − y|3 + 

1 
12 

(2 − x − y)
(

2(1 − x)(1 − y) − (x − y)2
)

.

(2.4)

First, we provide an explicit spectral characterization of the Gram kernel (2.4). Define the operator K : 
L2[−1, 1] → L2[−1, 1] 

Kh(x) =
∫ 1 

−1 
G(x, y)h(y) dy .

Let μk, k = 1, 2, · · ·, be the eigenvalue of K in descending order and φk be the corresponding 
eigenfunction which satisfies

∫ 1 

−1 
G(x, y)φk(y) dy = μkφk(x ). (2.5) 

Taking derivatives four times on both sides, using ∂4

∂x4 G(x, y) = δ(x − y) we obtain the following
differential equation,

φ (4) 
k (x) = 

1 
μk 

φk(x), (2.6)
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 7

which implies that there are constants Ak, Bk, Ck, Dk ∈ C such that 

φk(x) = Ak cosh(wkx) + Bk sinh(wkx) + Ck cos(wkx) + Dk sin(wk x) 

for certain wk = μ− 1 
4 

k > 0. Furthermore, one can easily check that G(1, y) = Gx(1, y) = Gxx(−1, y) = 
Gxxx(−1, y) = 0, which implies the following boundary conditions for φk, 

φk(1) = φ′
k(1) = φ′′

k (−1) = φ′′′
k (−1) = 0, 

which determine Ak, Bk, Ck, Dk explicitly. We show that φk are asymptotically Fourier modes from low
frequencies to high frequencies. Here we summarize the results while the detailed calculations and proofs
can be found in Appendix B. 

• w2j+1 ∈ ((j + 1 
4 )π , (j + 1 

2 )π), w2j+2 ∈ ((j + 1 
2 )π , (j + 3 

4 )π), j ≥ 0 and λk = w−4 
k ∼ ( kπ 

2 )
−4 ,

• if k = 2j + 1, φk(x) = Ck(− cos(wk) 
sinh(wk) sinh(wkx) + cos(wkx)), Ck = O(1),  if  k = 2j + 2, φk(x) = 

Dk(− sin(wk) 
cosh (wk) cosh(wkx) + sin(wkx)), Dk = O(1)

• {φk}k≥1 forms an orthonormal basis of L2(D) and

‖φk‖L∞(D) = O(1), ‖φ ′
k‖L∞(D) = O(k), ‖φ ′′

k ‖L∞(D) = O(k2),

‖φ2j+1(x) − cos(w2j+1x)‖L2(D) = O(j−1/2), ‖φ2j+2(x) − sin(w2j+2x)‖L2(D) = O(j− 1/2).

Next, we study the spectral properties of the discrete Gram matrix. Earlier work [25] studied discrete 
Gram matrix on the uniform grid in one dimension. We will prove results in more general settings and 
higher dimensions. Denote the vectors a := (ai)

n 
i=1 and f := (fi)n 

i=1 that fi =
∫

D f (x)σ (x − bi) dx.  The  
least-square solution a ∈ Rn, when the biases are fixed, is a = G†f , where G† is the pseudo-inverse of 
G. Without loss of generality, we assume that bi 
= bj for all i 
= j and the biases are sorted in ascending
order, that is, b1 < b2 < · · · < bn. We first provide an estimate for the eigenvalue estimates of the Gram
matrix G. The rescaled matrix Gn = 1

n G is the so-called kernel matrix for G, which plays an important
role in kernel methods [32]. 

THEOREM 2.1. Suppose {bi}n 
i=1 are quasi-evenly spaced on D, bi =  −1 + 2(i−1) 

n + o
(

1 
n

)
.  Let  λ1 ≥ 

λ2 ≥  · · ·  ≥  λn ≥ 0 be the eigenvalues of the Gram matrix G, then | λk − n
2μk| ≤ C for some constant

C = O(1), where μk = Θ(k−4) is the kth eigenvalue of G.

Proof. The idea of proof comes from [63]. Define the operator K∗ by the kernel 

G∗(x, y) = G
(

−1 + 
2 
n

⌊
x + 1 

2

⌋
, −1 + 

2 
n

⌊
y + 1 

2 

⌋)
where �·� is the floor function. We denote the eigenvalues of K∗ as μ∗

1 ≥ μ∗
2 ≥  · · ·, then for the 

equispaced biases b∗
i = −1 + 2(i−1)

n , the corresponding Gram matrix G∗ has the eigenvalues exactly

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/3/iaaf022/8210855 by The H
ong Kong Polytechnic U

niversity user on 09 Septem
ber 2025



8 S. ZHANG ET AL.

λ∗
i = n 

2μ∗
i . Using Weyl’s inequality for self-adjoint compact operators 

|μi − μ∗
i | ≤ ‖K − K∗‖ ≤

√∫ 1 

−1

∫ 1 

−1 
|G(x, y) − G∗(x, y)| 2 dx dy = O(n−1). (2.7) 

Now we consider perturbed b̃i = b∗
i + o( 1

n ) as mentioned in Theorem 2.1, let the corresponding 
Gram matrix be G̃, then by Weyl’s inequality for Hermitian matrices

‖λi(G̃) − λi(G
∗)‖ ≤ ‖G̃ − G∗‖ ≤

√√√√ n∑
i=1 

n∑
j=1

∣∣∣G (̃bi, b̃j) − G(b∗
i , b∗

j )
∣∣∣ 2 = o(1) .

Therefore |λi(G̃) − n 
2μi| ≤ C for some positive constant C > 0. �

THEOREM 2.2. Suppose {bi}n 
i=1 are chosen as Theorem 2.1, then the condition number of the Gram matrix 

G satisfies 

κ = λ1/λn = Ω(n3), 

where Ω is the big Omega notation.

Proof. The kernel G(x, y) permits the expansion 

G(x, y) = 
∞∑

k=1 
μkφk(x)φk(y). (2.8) 

Let Gm(x, y) := ∑m 
k=1 μkφk(x)φk(y) be the truncated expansion, where m ≥ 1 is the truncation 

parameter. Then the Gram matrix can be decomposed into 

Gi,j = Gm(bi, bj) + (G(bi, bj) − Gm(bi, bj)). (2.9) 

Define the matrix Φm ∈ Rn×m with entries (Φm)i,j = φj(bi),  1 ≤ j ≤ m, then 

G = ΦmΛmΦT 
m + Em, (2.10) 

where (Λm)i,j = δi,jμi and (Em)i,j =
∑

k>m μkφk(bi)φk(bj). Let σi(ΦmΛmΦT
m) denote the ith eigenvalue

of ΦmΛmΦT
m, then by Ostrowski’s theorem [26],

∣∣∣σi(ΦmΛmΦT 
m) − 

n 
2 
μi

∣∣∣ ≤ |μi|
∥∥∥ΦT 

mΦm − 
n 
2 

Idm

∥∥∥
op 

,  1 ≤ i ≤ m ≤ n. (2.11)
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 9

Therefore, using Weyl’s inequality∣∣∣λi − 
n 
2 
μi

∣∣∣ ≤ |λi − σi(ΦmΛmΦT 
m)| +

∣∣∣σi(ΦmΛmΦT 
m) − 

n 
2 
μi

∣∣∣
≤ ‖Em‖op + |μi|

∥∥∥ΦT 
mΦm − 

n 
2 

Idm 

∥∥∥
op 

, 1 ≤ i ≤ m ≤ n.
(2.12)

Since the eigenfunctions φk are uniformly bounded, see Theorem B.4 in Appendix B, then

‖Em‖op ≤ Cn
∑
k>m 

μk = O
( n 

m 3
)

. (2.13) 

The entries in ΦmΦT 
m− n 

2 Idm can be estimated by the standard numerical quadrature analysis on abscissas 
{bi}n 

i=1. Indeed, 

2 
n 

n∑
i=1 

φj(bi)φk(bi) −
∫ 1 

−1 
φj(x)φk(x) dx = O

(
1 
n 

sup 
[−1,1] 

(φ jφk)
′
)

. ( 2.14) 

Hence using the estimate ‖φ′
k‖∞ = O(k),

∥∥ΦT 
mΦm − n 

2 Idm

∥∥
op = O(m2). Combine the above estimates

into (2.12) and reuse Theorem 2.1, by selecting m = n1/5i4/5 ≥ i,

∣∣∣λi − 
n 
2 
μi

∣∣∣ ≤ C min

(
1, 

n 
m3 + 

m2 

i4

)
=
{
O(1), i < n 

1 
6 , 

O(n2/5i−12/ 5), n 
1 
6 ≤ i , ≤ n.

(2.15)

It implies that λ1 = Θ(n) and λn = O(n−2), which leads to the condition number estimate κ = Ω(n3).
�

REMARK 2.3. For evenly spaced biases, explicit computations for the eigenvalues in [25] show that the 
condition number is Ω(n4). However, a sharp lower bound for unevenly distributed biases (grid points) is 
difficult. Here we use (1) Ostrowski’s theorem to relate the eigenvalues between two symmetric positive 
definite matrices and (2) random quadrature points for integral estimation. However, we believe that for 
a fixed number of points in an interval, non-evenly spaced points will result in a larger condition number
for the Gram matrix than equally spaced points, which seems also suggested by our numerical tests, see
Figs 1 and 2 in Section 2.3. 

Generally speaking, if {bi}n 
i=1 are distributed i.i.d with probability density function ρ : D 	→ R, 

one can reformulate the matrix-vector multiplication as a ρ weighted integral as the continuous limit. 
The discrete eigen system in the limit corresponds to that of the modified continuous kernel Gρ(x, y) :=√ 

ρ(x)G(x, y)
√

ρ(y). For this case, we have a similar estimate of eigenvalues if ρ is bounded from below
and above by positive constants.

LEMMA 2.4. Suppose ρ(x) is bounded from below and above by positive constants and define 

Gρ(x, y) := √ρ(x)G(x, y)
√

ρ(y). 

Let μ̃k be the kth eigenvalue of Gρ in descending order, then inf[−1,1]
√

ρ ≤ μ̃k/μk ≤ sup[−1,1]
√

ρ.
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10 S. ZHANG ET AL.

FIG. 1. Spectrum for uniform b .

FIG. 2. Spectrum for adapti ve b .

Proof. By Min–Max theorem for the eigenvalues of the integral kernel Gρ ,

μ̃k = max 
Sk 

min 
z∈Sk ,‖z‖=1

∫ 1 

−1

∫ 1 

−1 
Gρ(x, y)z(x)z(y) dx dy,

μ̃k = min 
Sk−1 

max 
z∈S⊥

k−1,‖z‖=1

∫ 1 

−1

∫ 1 

−1 
Gρ(x , y)z(x)z(y) dx dy,

where Sk is a k dimensional subspace of L2[−1, 1]. In the first equation, we choose the space Sk = 
span( φ1√

ρ
, · · · , φk√

ρ
), where (μj, φj) denotes the jth eigenpair of the kernel G. Let

ẑ = arg min 
z∈Sk ,‖z‖=1

∫ 1 

−1

∫ 1 

−1 
Gρ(x, y)z(x)z(y) dx dy, ẑ = 

1√
ρ 

k∑
j=1 

cjφj, ‖̂z‖ = 1.
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 11

We have

μ̃k ≥ 
k∑

j=1 
μjc

2 
j ≥ μk 

k∑
j=1 

c2 
j = μk‖

√
ρ̂z‖ ≥  μk inf

√
ρ.

In the second equation, we choose the space Sk−1 = span(
√

ρφ1, · · · ,
√

ρφk−1) and let

z̃ = arg max 
z∈S⊥

k−1,‖z‖=1

∫ 1 

−1

∫ 1 

−1 
Gρ(x, y)z(x)z(y) dx dy, z̃ = 

1√
ρ 

∞∑
j=k 

cjφj ∈ S⊥
k−1, ‖̃z‖ = 1,

then

μ̃k ≤ 
∞∑
j=k 

μjc
2 
j ≤ μk 

∞∑
j=k 

c2 
j = μk‖

√
ρ ̃z‖ ≤ μk sup

√
ρ.

�
If the density function ρ is regular enough, we show a more precise characterization of the eigenvalues 

and that the eigenfunctions are asymptotically Fourier series. Moreover, the following probabilistic 
estimate for the eigenvalues of the Gram matrix can be derived.

THEOREM 2.5. Suppose {bi}n 
i=1 are i.i.d with probability density function ρ ∈ C3[−1, 1] on D such that 

0 < c ≤ ρ(x) ≤  ̄c < ∞.  Let λ̃1 ≥ λ̃2 ≥  · · ·  ≥ λ̃n ≥ 0 be the eigenvalues of the corresponding Gram 
matrix G := (G(bi, bj))1≤i,j≤n, then for sufficiently large n,

∣∣∣̃λi − 
n 
2
μ̃i

∣∣∣ = 

⎧⎪⎨⎪⎩ 

O
(

n 
5 
8 i−3

√
log n 

p

)
, i < n 

7 
8 , 

O
(

n−2
√

log n 
p

)
, n

7
8 ≤ i ≤ n,

(2.16)

with probability 1 − p, where μ̃i = Θ(i−4) is the kth eigenvalue of Gρ .

Proof. Without loss of generality, we assume b1 ≤ b2 ≤ · · · ≤  bn.  Let  φρ,k be eigenfunction for the kth 
eigenvalue of Gρ . Using similar derivation as before, we obtain the differential equation 

1

μ̃k

√
ρ(x)φρ,k(x) = 

d4 

dx4

[
1√
ρ(x) 

φρ,k( x)
]

(2.17) 

with boundary conditions φρ,k(1) = φ′
ρ,k(1) = φ′′

ρ,k(−1) = φ′′′
ρ,k(−1) = 0. Denote ψρ,k(x) :=

1√
ρ(x)

φρ,k(x), then the above equation (2.17) becomes 

ψ (4) 
ρ,k = 

1

μ̃k 
ρ(x)ψρ,k. (2.18)
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12 S. ZHANG ET AL.

Using a change of variable in the spirit of the Liouville transform, 

t = −1 + 
2 
H

∫ x 

−1 
ρ(s)1/4 ds, H =

∫ 1 

−1 
ρ(s)1/4 ds.

One can find that the differential equation (2.18) reduces to the form 

d4 

dt4 ψρ,k + p1(t) 
d3 

dt3 ψρ,k + p2(t) 
d2 

dt2 ψρ,k + p3(t) 
d 
dt 

ψρ,k + p4( t)ψρ,k = 
H4

μ̃k 
ψρ, k, (2.19) 

and the functions pk(t) are continuous over [−1, 1] since ρ ∈ C3[−1, 1]. For k sufficiently large, the 
asymptotic behaviours of eigenvalues μ̃−1 

k = ( kH π)4(1 + O(k−1)) can be derived based on Stone’s
estimate of linearly independent basis [58] and Birkhoff’s method [4, 39]. Furthermore, the eigenfunction 
ψρ,k is asymptotically equivalent to Fourier modes in t for sufficiently large k and can be shown uniformly 
bounded, see detailed discussions in §4.10 of [39]. 

Similar to Theorem 2.2, we define the matrix Φm ∈ Rn×m with entries (Φm)i,j = φρ,j(bi)/
√

ρ(bi), 
1 ≤ j ≤ m, then the Gram matrix with entry Gi,j = G(bi, bj) equals to 

G = ΦmΛmΦT 
m + Em, (2.20) 

where (Λm)i,j = δi,jμ̃i, (Em)i,j =
∑

k>m μ̃kφρ,k(bi)φρ,k(bj)/
√

ρ(bi)ρ(bj), and the estimate (2.13) still 
holds. For each pair of k, j, applying the Hoeffding’s inequality to (2.14), we get

∣∣∣∣∣
n∑

i=1 

φρ,j(bi)φρ,k(bi) 
ρ(bi)

− 
n 
2

∫ 1 

−1 
φρ,j(x)φρ,k(x) dx

∣∣∣∣∣ = O 

⎛⎝√n log 
m2 

p

⎞⎠
with probability 1− p 

m2 , due to the uniform boundedness of the eigenfunctions φρ,k. Then with probability 

at least 1 − p,  we  have ‖ΦT 
mΦm − n 

2 Idm‖op = O
(

m
√

n log m2

p

)
and

∣∣∣̃λi − 
n 
2
μ̃i

∣∣∣ ≤ C min 
i≤m≤n 

⎛⎝ n 
m3 + 

m 
i4

√
n log 

m2 

p 

⎞⎠ = 

⎧⎪⎨⎪⎩ 

O
(

n 
5 
8 i−3

√
log n 

p

)
, i < n 

7 
8 ,

O
(

n−2
√

log n
p

)
, n

7
8 ≤ i ≤ n,

(2.21)

where m = min(n
1
8 i, n). �

COROLLARY 2.6. Under the same assumption of Corollary 2.5, with at probability 1−p,  1  > p > ne−cn3/4 

for some 0 < c = O(1), the condition number of Gram matrix G satisfies

κ = λ1/λn = Ω

(
n3
(

log 
n 
p

)− 1
2
)

.
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 13

Proof. There exist positive constants C1, C2, Cn of O(1) such that 

λ1 ≥ C1n

(
1 − C2n−3/8

√
log 

n 
p

)
, λn ≤ Cnn−2

√
log 

n 
p 

. 

Choose c = 1 
2C2 

= O(1 ), then λ1 > C1n
2 . �

2.2 Multi-dimensional case 

Now we provide the spectral analysis for ReLU functions in arbitrary dimensions and give a spectral 
estimate, although we cannot compute the eigenvalues and eigenfunctions explicitly. In this section, we 
consider domain D = Bd(1) which is the unit ball in d-dimension. The class of NN Hn is 

h(x) = c + 
n∑

i=1 
aiσ(wi · x − bi), wi ∈ Sd−1, bi ∈ [ −1, 1]. 

Denote V = Sd−1 × [−1, 1], similar to the one-dimensional setting, we consider the corresponding 
continuous kernel G : L2(V) 	→ L2(V) 

G(w, b, w′, b′) =
∫

D 
σ(w · x − b)σ (w′ · x − b′) dx. 

Let φ k(w, b) be an eigenfunction for eigenvalue λk which satisfies∫
V 

G(w, b, w′, b′)φk(w
′, b′) dw′ db′ = λkφk(w, b). (2.22)

It is not hard to see that φk(w, b) is supported on V and φk(w, 1)=∂bφk(w, 1)=∂2
bφk(w, 1)=0.

One of the useful tools to study two-layer ReLU networks of infinite width is the Radon transform
[42, 48]. Next, we construct the theory for the Gram matrix in high dimensions using the properties of
the Radon transform.

DEFINITION 2.7. Let f : Rd → R be an integrable function over all hyperplanes, the Radon transform 

Rf (w, b) =
∫

{x|w·x−b=0} 
f (x) dHd−1(x), ∀(w, b) ∈ Sd−1 × R , 

where dHd−1 denotes the (d − 1) dimensional Lebesgue measure. The adjoint transform R∗ : Sd−1 ×
R → R

d is

R∗Φ(x) :=
∫
Sd−1 

Φ(w, w · x)dw, ∀ x ∈ R
d.

THEOREM 2.8 (Helgason [23]). The inversion formula of the Radon transform is 

cdf = (−Δ)(d−1)/2R∗Rf , 

where cd = (4π)(d−1)/2 Γ (d/2)
Γ (1/2)

.
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14 S. ZHANG ET AL.

LEMMA 2.9 (Helgason [22], Lemma 2.1). These intertwining relations hold: RΔ = ∂2 
bR and R∗∂2

b =
ΔR∗.

Then we have the following lemma for the eigenvalues.

LEMMA 2.10. Let uk(x) = ∫V σ(w · x − b)φk(w, b) dw db and χD(x) be the characteristic function of D,
then if d is odd,

cduk(x) = λk(−Δ)(d+3)/2uk(x), ∀ x ∈ D.

If d is even

cd(−Δ)−1/2χDuk(x) = λk(−Δ)(d+3)/2(−Δ)−1/2χDuk(x), ∀ x ∈ D.

Proof. The function uk(x) satisfies 

Δuk(x) =
∫

V 
δ(w · x − b)φk(w, b) dw db = R∗φk(x), ∀ x ∈ D. ( 2.23)

We also define

φ̃k(w, b) := 
1 
λk

∫
D 

uk(x)σ (w · x − b) dx, ∀(w, b) ∈ S d−1 × R, ( 2.24)

then φk(w, b) = φ̃k(w, b) on V , hence R∗φ k = R∗φ̃k on D. Differentiate (2.24)  twice  in  b, 

λk∂
2 
b φ̃k =

∫
D 

uk(x)δ(w · x − b) dx = RχDuk, ∀(w, b) ∈ Sd−1 × R. ( 2.25) 

For odd d, apply (−Δ)(d−1)/ 2R∗ on both sides of (2.25) and use Lemma 2.9, we obtain 

λk(−Δ)(d−1)/2R∗∂2 
b φ̃k = λk(−Δ)(d−1)/2ΔR∗φ̃k = (−Δ)(d−1)/2R∗(RχDuk), 

then with (2.23) and Theorem 2.8, it implies 

cdχDuk(x) = λk(−Δ)(d+3)/2uk(x), ∀ x ∈ D . 

For even d, apply (−Δ)(d−2)/2R ∗ on both sides of (2.25) and follow the same procedure, we obtain 

cdψk(x) = λk(−Δ)(d+3)/2ψk(x), ∀ x ∈ D, 

where ψk(x) = (−Δ)−1/2χDuk(x). The eigenfunctions φk (w, b) can be retrieved from the relation (2.25) 
and boundary conditions φk(w, 1) = ∂bφk(w, 1) = ∂2 

bφ k(w, 1) = 0. �
The above Lemma 2.10 shows that cdλ

−1 
k is the eigenvalue of (−Δ)(d+3)/2. From the Weyl’s 

law for −Δ,  we  have  λk = Θ(k−(d+3)/d) (using Landau notation) as k → ∞. Suppose the target
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 15

function f (x), x ∈ D ⊆ Rd, can be represented by a superposition of ReLU functions with weight 
h(w, b), (w, b) ∈ V: 

f (x) =
∫

V 
σ(w · x − b)h(w, b) dw db �⇒ Δf (x) = R∗h(w, b). 

In the one-dimensional case, the relation is further simplified to d2 

dx2 f (x) = h (x). Assume h(w, b) =∑∞
k=1 αkφk(w, x) and use uk defined in Lemma 2.10 and (2.23), we have 

f (x) = 
∞∑

k=1 
αkΔ

−1R∗φk(x) = 
∞∑

k=1 
αkuk(x). (2.26) 

Now we characterize the asymptotic behavior of uk when D is a unit ball in Rd. Due to the symmetry, 
uk can be separated into uk(x) = Vk(|x|)Yk (̂x), where x̂ = x /|x| and Yk denotes a spherical harmonics
of order l on S

d−1 and Vk(r) satisfies the following by Lemma 2.10

(
− 

d2 

dr2 − 
d − 1 

r 
d 
dr 

+ 
1 
r2 l(l + d − 2)

)( d+3)/2 

Vk = 
cd 
λk

Vk.

The equation can be reduced to a set of Bessel’s differential equations,(
− 

d2 

dr2 − 
d − 1 

r 
d 
dr 

+ 
1 
r2 l(l + d − 2 ) − μ2 

k,p

)
Vk = 0,

where μk,p =
[

cd 
λk

]1/(d+3) 
e2pπ i/(d+3), p = 1, 2, · · · , d+3. Take a change of variable s = μk,pr, the above 

equation becomes the standard Bessel’s equation(
s2 d2 

ds2 + (d − 1)s 
d 
ds 

+ (s2 − l( l + d − 2))

)
Vk = 0,

which implies Vk(r) = ∑d+3 
p=1 βk,p(μk,pr)−νJl+ν(μk,pr), ν = d−2 

2 and βj ∈ C are coefficients. 
For sufficiently large k that |μk,p| � (l + ν)2 with Im(μk,p) 
= 0, the asymptotical behavior is√

2 
πμk,pr cos(μk,pr − l+ν 

2 π − π 
4 ), whose magnitude grows exponentially like O(eIm(μk,p)r) with different 

rates. Since the L2 norm of uk(x) is uniformly bounded, the coefficients βk,p → 0 if Im(μk,p) 
= 0.
That means, asymptotically, the eigenfunction uk behaves like a usual Bessel function multiplied with
spherical harmonics. For a general compact domain D ⊆ R

d, all the arguments above are still valid
except it is more difficult to explicitly write out the corresponding uk.

REMARK 2.11. For the Gram matrix corresponding to activation function ReLUm(x) = 1 
m! [max(x, 0)]m 

in d-dimension with m ≥ 1, one can modify the above theorems to formally show:

• If m is odd, (cdλ
−1 
k ,R∗φk) forms an eigenpair of the operator (−Δ)

d−1
2 +(m+1).
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16 S. ZHANG ET AL.

FIG. 3. Eigenmodes of λk for k =  {1, 2, 3}, {4, 5, 6}, 30, 60 with n = 1000. The first and s econd rows correspond to uniform and 
adaptive b, respectively.

• If m is even, (cdλ
−1 
k ,R∗∂bφk) forms an eigenpair of (−Δ) 

d −1 
2 +(m+ 1). 

Using the inversion formula for the Radon transform, we have λk = Θ( k− d+2m+1
d ).

REMARK 2.12. Although the decay of eigenvalues seems slower in higher dimensions, the number of 
Fourier modes less than frequency ν is Θ(νd). In other words, given a threshold ε for the leading singular 
value, no matter ho w wide a two-layer ReLUNN is, it can only resolve all Fourier modes up to frequency

O(ε− 1
d+3 ).

2.3 Numerical e xperiments

In this section, various numerical experiments are presented to verify our earlier analysis results: (1) the 
spectral property of the Gram matrix corresponding to ReLU functions and (2) the low-pass filter nature
of two-layer networks in the least square setting.

2.3.1 Spectrum and eigenmodes of Gram matrix in one dimension. The first two numerical experi-
ments sho w the spectrum of the Gram matrix for ReLU functions in the one-dimensional case. Figure 1 
and the first row of Fig. 3 is the plot for eigenvalues in descending order and selected eigenmodes for 
uniform biases respectively, i.e. bj = b1 +2(j−1)/(n−1) for j ∈ [n] with b1 = −1. They agree with our
analysis perfectly. Figure 2 and the second row of Fig. 3 are for non-uniform biases adaptive to the rate 
of change, i.e. |f ′(x)|,  of  f (x) = arctan(25x) as an example. Define F(x) = ∫ x 

−1 |f ′(t)| dt
/ ∫ 1 

−1 |f ′(t)| dt, 
which is strictly increasing. There exists unique bi ∈ [−1, 1] such that F(bi) = (i−1)/(n−1) for i ∈ [n]. 
We see that the conditioning becomes a little worse. However, the leading eigenmodes are more adaptive
to the rapid change of f (x) at 0. This is demonstrated further when using a least square approximation
based on ReLU functions with uniform and adaptive biases. In Fig. 4, we show the projection of f on the 
leading eigenmodes corresponding to the Gram matrix. We observe that fewer leading eigenmodes are
needed to represent/approximate the target function for adaptive biases compared to uniform biases.

2.3.2 Approximation in one dimension: FEM basis vs. ReLU basis. Next, we use numerical experi-
ments to show least square approximation using FEM (finite element methods) basis vs.ReLU basis, two-
layer NNs, in different setups when machine precision, grid resolution and the conditioning of the Gram
matrix all play a role in practice. As discussed before, these two bases are equivalent mathematically.
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 17

FIG. 4. Projection of f on the eigenmodes of the Gram matrix: coefficients vs. eigenmode index.

TABLE 1 Error comparison for approximating f (x) = arctan(25x) with suff icient samples

float32 float64 
n = 100 n = 1000 n = 100 n = 1000 
MAX MSE MAX MSE MAX MSE MAX MSE 

NN Uniform b 6.09 × 10− 2 9.58 × 10− 5 7.19 × 10− 2 1.43 × 10− 4 1.37 × 10−2 1.70 × 10− 6 1.05 × 10− 4 1.33 × 10− 10 

FEM Uniform b 1.37 × 10− 2 1.70 × 10− 6 1.05 × 10− 4 1.33 × 10− 10 1.37 × 10−2 1.70 × 10− 6 1.05 × 10− 4 1.33 × 10− 10 

NN Adaptive b 6.83 × 10− 2 7.54 × 10− 5 1.89 × 10− 2 1.06 × 10− 5 3.93 × 10−3 1.42 × 10− 6 4.74 × 10− 5 1.17 × 10− 10 

FEM Adaptive b 2.92 × 10− 3 9.95 × 10− 7 3.79 × 10− 5 1.02 × 10− 10 2.92 × 10−3 9.95 × 10− 7 3.77 × 10− 5 1.02 × 10− 10 

Numerically machine precision and grid resolution are common factors for both representations. The
only difference is the Gram matrix. Table 1 summarizes the results. In particular, the final numerical 
mean square error (MSE) is directly related to the least square approximation. As we can see from the 
results, when single precision is used in the computation and n = 100 evenly distributed grid points 
(biases) are used, the grid resolution is the bottleneck for numerical accuracy near the rapid change. So 
the errors for FEM and NN are about the same. Numerical errors are reduced when the grid distribution is 
adaptive to the rapid change of the target function as described above. However, adaptive grids are much 
more effective for finite element basis. When a very fine grid n = 1000 is used, machine precision and 
the conditioning of the Gram matrix become the most important factors. Well-conditioned FEM (even
for adaptive grid) can reach the machine precision while finite machine precision and ill-conditioned
NN limit the total number of leading eigenmodes (low pass filter) and can not approximate a function
with rapid change well. Moreover, increasing NN width further does not help. When double precision is
used, even the NN has enough leading eigenmodes to approximate the target function well and the grid
resolution becomes the limit for both FEM and NN. Hence the numerical errors for FEM and NN are
similar.
Instead of using a (locally) rapid change function, we perform experiments on more and more oscillatory 

functions to demonstrate similar conclusions. Our target functions are f (x) = cos(6πx)−sin(2πx) and its 
rescaled more oscillatory version f (3x), f (9x). In these tests, instead of using the default threshold of the 
leading singular values of the Gram matrix based on machine precision, we introduce a manual singular
value cut-off ratio1 , η, to see the low pass filter effect for NN more clearly. The results are plotted in
Fig. 5 and the approximation errors are summarized in Table 2. From both the plots and the MSE error, 
we can see that different cut-offs do not affect the FEM approximation since the condition number of the 
Gram matrix corresponding to the FEM basis on the uniform mesh is O(1). As a result, all eigenmodes
(frequencies) that can be resolved by the grid size can be recovered accurately and stably. The slight

1 Singular values are treated as zero if they are smaller than η times the largest singular value.
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18 S. ZHANG ET AL.

TABLE 2 Approximation errors in Fig. 5 

f1(x) = f (x) f2(x) = f (3x) f3(x) = f (9 x) 
MAX MSE MAX MSE MAX MSE 

FEM (least square, η = 10−r , r = 3, 6, 9) 4.85 × 10−5 5.34 × 10−10 4.38 × 10−4 4.32 × 10−8 3.95 × 10−3 3.50 × 10− 6 

NN (least square, η = 10−3) 2.79 1.28 2.86 1.19 2.88 1.15 
NN (least square, η = 10−6) 2.66 × 10−1 9.44 × 10−4 1.74 5.39 × 10−1 2.79 1.04 
NN (least square, η = 10−9) 1.52 × 10−2 1.45 × 10−6 6.38 × 10−2 1.92 × 10−5 1.13 4.65 × 10− 1 

FIG. 5. Approximation comparison: FEM vs. NN with 2000 samples and n = 2000 equal spaced basis. The three rows correspond 
to f1, f2 and f3, respectively. Here f1(x) = f (x), f2(x) = f (3x), f 3(x) = f (9x),  where  f (x) = cos(6πx) − sin(2πx).

decrease in accuracy as the oscillation increases is due to the fact that the least square approximation 
error is proportional to h2

∫ |f ′′(x)| dx, where h is the grid size, for piecewise linear finite element basis 
by standard approximation theory. The dramatic effect of the cut-offs on NN is due to the fast spectral 
decay of the Gram matrix corresponding to the ReLU basis. When the cut-off ratio is η = 10−3,  the  
linear space spanned by leading eigenmodes above the threshold can not approximate even the relative
smooth f (x) well. When the cut-off ratio is reduced to η = 10−9, there are enough leading modes above
the threshold that can approximate f (x), f (3x) well but not f (9x).

In the following experiment, we show the low-pass filter nature of two-layer NNs vs. FEM basis with 
respect to noise and overfitting (or over-parametrization). The target function is f (x) = cos(3πx) − 
sin(πx) with noise sampled from U(−0.5, 0.5) in our test. We manually select the cut-off ratio, η, for
small singular values. The numerical results are shown in Fig. 6 and Table 3 for evenly distributed bi. 
Since FEM has a condition number of O(1), all modes resolved by the grid are captured independent of 
the cut-off ratio η. On the other hand, NN only captures the leading eigenmodes, the number of which is 
determined by η. We can see that NN captures more modes as η becomes smaller (less regularized). It
is also interesting to see the low pass filter effect when the Adam optimizer is used to minimize the least
square, which is related to the learning dynamics analysis in Section 3. In the case of 1000 data points 
and 1500 degrees of freedom, Fig. 7 shows that a two-layer ReLU network is significantly more stable 
with respect to o ver-parametrization due to its low-pass filter nature.

2.3.3 Spectrum and eigenmodes of Gram matrix in two dimensions. We use a numerical example
to show, Fig. 8, the spectrum of the discrete Gram matrix in two dimensions with 25600 evenly
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 19

TABLE 3 Approximation errors in Fig. 6 

least square Adam optimizer 
FEM (η = 10−r , r = 3, 6, 9 ) NN (η = 10−3) NN (η = 10−6) NN (η = 10−9) NN (float32) NN (float64) 

MAX 4.97 × 10−1 1.81 1.15 × 10−1 3.00 × 10−1 1.73 × 10−1 1.77 × 10−1 

MSE 5.90 × 10−2 7.60 × 10−1 2.23 × 10−3 9.48 × 10−3 3.68 × 10−3 3.51 × 10−3 

FIG. 6. Approximation stability: FEM vs. NN subject to uniform noise U(−0.5, 0.5) on 1000 samples and n = 1000 basis. The 
first four plots are results from the least square with different cut-off ratio η for singular values. The last two plots are the results 
trained by the Adam optimizer, where ‘Adam1’ and ‘Adam2’ use single and double precision, respectively.

FIG. 7. Test of overfitting: FEM vs. NN with 1000 samples, n = 1500 basis and double precision. The first two plots are results 
from least s quare, where η is the cut-off ratio for small singular values. The last plot is the result trained by the Adam optimizer.

spaced samples for (w, b) ∈ S1 × [−1, 1]. The numerical experiments agree with our analysis in
Section 2.2 very well. Several eigenmodes are presented in Fig. 9. In practice, those high-frequency 
modes whose corresponding eigenvalues are s maller than the machine precision threshold can not be
captured.

2.4 Different activation functions and scaled parameter initialization.

Here we demonstrate the behaviours and their comparison for two-layer NNs using different activation 
functions, denoted generically by σ . The activation functions compared here are ReLU, sine and 
tanh and its f irst and second derivatives tanh′, tanh′′. We limit our discussions to two-layer networks
in one dimension. Figure 10(a) plots these activ ation functions.

A general two-layer network can be regarded as a parametrized function, denoted by h(x; a, w, b), 
represented as the linear combination of a set of activation (or basis) functions parametrized by w and b:
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20 S. ZHANG ET AL.

FIG. 8. Spectrum of the discrete Gram matrix in tw o dimensions with 25600 e venly spaced samples.

FIG. 9. Eigenmodes of λk for k ∈ {1, 2, 3, 4, 5, 6, 50, 100, 150, 200, 250, 300} with n = 25600.

FIG. 10. Illustrations of different activation functions and the corresponding sepctrum.
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 21

FIG. 11. First row: using least square approximation with n = 512, fixing w, b ∈ U(−1, 1). Second row: optimization using Adam 
with n = 512, initialization w, b ∈ U(−1, 1). All tests were conducted using double precision.

h(x; a, w, b) = 
n∑

i=1 
aiσ(wix + bi ). (2.27) 

As the default setting, we set x ∈ [−1, 1] and initialize wi, bi ∼ U(−1, 1) and ai ∼ U (−1/
√

n, 1/
√

n)

uniformly distributed.
As discussed above, the conditioning of a two-layer network representation (2.27) is determined by 

the spectrum of the Gram Matrix G, where 

Gi,j =
∫ 1 

−1 
σ(wix + bi)σ (wjx + bj) dx, wi, bi ∼ U(−1, 1) . 

The logarithmic plot of the spectra of the Gram matrices corresponding to different activation functions
are shown in Fig. 10(b). ExceptReLU, the Gram matrix of which has a polynomial decay as shown above, 
all other activation functions are analytic and hence their corresponding Gram matrices have exponential
spectral decay [44, 45]. 

Figure 11 shows the approximation of f (x) = 1 
1+3600(x−0.2)2 on [− 1, 1] using two-layer networks

(2.27) with different activation functions. The networks have a width n = 512 and computations 
are implemented in double precision. The first row shows the least square approximation with fixed 
w, b ∈ U(−1, 1) and solving the linear system for a with Gram matrix G. The second row presents the 
approximation results obtained by training with Adam, where the parameters (ai, wi, bi) are optimized 
starting from uniform initialization: a ∼ U(−1/

√
n, 1/

√
n) and w, b ∼ U( −1, 1). Based on the spectral

analysis, ReLU provides the best approximation due to its slowest spectral decay, or equivalently, its least
bias against high frequencies among this group of activation functions. Among the remaining activation
functions, tanh′′ yields better results owing to its relatively slower spectral decay.

Actually, for two-layer NNs using activation functions that are not homogeneous of degree one 
such as ReLU, instead of initializing wi, bi uniformly distributed in (−1, 1), one can scale the range 
to be (−s, s). By choosing a larger s, one can improve the representation capability of a two-layer
NN (2.28). One way to see this is again through spectral analysis. The introduction of larger wi and 
hence basis functions with more rapid changes (larger derivatives) leads to a slower spectral decay of 
the corresponding Gram matrix, Gi,j = ∫ 1 

−1 σ
(
wi(x + b i)

)
σ
(
wj(x + bj)

)
dx with w ∈ U(−s, s) and

b ∈ U(−1, 1), as shown in Fig. 12.
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22 S. ZHANG ET AL.

FIG. 12. Spectrum of G with w ∈ U(−s, s) and b ∈ U(−1, 1),  where  Gi,j is given by Gi,j =
∫ 1 
−1 σ

(
wi(x + bi)

)
σ
(
wj(x + bj)

)
dx .

Another way to look at this is that scaling w, b by s can be regarded as scaling up the target function 
by s, i.e. approximating f (x) on [−1, 1] by a two-layer network h(x) 

h(x) = 
n∑

i=1 
aiσ
(
wi(x + bi)

)
on [−1, 1] with w ∈ U(−s, s), b ∈ U(−1, 1) (2.28)

is equivalent to approximating f̃ (x) = f ( x
s ) on [−s, s] by the two-layer network h̃(x) = h( x

s )

h̃(x) = h
(x 

s

)
= 

n∑
i=1 

aiσ(wix + bi) on [−s, s] with w ∈ U(−1, 1) , b ∈ U(−s, s).

However, in order to be able to resolve the rapid change of activation functions with derivatives 
proportional to s, or to have biases distributed dense enough in the interval [−s, s], s can be at most 
proportional to the network width n. For example, if one uses sine as the activation function, then s 
can be at most O(n) (preferably n/2) so that the network can provide a set of maximally diverse random 
Fourier bases without missing intermediate frequencies. This is because using linear combinations of 
sin(wx + bi), i = 1, 2, for two different bi can generate both sin(wx) and cos(wx). In the case of equally
spaced w, using this set of parametrized activation functions is equivalent to the Fourier series with basis
sin(mx), cos(mx), m = − n

2 + 1, · · · , n
2 .

The experiment results shown in Fig. 13 demonstrate how scaling up w in tw o-layer networks as
in (2.28) can enhance the representation capability and hence the approximation results. We note that 
different initializations may lead to different results, but the overall outcomes are largely similar. The 
subtle issue is how large s should be. It is interesting to observe that for activation functions sine, tanh 
and tanh′, the maximum magnitudes of their first derivatives are all bounded by 1, s = n 

2 and s = n 
work well. Once s = 3n 

2 , the results degrade. For tanh′′, the maximum magnitude of its first derivative
is bounded by 2. It can be seen that s = n

2 works well but s = n and s = 3n
2 have degraded results. These

tests suggest that the network size need to be able to resolve the rapid change of the activation function
which is characterized by s · supx |σ ′(x)|.

Although appropriate scaling up w, b can improve approximation significantly over those correspond-
ing results with normalized distribution in Fig. 11, however, our tests also suggest that the network size 
needs to be large enough, proportional to s · supx |σ ′(x)|, to resolve the rapid change of the activation 
function. Moreover, it is difficult for a gradient descent based optimization to effectively learn adaptive
w, b to capture those fine features that are biased against in the initial representation. Hence, it implies that
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FIG. 13. Illustrations of learned networks
∑n 

i=1 aiσ(wi(x + bi)) optimized using Adam with n = 512, initialization a ∈ 
U(−1/

√
n, 1/

√
n), w ∈ U(− s, s) and b ∈ U(−1, 1). All tests were conducted in double precision.

the representation capability of a two-layer network is no more than a linear representation which finds 
the optimal linear combination of a set of a priori given basis functions to approximate a target function, 
for example, the linear least square approximation. In this case, there are already well developed basis 
functions that provide well-conditioned representations with efficient numerical algorithms (based on 
solving linear systems), such as finite element bases, Fourier bases, splines, wavelets, which are usually 
better than using two-layer NNs when the number of basis functions is equivalent to the network width. 
On the other hand, the key issue is that the basis functions are given a priori, independent of the target 
function to be approximated. Hence, to have enough representation capability, the set of basis has to
be large and diverse enough and hence suffer from the curse of dimensionality. We would like to point
out that, the scaling of ReLU as the activation function, which is homogeneous degree of degree one,
can be absorbed in a. The distribution of b is equivalent to a grid for piecewise linear approximation
in one dimension. Numerically, due to its ill-conditioning, the approximation is worse than using linear
representation by finite element basis as discussed in earlier sections.

REMARK 2.13. For deep NNs, scaling up w, b across all layers can cause instability for the training
process.

2.5 Observations and comments

Based on the above analysis and numerical experiments, we give a few comments on using shallo w NNs,
many of which have been well observed in practice.

2.5.1 Low-pass filter nature. In practice (e.g. MATLAB), solving a linear system is typically 
approximated/regularized by its Moore-Penrose pseudo-inverse by cutting off the small eigenvalues 
at a threshold of nελ1 to control the computer roundoff error, where n is the matrix size and ε is the 
machine precision or noise level in the data. For a two-layer ReLU network with evenly or uniformly

distributed biases and width n ≥ k, given the spectral decay of the Gram matrix, λk = Θ(k− d+3
d ), only
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24 S. ZHANG ET AL.

leading modes for k ≤ m = O(ε− d 
2d+3 ) can be stably recovered in the least-square approximation. If the 

network is wide enough such that all leading modes up to m can be approximated well, the dominant
numerical error is caused by the truncation of those modes higher than m. From (2.26), we see that 
truncation of the higher modes in the parameter space leads to a low pass filter in the approximation of 
the original function since uk is equivalent to the eigenfunction of the Laplace operator asymptotically. 
In other words, at most all eigenmodes of the Laplace operator up to frequency O(ε− 1 

2d+3 ) can be 
captured in d dimensions no matter how wide the network is. This is because, 1) before the network 
width reaches a threshold nε,d = O(ε− d 

2d+3 ), the network does not have a grid resolution to resolve the

frequency modes of order O(ε− 1
2d+3 ), 2) even as the network width passes nε,d, the network can only

approximate leading modes k such that λk ≥ nελ1 ⇒ k
1
d ≤ O(ε− 1

2d+3 ) due to the ill-conditioning of the
representation.

The machine precision for single and double precision are: ε1 = 2−23 and ε2 = 2−52 respectively. 
Hence, a two-layer NN can resolve about 223d/(2d+3) and 252d/(2d+3) eigenmodes respectively in d-
dimensions. The number of modes in each direction that can be resolved is 223/(2d+3) and 252/(2d+3) 

respectively in d-dimensions, which is roughly 24 (d = 1 ), 10 (d = 2), 6 (d = 3) and 2 (d = 10) for
single precision, and 1351 (d = 1), 172 (d = 2), 55 (d = 3) and 5 (d = 10) for double precision.

REMARK 2.14. Our analysis applies to the NTK regime where the network width goes to infinity while
the biases are pretty much fixed.

2.5.2 Approximation error. Given a machine precision ε, the number of modes that can be captured 
by a two-layer ReLU network is at most O(ε− 1 

2d+3 ) (no matter how wide the network is). One can
characterize the numerical error for a two-layer ReLU network in two regimes:

• Small network If the network width n is less than O(ε− d 
2d+3 ), the corresponding grid resolution 

is less than h = O(n− 1 
d ) ≤ O(ε 

1 
2d+3 ), which can not resolve the highest mode limited by ε− 1 

2d+3 . 
Hence the numerical error is dominated by the discretization error. Since the resulting approximation 
is continuous peicewise linear, the L2 approximation error of a f unction f with bounded Sobolev

norm ‖f ‖H2 is of order h2‖f ‖H2 ∼ n− 2
d ‖f ‖H2 . In the small network regime, using a smooth

activation function may be beneficial when approximating a smooth function due to the reduction of
discretization error.

• Large network When the network is wide enough to resolve the highest mode of order O(ε− 1 
2d+3 ) 

accurately, then the numerical error is dominated by the truncation of higher modes. For a f unction
f in Sobolev space Hp, the L2 error due to truncation is O(ε

p
2d+3 ‖f ‖Hp).

2.5.3 Implications. The ill-conditioning of two-layer NN representation and its bias against high 
frequencies explain why it is widely observed that shallow NNs can approximate smooth functions well, 
while for functions with fast transitions or rapid oscillations, one may achieve a numerical accuracy 
that is far from machine precision even using wide shallow networks for which universal approximation
is proved in theory. On the other hand, the low-pass filter nature of the shallow NNs also alleviates
instability with respect to noise or overfitting/over-parametrization.

The spectral decay of the Gram matrix for a set of basis depends on the smoothness of the basis. The
smoother the activation function is, the faster the spectrum of the corresponding Gram matrix decays
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 25

(see Remark 2.11 and Section 2.4), and hence the fewer eigenmodes can be used for approximation in
practice and the more bias against high frequencies.

However, with a fixed network width (or a fixed grid resolution), approximation order induced 
by the activation function also plays a role. For example, using ReLU results in a piecewise linear 
approximation, the error of which is proportional to the grid resolution squared (2nd order) if the target 
function is twice differentiable. If the Heaviside function (the derivative of ReLU) is used as the ac  tivation
function, although the Gram matrix is better conditioned than using ReLU, the resulting piecewise
constant approximation is only 1st order if the target function is differentiable, and hence may limit
the numerical accuracy in practice.

In applications, if one can make the target function or map smooth under certain transformation, for 
instance, a linear transformation with a set of ne w bases, e.g. Fourier basis with high frequencies, using
a NN in the transformed domain can achieve high accuracy.

2.5.4 Gradient decent for least squares. Before we investigate the full nonlinear learning dynamics 
for two-layer NNs in the next section, we demonstrate how ill-conditioning in the representation will 
affect the convergence of a gradient descent based optimization for a simple quadratic convex function 
corresponding to a linear least square approximation. Instead of finding the least square solution 
directly by solving the linear system (normal equation) with the Gram matrix G, if one chooses to 
minimize the least square by using gradient descent, then the dynamics of the coefficients a(t) = 
[a1(t), a2(t), · · · , an(t)]

T follow the system of ODEs 

da(t) 
dt 

=−Ga(t) + f , Gi,j=
∫

D 
σ(wi · x − bi)σ (wj · x − bj) dx, f i=

∫
D 

f (x)σ (w i · x − bi ) dx. 

The system is stiff due to the fast spectral decay of G.  Let  (λk, gk) be the eigen pairs of G and define
âk(t) = aT(t)gk, f̂k = f Tgk. We have

d̂ak(t) 
dt 

= −λk̂ak(t) + f̂k �⇒ âk(t) =
(̂

ak(0) − f̂k 
λk

)
e−λkt + f̂k

λk
.

It takes at least t > O(λ−1
k ) for the initial error in kth mode to reduce significantly. Since λk → 0

as k → ∞ and the corresponding eigenmode becomes more and more oscillatory, two-layer NNs bias
against high frequencies in both representation and training. An appropriate stopping time can be used
for the sake of computation cost or regularization for noise or machine roundoff error.

3. Learning dynamics 

The key feature in machine learning using NN representation is the training process, which ideally can 
find the optimal parameters, i.e. an adaptive representation driven by the data. The relevant approximation 
theory has been studied extensiv ely. The best-known approximation error estimates using ReLU as the
activation function for two-layer NN [3, 42] are based on the fact that σ ′′(t) = δ(t), which implies Δf 
can be expressed as a standard Radon transform when viewing the parameters {ai}n 

i=1 as an empirical 
measure of (w, b) ∈ S

d−1 ×R. In practice, gradient-based methods (and the variants) are adopted to seek
the optimal parameters.
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Our previous analysis shows that a two-layer NN with fixed (or randomly sampled) biases will 
have a low-pass filter nature, which makes it challenging to capture high-frequency components, e.g. 
rapid changes or fast oscillations. Here we show that the ill-conditioning of the Gram matrix causes 
difficulties in the learning process as well. Intuitively, without high frequency information, there is 
no correct guidance in effectively and efficiently optimizing the distribution of the parameters, (w, b),
from initial uniform distribution to be non-uniform adaptive to the target function. Often in practice,
undesirable clustering of parameters, which reduces the effective network width, may occur during the
training.

Here we study the following natural question: assuming that a gradient-based optimization can find 
the optimal solution, which itself is a challenging question in general, what is the training dynamics and 
its computation cost to attain such a solution from a random initial guess? In particular, we demonstrate 
that initial high-frequency component error can take a long time to correct. All these lead to numerical
difficulties in achieving the optimal solution even if one assumes the learning process can find the
optimal solution in theory. It implies that even if the full learning process is applied, the numerical
error can still be far from the machine precision for functions with high-frequency components in
practice.

Training a NN with the gradient flow can be regarded as the gradient descent method with a very small 
step size for finite time dynamics. We illustrate this using a one-dimensional example. Let D = [−1, 1], 
the gradient flow of {ai}n 

i=1 and {bi}n 
i=1 follow 

dai 
dt 

= −
∫

D 
(h(x, t) − f (x))σ (x − bi) dx and 

dbi 
dt 

= ai

∫
D 
(h(x, t) − f ( x))σ ′(x − bi) d x. 

One popular way to analyze the dynamics of the neuron network is the mean-field representation in 
which the network is written as 

h(x, t) =
∫
R2 

aσ(x − b)μn(a, b, t) da db 

with empirical measure μn(a, b, t) = 1
n

∑n
i=1 δ(a−ai(t), b−bi(t)). The analysis of the limiting behavior

of mean-field NNs can be found in [38, 46, 57] and the references therein. However, most of the mean-
field studies assume the measure μn(·, · , t) converges as t → ∞ and n → ∞.

Our study works for fully discrete two-layer NNs with no convergence assumption for the measure μn 
or requiring n → ∞. The main difficulty for our analysis is the possibility of biases bi moving out of the 
bounded domain of interest. Def ine generalized Fourier modes, {θm}m≥1, which are the eigenfunctions
of the Gram kernel G in (2.3), and ĝ as the generalized discrete Fourier transform of g,

ĝ(m) =
∫

D 
g(x)θm(x) d x. 

In one dimension, the generalized Fourier transform is asymptotically close to the standard Fourier 
transform as the mode increases. The key to our study is the construction of an auxiliary function
w(x, t) ∈ C2(D) (defined by (3.5)) that satisfies ∂2 

x w(x, t) = h(x, t) − f (x) = e(x, t), which is 
the approximating error at time t, with boundary conditions w(1, t) = ∂xw(1, t) = 0. By studying 
the evolution of ŵ(m, t) we show at least how slow the learning dynamics can be in terms of the
lower bound for time needed to reduce the initial error in mode m in half. We prove the following
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statement for learning dynamics in one dimension under the following mild assumptions: 1) there exists 
a constant M > 0 that supn 

i=1 |ai(t)|2 ≤ M; 2) the initialization of biases {bi(0)}n
i=1 are equispaced

on D.

THEOREM 3.1. If |ŵ(m, 0)| 
= 0, then it will take at least O(
m3|ŵ(m,0)| 

n ) time to reduce the generalized 
Fourier coefficient in half, i.e. |ŵ(m, t)| ≤ 1

2 |ŵ(m, 0)|.
In numerical computation, to follow the gradient flow closely, the discrete time-step is O( 1 

n ).  From  
the relation |ŵ(m, t)| � m−2 |̂e(m, t)|, Theorem 3.1 says that if the initial error in mode m, |̂e(m, 0)| 
= 0, 
(which means |ŵ(m, 0)| > cm−2 for some c > 0,) it takes at least O(m) steps to reduce the error in mode 
m by half. Note that the result does not depend on the convergence of the optimization algorithm and 
the above estimate is a lower bound. In practice, the gradient-based training process could have an even
slower learning rate. In the next theorem, the lower bound is improved in a more specific scaling regime
(in terms of network width vs. frequency mode) and using better estimates (see Appendix C). It implies 
that it takes at least O(m2) steps to reduce the error in mode m by half in numerical computation. In the 
special case of fixed biases (i.e. least square problem), the number of steps needed is at least O(m4) if
n = Ω(m3) (see Remark C.6). 

THEOREM 3.2. If the total variation of the sequence {a2 
i (t)}n 

i=1 is bounded by M′.  Let  n ≥ m4 be 
sufficiently large, then it will take at least O(

m4|ŵ(m,0)| 
n ) time to reduce the generalized Fourier coefficient

by half, i.e. |ŵ(m, t)| ≤ 1
2 |ŵ(m, 0)|.

The above results show that reducing the initial error in high-frequency modes by gradient-based 
learning dynamics is slow. Moreover, due to the low-pass filter nature shown earlier, it is difficult to 
capture high-frequency modes for two-layer NNs with evenly or uniformly distributed initial biases.
These two effects show why a two-layer NN struggles with high-frequency modes in approximation
even if a full training process is employed.

Before we prove the above two theorems, we need to introduce the mathematical setup and prove a
few lemmas and intermediate results.

3.1 Mathematical setup of learning dynamics

Let D = (−1, 1), we consider approximating the objective function f (x) ∈ C(D), with the shallow NN 

h(x) = 
n∑

i=1 
aiσ(x − bi). 

Generally speaking, the biases {bi}n 
i=1 are supported on R during the training process. For analysis 

purposes, we restrict {bi}n 
i=1 ⊆ Dε, where Dε = supp χ = (−1 − ε, 1), and modify the activation

function in the two-layer NN representation as follows

h(x) = 
n∑

i=1 
aiψ(x, bi), ψ(x, bi) = χ(bi)σ (x − bi), ∂2 

x ψ(x, b) = ∂2 
bψ(x, b) = δ(x − b), x, b ∈ D.
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Here χ is an approximation to the characteristic function of D by adding a quadratic transition region: 

χ(x) = 

⎧⎪⎪⎨⎪⎪⎩ 

1, x ∈ D, 

1 −
(

1 
ε (x + 1)

)2 
, x ∈ (−1 − ε, − 1], 

0, otherwise,

and ε is a positive parameter. The loss function is 

L(h, f ) := 
1 
2

∫
D 

|h(x) − f (x)|2 dx . 

Minimizing L(h, f ) over the parameters {ai}i∈[n] and {bi}i∈[n] by gradient descent follows the gradient 
flow 

d 
dt 

ai(t) = −
∫

D 
(h(x, t) − f (x))ψ(x, bi (t)) dx (3.1) 

and 

d 
dt 

bi(t) = −ai(t)
∫

D 
(h(x, t) − f (x))∂bψ(x, bi( t)) dx (3.2) 

with certain initial conditions {ai(0)}i ∈[n] and {bi(0)}i∈[n]. Due to the modification of the network
representation, one can show that no bias can move outside Dε at a later time.

THEOREM 3.3. If the initial biases and weights satisfy {bi(0)}i∈[n] ⊆ Dε and supi∈[n] |ai(0)| < ∞,  we  
have {bi (t)}i∈[n] ⊆ Dε, ∀t ≥ 0.

Proof. At any time t, using Cauchy-Schwartz inequality,

∣∣∣∣ d 
dt 

ai(t)

∣∣∣∣ ≤
√∫

D 
|h(x, t) − f (x)|2 dx

√∫
D 

ψ(x, bi(t))
2 dx 

≤
√∫

D 
|h(x, 0) − f (x)|2 dx

√∫
D 

ψ(x , bi(t))
2 dx < ∞.

Therefore if initial ai(0) is finite, ai(t) is always finite, which in turn implies every derivative d 
dt bi(t) is 

also finite. Suppose at time t > 0 that bk(t) ∈ Dε�
, then there exists an open path that ∀t′ ∈ (t0, t1) ⊆ (0, t) 

that d 
dt bk(t

′) 
= 0 and bk(t
′) ∈ Dε�

. However, ∂bψ(x, b) = 0 for b ∈ Dε�
, which is a contradiction.

Therefore every {bi(t)}i∈[n] ⊆ Dε. �
Define the Gram kernel G(b, b′) on D ε × Dε by

G(b, b′) =
∫

D 
ψ(x, b)ψ(x, b′) dx, (3.3)
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which is a compact operator in L2(Dε ).  Let  λk ≥ 0, k = 1, 2, · · · , be the eigenvalues in descending 
order and φk be the corresponding eigenfunctions, which form an orthonormal basis in L2(Dε ).  We  
have G(b, b′) = ∑

k≥1 λkφk(b)φk(b
′). Some properties of φk are studied in Appendix A. Expand the 

coefficient ai(t) along the eigenfunction φk (an orthonormal basis in L2(Dε) in discrete version (at the 
nodal points bi(t)), its dynamics follows 

d 
dt 

n∑
i=1 

ai(t)φk(bi(t)) = 
n∑

i=1 
φk(bi(t)) 

dai 
dt 

+ 
n∑

i=1 
ai(t)φ

′
k(bi(t)) 

dbi 
dt 

= −  
n∑

i=1 
φk(bi(t))

∫
D 

(h(x, t) − f (x)) ψ(x, bi(t)) dx 

− 
n∑

i=1 
φ′

k(bi(t))|ai(t)|2
∫

D 
(h(x, t) − f (x))∂bψ(x, bi(t)) dx 

= −  
n∑

i=1 
φk(bi(t)) 

⎛⎝ n∑
j=1 

Gi,j(t)aj(t) − P(bi(t)) 

⎞⎠ 

− 
n∑

i=1 
|ai(t)|2φ′

k(b i(t)) 

⎛⎝ n∑
j=1 

Ki,j(t)aj(t) − Q(bi(t )) 

⎞⎠ .

where G = (Gi,j)i,j∈[n] and K = (Ki,j)i,j∈[n] are 

Gi,j(t) = G(bi(t), bj(t)), Ki,j(t) = ∂bG(bi(t), bj(t)). 

The functions P and Q are

P(b) =
∫

D 
f (x)ψ(x, b) dx, Q(b) =

∫
D 

f (x)∂bψ(x, b) dx.

We can represent P(b) and Q(b) as sum of eigenfunctions on Dε as well:

P(b) =
∑
k≥1 

pkφk(b), Q(b) =
∑
k≥1 

pkφ
′
k(b).

Therefore we can derive that

− 
n∑

i=1 
φk(bi(t)) 

⎛⎝ n∑
j=1 

Gi,j(t)aj(t) − P(bi(t)) 

⎞⎠ 

= −  
∞∑

l=1 

n∑
i=1 

φk(bi(t))φl(bi(t)) 

⎡⎣λl 

n∑
j=1 

φl(bj(t))aj(t) − pl

⎤⎦
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and 

− 
n∑

i=1 
|ai(t)|2φ′

k(bi(t)) 

⎛⎝ n∑
j=1 

Ki,j(t)aj(t) − Q(bi(t)) 

⎞⎠ 

= −  
∞∑

l=1 

n∑
i=1 

|ai(t)|2φ′
k(bi(t))φ

′
l(bi(t)) 

⎡⎣λl 

n∑
j=1 

φl(bj( t))aj(t) − pl 

⎤ ⎦ . 

Denote Θk(t) =
∑n 

j=1 φk(bj(t))aj(t) − pk 
λk 

,  we  find  th  at

dΘk(t) 
dt 

= −  
∞∑

l=1 
λl

[
Ml,k(t) + Sl,k(t)

]
Θl(t ), (3.4)

where the infinite matrices

Ml,k(t) = 
n∑

i=1 
φl(bi(t))φk(bi(t)), Sl,k(t) = 

n∑
i=1 

|ai(t)|2φ′
k(bi(t))φ

′
l(bi(t))

are both semi-positive.
Consider the energy E(t) = 1 

2

∑
k≥1 λk|Θ2 

k (t)|, then 

dE(t) 
dt 

= −  
∞∑

k,l=1 
λkλlΘk(t)

[
Ml,k(t) + Sl,k(t)

]
Θ l(t) . 

Since the matrices are both non-negative, the energy is non-increasing, thus there is a limit for E(t) as 
t → ∞. Define the auxiliary function

w(b, t) := 
∞∑

k=1 
λkΘk(t)φk(b) , (3.5)

which is directly related to the error from the following relation for b ∈ D,

∂2 
b w(b, t) = ∂2 

b 

⎡⎣ ∞∑
k=1 

⎛⎝λk 

n∑
j=1 

φk(bj(t))aj(t) − pk 

⎞⎠ φk(b) 

⎤⎦ 

= ∂2 
b 

⎡⎣ n∑
j=1 

G(b, bj(t))aj(t) − P(b) 

⎤⎦ 

= ∂2 
b 

⎡⎣ n∑
j=1 

aj(t)
∫

D 
ψ(x, b)ψ(x, bj(t)) dx −

∫
D 

f (x)ψ(b) dx 

⎤⎦ 

= 
n∑

j=1 
aj(t)

∫
D 

δ(x − b)ψ(x, bj(t)) dx −
∫

D
f (x)δ(x − b) dx = h(b, t) − f (b).

(3.6)
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We first provide its regularity property which can be related to the spectral decay of the Gram matrix
determined by the regularity of the activation function.

THEOREM 3.4. The auxiliary function w ∈ H1(Dε ) and w ∈ H2(D) uniformly, respectively.

Proof. From (3.6), we have ‖∂2 
b w‖L2(D) ≤ ‖h(·, 0) − f (·)‖L2(D) uniformly. We also notice that each 

eigenfunction φk, k ∈ N satisfies that φk(b, t)|b=1 = ∂bφk(b, t)|b=1 = 0, hence w(b, t)|b=1 = ∂bw(1, t) = 
0. Using Cauchy-Schwartz inequality, we derive the following Poincaré inequalities,

‖w(b, t)‖2 
L2(D) =

∥∥∥∥∫ b 

1 
∂bw(b′, t) db′

∥∥∥∥2 

L2(D) 
≤ 2

∥∥∂bw(b, t)
∥∥2 

L2(D)

and

∥∥∂bw(b, t)
∥∥2 

L2(D) =
∥∥∥∥∫ b 

1 
∂2 

b w(b′, t) db′
∥∥∥∥2 

L2(D) 
≤ 2

∥∥∥∂2 
b w(b, t)

∥∥∥2 

L2(D)
.

Therefore w ∈ H2(D). Now we prove the other part of the theorem: w ∈ H1(Dε ) uniformly. Here we
use the fact that E(t) = 1

2

∑
k∈N λk|Θk(t)|2 is uniformly bounded by E(0), then

‖w(·, t)‖2 
L2(D) ≤

∑
k∈N 

λ2 
k |Θk(t)|2 <  λ1

∑
k∈N 

λk|Θk(t)|2 ≤ λ1E(0).

Follow the same derivation of (3.6), 

∂bw(b, t) = ∂b 

⎡⎣ ∞∑
k=1 

⎛⎝λk 

n∑
j=1 

φk(bj(t))aj(t) − pk 

⎞⎠ φk(b) 

⎤⎦ 

= ∂b 

⎛⎝ n∑
j=1 

G(b, bj(t))aj(t) − P(b) 

⎞⎠ 

= ∂b 

⎛⎝ n∑
j=1 

aj(t)
∫

D 
ψ(x, b)ψ(x, bj(t)) dx −

∫
D 

f (x)ψ(x, b) dx 

⎞⎠ 

= 
n∑

j=1 
aj(t)

∫
D 

∂bψ(x, b)ψ(x, bj(t)) dx −
∫

D 
f (x)∂bψ(x, b) d x 

=
∫

D 
(h(x, t) − f (x)) ∂bψ(x, b ) dx.

Thus using ‖h(·, t)− f ‖L2(D) ≤ ‖h(·, 0)− f ‖L2(D) and ∂bψ(x, b) ∈ C0(D × Dε ), the following inequality
holds uniformly:

‖∂bw(b, t)‖2 
L2(Dε) ≤ ‖h(·, 0) − f ‖2 

L2(D)

∫
D×Dε 

|∂bψ(x, b)|2 dx db < ∞.

�
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Let {E(tm)}m≥1 be a minimizing sequence for E(t), then 
∞∑

k,l=1 
λkλlΘk(tm)[Ml,k(tm) + Sl,k(tm)]Θl(tm) 

= 
n∑

i=1

(
|w(bi(tm), tm)|2 + a2 

i (tm)|∂bw(bi(tm), tm) |2
)

→ 0, 

which implies that w(bi(tm), tm) → 0 and |ai(tm)∂bw(bi(tm), tm)|  →  0. Note that H1(Dε ) embeds into 
L2(Dε ) compactly, there exists a subsequence {w(·, tms )}s≥1 con verges to w̄ ∈ H1(Dε) strongly (which
is in C0,α(Dε)). Here are two cases:

• If the gradient dynamics bi(t) converges to b∗
i as t →  ∞, then we must have w̄(b∗

i ) = 0. If 
limt→∞ ai (t) 
= 0 or does not exists, then ∂bw̄(b∗

i ) = 0.

• If during the dynamics bi(t) is not converging, then there exists an open set T ⊆ Dε that T ⊆ 
lim supτ→∞{bi(t)}t≥τ or equivalently, T appears infinitely often in the dynamics. Then we must
have w̄(b) = 0, ∀b ∈ T .

REMARK 3.5. In mean-field representation that n →  ∞  and assume the limiting measure
∫
R μ(da, b, t) 

has full support on Dε, we immediately conclude that w̄ ≡ 0. Hence Θk(t) → 0 and E(t) → 0  as  
t → ∞  . This implies the network will converge to the objective function. However, in a discrete setting,
it becomes more complicated due to the existence of local minimums.

3.2 Generalized Fourier analysis of learning dynamics

In this section, we study the convergence of the learning dynamics in terms of frequency modes, 
especially the asymptotic behavior for high-frequency components. The key relation is (3.6), which 
implies one can study the evolution of the Fourier modes of ∂2 

b w(b, t) to understand the evolution of 
error h(b, t) − f (b). The other key fact is ∂4 

bφ(b) = λ−1 
k φ(b) and the spectral decay rate λk = Θ(k−4). 

However, due to the bounded domain of interest b ∈ D and non-periodicity at the boundary, generalized
Fourier modes have to be designed for our study. We introduce an orthonormal basis θk(x) ∈ C(D) that
solves the eigenvalue problem

θ (4) 
k (x) = pkθk(x), 

θk(1) = θ ′
k(1) = 0, 

θ ′′
k (−1) = θ ′′′

k (−1) = 0.

(3.7)

In Appendix B we provide an explicit characterization of θk. In a nutshell, pk = Θ(k4) and θk form a 
complete orthonormal basis for L2(D ) and it is close to a shifted Fourier mode when k is relatively large.

Let ŵ denote the generalized discrete Fourier transform of w on D:

ŵ(k, t) =
∫

D 
θk(b)w(b, t) db. (3.8) 

where θk is the eigenfunction defined by (3.7). We emphasize the following key relation (due to the 
property of ReLU activation function): ∂2 

b w(b, t) = h(b, t) − f (b) for b ∈ D by (3.6). Therefore the
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generalized discrete Fourier transform of ∂2 
b w will be the generalized discrete Fourier transform of the 

error h(·, t) − f (·) on D. Using Lemma A.1, ∂4 
b w(b, t) =∑∞ 

k=1 Θk(t)φk(b) for b ∈ D.

LEMMA 3.6. The following equality holds.∫
D 

w(b, t)θ (4) 
k (b) db =

∫
D 

∂2 
b w(b, t)θ ′′

k (b) db.

Proof. Note θ ′′
k (−1) = θ ′′′

k (−1) = 0, w(1, t) = ∂bw(1, t) = 0 (due toφk(1) = φ′
k(1) = 0),∫

D 
w(b, t)θ (4) 

k (b) db = w(b, t)θ (3) 
k (b)

∣∣
∂D −

∫
D 

∂bw(b, t)θ (3) 
k (b) db 

= −∂bw(b, t)θ (2) 
k (b)

∣∣
∂D +

∫
D 

∂2 
b w(b, t)θ ′′

k (b) d b

=
∫

D
∂2

b w(b, t)θ ′′
k (b) db.

�

LEMMA 3.7. There exists a constant c > 0 that |ŵ (k, t)| ≤ ck−2.

Proof. Using θ (4) 
k (b) = pkθk(b),  we  have  

|pkŵ(k, t)| ≤
∫

D 
|∂2 

b w(b, t)θ ′′
k (b)| db ≤ ‖h(·, 0) − f (·)‖L2(D)‖θ ′′

k ‖L2(D). 

Since ‖θ ′′
k ‖L 2(D) = O(k2) by Lemma B.4 and pk = Θ(k4) by Lemma B.1, there exists a constant c > 0 

that |ŵ(k, t )| ≤ c
k2 . �

From now on, we assume that bi(t) is arranged in ascending order. Let s = s(t) be the smallest index 
such that {bj(t)}j≥s ⊆ D. Then use integration by parts taking into account the boundary condition of 
θk, w, ∫

D 
θk(b)∂4 

b w(b, t) db = θk(b)∂3 
b w(b, t)

∣∣∣
∂D 

− θ ′
k(b)∂2 

b w|∂D +
∫

D 
θ ′′

k (b)∂2 
b w(b, t) db 

= θk(b)∂3 
b w(b, t)

∣∣∣
∂D 

− θ ′
k(b)∂2 

b w|∂D +
∫

D 
θ (4) 

k w(b, t) db 

= θk(b)∂3 
b w(b, t)

∣∣∣
∂D 

− θ ′
k(b)∂2 

b w|∂D + pkŵ(k , t).

(3.9)

From the fact, ∂2 
b w(b, t) = h(b, t)−f (b) =∑n 

i=1 ai(t)χ(bi(t))σ (b−bi(t))−f (b) and θk(1) = θ ′
k(1) = 0,

the two boundary terms can be explicitly written out as

Hk(t) := θk(b)∂3 
b w(b, t)

∣∣∣
∂D 

= −θk(−1) 

⎡⎣s−1∑
i=1 

ai(t)χ(bi(t)) − f ′( −1)

⎤⎦ , (3.10)

Jk(t) := −θ ′
k(b)∂2 

b w(b, t)
∣∣∣
∂D 

= −θ ′
k(−1)

[
s−1∑
i=1 

χ(bi(t))ai(t)(1 + bi(t)) + f (−1)

]
. (3.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/3/iaaf022/8210855 by The H
ong Kong Polytechnic U

niversity user on 09 Septem
ber 2025



34 S. ZHANG ET AL.

Differentiating (3.9) in time and using (3.4), (3.5) and (A.1), we have 

pm∂tŵ(m, t) + H′
m(t) + J ′

m(t) = 
∞∑

k=1 
Θ ′

k(t)φ̂k(m) 

= −n 
∞∑

k=1

φ̂k(m)

(∫
Dε 

w(b, t)φk(b)μ0(b, t) db +
∫

Dε 
∂bw(b, t)φ′

k(b)μ2(b, t ) db

)
, ( 3.12) 

where μ0 and μ2 are defined by the following positive distributions (n can be finite) 

μ0(b, t) = 
1 
n 

n∑
i=1 

δ(b − bi(t)), 

μ2(b, t) = 
1 
n 

n∑
i=1 

|ai(t) |2δ(b − bi(t )). 

(3.13) 

Apply the equality
∑∞ 

k=1 φk(x)φk(y) = δ(x − y) to (3.12), we find 

∞∑
k=1

φ̂k(m)

∫
Dε 

w(b, t)φk(b)μ0(b, t) db 

=
∫

Dε

∫
D 

w(b, t) 
∞∑

k=1 
φk(b)φk(b

′)μ0(b, t)θm(b′) db′ db 

=
∫

Dε

∫
D 

w(b, t)δ(b − b′)μ0(b, t)θm(b′) db′ db 

=
∫

D 
w(b′, t)μ0(b

′, t)θm(b′) d b′ = ŵμ0(m, t) .

Similarly,

∞∑
k=1

φ̂k(m)

∫
Dε 

∂bw(b, t)φ′
k(b)μ2(b, t) db 

=
∫

Dε

∫
D 

∂bw(b, t) 
∞∑

k=1 
φ′

k(b)φk(b
′)μ2(b, t)θm(b′) db′ db 

=
∫

Dε

∫
D 

∂bw(b, t)δ′(b − b′)μ2(b, t)θm(b′) db′ db 

=
∫

D 
θm(b′)δ′(b − b′) db′

∫
Dε 

∂bw(b, t)μ2(b, t) db 

=
∫

D 
∂bw(b′, t)μ2(b

′, t)θ ′
m(b′) db′.
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Therefore (3.12) can be further reduced to 

∂tŵ(m, t) = −  
1 

pm 
(H′

m(t) + J ′
m(t)) − 

n 
pm

ŵμ0(m, t) − 
n 

pm

∫
D 

∂bw(b′, t)μ2(b
′, t)θ ′

m(b′) db′. ( 3.14) 

Now we provide an estimate for the above equation and show a s low reduction of high-frequency modes
in the initial error during the gradient flow.

THEOREM 3.8. Assume that sup1≤i≤n |ai(t)|2 is uniformly bounded by M > 0 and the biases {bi(0)} are 
initially equispaced on D.  If ŵ(m, 0) 
= 0, then there exists a constant C̃ > 0 depending on the initialized 
loss that 

|ŵ(m, t)| > 
1 
2
|ŵ(m, 0)|,  0  ≤ t ≤ 

pm|ŵ(m, 0)| 
2nC̃(m + 1) 

. (3.15) 

Especially, denote the initial error in the generalized Fourier mode θm by |ŵ(m, 0)| > c′m−2 for certain
c′ > 0, then the error in the generalized Fourier mode θm takes at least O( c′m

n ) time to get reduced by
half following gradient decent dynamics.

Proof. We estimate the contribution from each term on the right-hand side of (3.14). In particular we 
have ‖θk‖L∞(D) = O(1), ‖θ ′

k‖L∞(D) = O(k) from Lemma B.4. 
1. First, there exists a constant C > 0 that∣∣∣∣− 

n 
pm

ŵμ0(m, t)

∣∣∣∣ = ∣∣∣∣ n 
pm

∫
D 

w(b′, t)μ0(b
′, t)θm(b′) db′

∣∣∣∣
≤ 

n 
pm

‖w(·, t)‖C(D)‖θm‖C(D) ≤ 
Cn

pm
.

(3.16)

2. Since w ∈ H2(D), it can be embedded into C1,α (D) compactly, which means ∂bw is uniformly 
bounded on D, hence there exists a constant C′ that∣∣∣∣− 

n 
pm

∫
D 

∂bw(b′, t)μ2(b
′, t)θ ′

m(b′) db′
∣∣∣∣ ≤ 

n 
pm

‖θ ′
m‖C(D)‖∂bw‖C(D)

∫
D 

μ2(b, t) db 

≤ 
C′Mmn

pm
.

3. Using the definition ofHm in (3.10) andJm in (3.11 ), now we give the upper bounds of |Hm(t)− 
Hm(0)| and |Jm(t) − Jm(0)|. Since initially bi(0) ∈ D and χ(  b) ≤ 1, we have

|Hm(t) − Hm(0)| = |θm(−1)|
∣∣∣∣∣∣
s(t)−1∑

i=1 
ai(t)χ(bl(t))

∣∣∣∣∣∣ ≤ C′′√M|s(t) − 1| (3.17)
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and 

|Jm(t) − Jm(0)| = |θ ′
m(−1)|

∣∣∣∣∣∣
s(t)−1∑

i=1 
ai(t)χ(bi(t))(1 + bi(t))

∣∣∣∣∣∣ ≤ C′′′m
√

M|s(t) − 1|. ( 3.18) 

Now we estimate the number s(t). Because the biases have a finite propagation speed∣∣∣∣ d 
dt 

bi(t)

∣∣∣∣ ≤ |ai|
∫

D 
|h(x, t) − f (x)||∂bψ(x, bi(t))| dx ≤ K := C′′′′√M‖h(·, 0) − f (·) ‖L2(D). 

Therefore there are at most 1 
2 nKt initially evenly spaced biases moving into the transition 

interval. That gives |s(t) − 1 | ≤ 1
2 nKt.

The above estimates imply that there exists a constant C̃ > 0 that 

|ŵ(m, t)| − |ŵ(m, 0)| ≥ −  
n 

pm 
(C′Mm + C)t − 

1 
pm

(
C′′√M + C′′′m

√
M
) 1 

2 
Knt 

≥ − C̃n 
pm 

(m + 1)t . 
(3.19) 

When ŵ(m, 0) 
= 0, we solve the lower bound of the half-reduction time τ  >  0 that 

1 
2
|ŵ(m, 0)| = C̃n 

pm 
(m + 1) τ �⇒ τ = 

pm|ŵ(m, 0)| 
2 nC̃ (m + 1 ) 

. 

In particular, if |ŵ(m, 0  )| > c′m−2 for certain c′ > 0, the half-reduction time is at least O( c′m
n ). �

To keep a discretized gradient descent method close to the continuous gradient flow, the learning rate 
or step size should be small. In practice, one typically takes Δt = O( 1 

n ), it will take at least O(m) time 
steps to reduce the initial error h (x, 0) − f (x) in the generalized Fourier mode θm by half. It is also worth
noticing that this phenomenon does not depend on the convergence of the trainable parameters.

A lower bound estimate only provides an optimistic scenario which may not be sharp. When the 
network width and the frequency mode satisfy different scaling laws, improved estimates can be obtained.
See Appendix C for improved estimates, numerical evidence and the proof of Theorem 3.2. 

4. Rashomon set for two-lay er ReLU NNs

In [49, 50], the authors claimed that the measure of the so-called Rashomon set can be used as a criterion 
to see if a simple model exists for the approximation problem. Let D = Bd(1) be the unit ball in Rd.  The  
Rashomon set Rε for the two-layer NN class Hn is defined as the following

Rε :=
{
h ∈ Hn | ‖h − f ‖L2(D) ≤ ε‖f ‖L2(D)

}
,

where m is the number of parameters for Hn. If we normalize the measure for Hn, the measure of the
Rashomon set quantifies the probability that the loss is under a certain threshold for a random pick of
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parameters. The main purpose of this section is to characterize the probability measure of the Rashomon 
set with Hn representing the two-layer ReLU NNs 

h(x) = 
1 
n 

n∑
j=1 

ajσ(wj · x − bj) + v · x + c, x ∈ D ⊆ Rd, 

where the parameters {aj}n 
j=1 are bounded by [−A, A] and {bi}n 

i=1 ⊆ [−1, 1]. It is already known that 
this network can approximate a function f with an error no more than O(

√
d + log n n−1/2−1/d) if the

Fourier transform f̂ satisfies
∫
Rd |̂f (ζ )|‖ζ‖2

1dζ < ∞ [31]. The general bounds in Hölder space ha ve been
studied in [37]. Taking Laplacian on h,

Δh(x) = 
1 
n 

n∑
j=1 

ajΔσ(wj · x − bj) = 
1 
n 

n∑
j=1 

a jδ(wj · x − bj).

THEOREM 4.1. Suppose f ∈ C(D) such that there exists g ∈ C2 
0(D) that Δg = f , then the Rashomon set

Rε ⊆ Hn satisfies

P(Rε) ≤ exp

(
− 

n(1 − ε)2‖f ‖4 
L2(D) 

2A2κ2

)
, κ := sup 

(w,b)

∫
{x∈D,w·x=b} 

g( x) dHd−1(x).

Proof. Let g ∈ C2 
0(D) that solves Δg(x) = f (x) with Dirichlet boundary condition.

〈Δh(x), g(x)〉 =  
1 
n 

n∑
j=1 

Xj, Xj := aj

∫
wj·x=bj 

g(x) d Hd−1(x). 

The random variables Xj are i.i.d and bounded by [−Aκ , Aκ] where κ is an absolute constant defined by

κ := sup 
(wj,bj)∈Sd−1×[−1,1]

∫
wj·x=bj 

g(x) dHd−1( x).

Then use Hoeffding’s inequality,

P 

⎡⎣1 
n 

n∑
j=1 

Xj − E[Xj] ≥ t 

⎤⎦ ≤ exp

(
− 

nt2 

2A2κ2

)
.

Especially if E(aj) = 0 hence E(Xj) = 0, then

P [〈Δh(x), g(x)〉 ≥  t] ≤ exp

(
− 

nt2 

2A2κ2

)
.
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Using Green’s formula,

〈Δh(x), g(x)〉 − 〈h(x), Δg(x)〉 =
∫

∂D

(
∂nh(x)f (x) − ∂nf (x)h(x)

)
d s = 0,

then using the network to approximate Δg = f is difficult if κ is small in the sense that 

P
[‖h(x) − Δg(x)‖L2(D) ≤ ε‖Δg‖L2(D)

] ≤ P
[
〈h(x), Δg(x)〉 ≥  (1 − ε)‖Δg‖2 

L2(D)

]
≤ exp

(
− 

n(1 − ε)2‖Δg‖4 
L 2(D) 

2A2κ2 

)
.

Here we have used the fact that ‖h(x) − Δg(x)‖L2(D) ≤ ε‖Δg‖L2(D) implies both ‖h‖L2(D) ≥ (1 −
ε)‖Δg‖L2(D) and

〈h, Δg〉 ≥  
1 − ε2 

2
‖Δg‖2 

L2(D) + 
1 
2
‖h‖2 

L2(D) ≥ (1 − ε)‖Δ g‖2
L2(D)

.

�
If f oscillates with frequency ν in every direction, then κ ≈ ν−2 and the probability measure of 

Rashomon set scales as exp(−O(ν−4)) which gives another perspective why oscillatory functions are
difficult to approximate by NNs in general. The proof and extension to more general activation functions
are provided in Appendix D. 

5. Further discussions 

In this study, it is shown that the use of highly correlated activation functions in a two-layer NN makes 
it filter out fine features (high-frequency components) when finite machine precision is imposed, which 
is an implicit regularization in practice. Moreover, increasing the network width does not improve the
numerical accuracy after a certain threshold is reached, although the universal approximation property is
proved in theory. The smoother the activation function is, the faster the Gram matrix spectrum decays (see
Remark 2.11 and Appendix E), and hence the stronger the regularization is. We plan to investigate how 
a multi-layer network could o vercome these issues through effective decomposition and composition in
our future work.
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A. Properties of eigenfunctions

We show properties of the eigenfunctions φk for the Gram kernel defined by (2.5) or equivalently 
by (3.3). 

LEMMA A1. φk is a cubic polynomial over (−1 − ε, −1) and 

∂4 
bφk(b) =

{
0, b ∈ (−1 − ε, −1), 
λ−1 

k φk(b), b ∈ (−1, 1) , 
(A.1) 

where ∂bφk is continuous at b = −  1 but ∂2
bφk has a jump at b = −1.

Proof. We use the definition of eigenfunction∫
Dε 

G(b, b′)φk(b
′) db′ = λkφk( b). 

For b ∈ (−1, 1), χ(b) = 1, then differentiating both sides 

λk∂
4 
bφk(b) = ∂4 

b

∫
Dε

∫
D 

σ(x − b)σ (x − b′)χ(b′)φk(b
′) dxdb′ =

∫
Dε 

δ(b − b′)χ(b′)φk(b
′) db′ = φk(b) . 

For b ∈ (−1 − ε, −1), χ(b) is quadratic, σ(x − b) = x − b for x ∈ D, we differentiate both sides 

λk∂
4 
bφk(b) = ∂4 

b

(
χ(b)

∫
Dε

∫
D 
(x − b)σ (x − b′)χ(b′)φk(b

′) dx db′
)

= 0. 

Now, we compute ∂bφk and ∂2
bφk across b = −1. Note χ ′(−1) = 0, then

lim 
b→−1− 

∂bφk(b) = 
1 
λk 

lim 
b→−1− 

∂b

(
χ(b)

∫
Dε

∫
D 
(x − b)σ (x − b′)χ(b′)φk(b

′) dx db′
)

= 
1 
λk 

χ ′(−1) lim 
b→−1−

(∫
Dε

∫
D 
(x − b)σ (x − b′)χ(b′)φk(b

′) dx db′
)

+ 
1 
λk 

χ(−1) lim 
b→−1−

(∫
Dε

∫
D 
(−1)σ (x − b′)χ(b′)φk(b

′) dx db′
)

= 
1 
λk

(∫
Dε

∫
D
(−1)σ (x − b′)χ(b′)φk(b

′) dx db′
)

and because σ ′(x − b) = 1 if b = −1 and x ∈ D,

lim 
b→−1+ 

∂bφk(b) = 
1 
λk 

lim 
b→−1+ 

∂b

(∫
Dε

∫
D 

σ(x − b)σ (x − b′)χ(b′)φk(b
′) dx db′

)
= 

1 
λk 

lim 
b→−1+

(∫
Dε

∫
D 

−σ ′(x − b)σ (x − b′)χ(b′)φk(b
′) dx db′

)
= 

1 
λk

(∫
Dε

∫
D 
(−1)σ (x − b′)χ(b′)φk(b

′) dx db′
)

.
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For ∂2 
bφk across b = −1, following a similar process, 

lim 
b→−1− 

∂2 
bφk(b) = 

1 
λk 

lim 
b→−1− 

∂2 
b

(
χ(b)

∫
Dε

∫
D 
(x − b)σ (x − b′)χ(b′)φk(b

′) dx db′
)

= 
1 
λk 

χ ′′(−1) lim 
b→−1−

(∫
Dε

∫
D 
(x − b)σ (x − b′)χ(b′)φk(b

′) dx db′
)

= −  
1 
λk 

2 
ε2

(∫
Dε

∫
D 
( x + 1)σ (x − b′)χ(b′)φk(b

′) dx db′
)

and 

lim 
b→−1+ 

∂2 
bφk(b) = 

1 
λk 

lim 
b→−1+ 

∂2 
b

(∫
Dε

∫
D 

σ(x − b)σ (x − b′)χ(b′)φk(b
′) dx db′

)
= 

1 
λk 

lim 
b→−1+

(∫
Dε

∫
D 

δ(x − b)σ (x − b′)χ(b′)φk(b
′) dx db′

)

= 
1 
λk

∫
Dε 

σ(−1 − b′)χ(b′)φk(b
′) db′ = 

1 
λk 

∫ −1 

−1−ε 
(−1 − b′)χ(b′)φk(b

′) d b′. 

As ε → 0, limb→−1+ ∂2 
bφk(b) = O(ε) while lim b→−1− ∂2

bφk(b) = O(ε−2). �

B. Generalized F ourier modes

In this section, we study the eigenfunctions φk for the one-dimensional continuous Gram kernel defined
in (2.5), which are exactly the generalized Fourier modes θk defined in (3.7). 

LEMMA B1. The eigenfunction θk satisfies 

θk(x) = Ak cosh(ckx) + Bk sinh(ckx) + Ck cos(ckx) + Dk sin(ckx) , 

where tanh(ck) tan(ck) = ±1, pk = c4 
k , and c2k+1 ∈ ((k+ 1 

4 )π , (k+ 1 
2 )π), c2k+2 ∈ ((k+ 1

2 )π , (k+ 3
4 )π),

k ≥ 0.

Proof. The form of the eigenfunction is standard. Using the boundary conditions, θk(1) = θ ′′
k (−1) = 0, 

Ak cosh(ck) + Bk sinh(ck) + Ck cos(ck) + Dk sin(ck) = 0, 

Ak cosh(ck) − Bk sinh(ck) − Ck cos (ck) + Dk sin(ck) = 0,

which means

Ak cosh(ck) + Dk sin(ck) = 0, Bk sinh(ck) + C k cos(ck) = 0.

The other two boundary conditions are

Ak sinh(ck) + Bk cosh(ck) − Ck sin(ck) + Dk cos(ck) = 0, 

−Ak sinh(ck) + Bk cosh(ck) − Ck sin(ck) − Dk cos(ck) = 0,

which means

Ak sinh(ck) + Dk cos(ck) = 0, Bk cosh(ck) − Ck sin(ck) = 0.
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If Ck 
= 0, then Bk = −Ck 
cos(ck) 
sinh(ck) = Ck 

sin(ck) 
cosh(ck)

, which is tan(ck) tanh(ck) = −1. If Dk 
= 0, then we can 
derive tan(ck) tanh(ck) = 1. Let r(x) = tan(x) tanh(x),  for  x ∈ (0, π 

2 ) or x ∈ (nπ + 1 
2π , nπ + 3π 

2 ), n ∈ Z, 
the function r is monotone, therefore c2k+1 ∈ ((k + 1

4 )π , (k + 1
2 )π), c2k+2 ∈ ((k + 1

2 )π , (k + 3
4 )π),

k ≥ 0. �
From the above analysis, the eigenfunctions are 

θ2k+1(x) = C2k+1

(
− 

cos(c2k+1) 
sinh(c2k+1) 

sinh(c2k+1x) + cos(c2k+1x)

)
, 

θ2k+2(x) = D2k+2

(
− 

sin(c2k+2) 
cosh(c2k+2) 

cosh(c2k+2x) + sin(c2k+2x) 
)

, 

which shows {θk}k≥1 are actually the eigenfunctions of the Gram kernel G in (2.3). 

LEMMA B2. {θk}k≥1 forms an orthonormal basis of L2(D).

Proof. Since each eigenvalue is simple from Theorem B.4 and we verify the following equality using 
integration by parts, 

pi

∫
D 

θi(x)θj(x) dx =
∫

D 
θ (4) 

i (x)θj(x) dx =
∫

D 
θi(x)θ (4) 

j (x) dx = pj

∫
D 

θi(x)θj(x) d x. 

Thus {θ i}i≥1 forms an orthonormal basis. �

LEMMA B3. The eigenfunctions {θk}k≥1 can form a complete basis for L2(D).

Proof. Suppose {θm}∞m=1 is not complete, then there exists a nonzero γ ∈ L2(D) that γ̂  (m) = 0  for  
all m ∈ N, then using the fact that {θm}m≥1 are the eigenfunctions of the Gram kernel G in (2.3), note 
G(x, y) = G(y, x), it is self-adjoint, then by Hilbert–Schmidt theorem,∫

D 
G(x, y)γ (y) dy = 0, (B.1) 

and we differentiate the above equation four times on both sides, which leads to γ (4) (x) = 0 which means 
γ should be a cubic polynomial with boundary conditions γ  (1) = γ ′(1) = γ ′′(−1) = γ ′′′(−1) = 0,
which means γ ≡ 0, it is a contradiction with our assumption of ‖γ ‖D 
= 0. �

Next, we show the eigenfunctions are almost Fourier modes.

THEOREM B4. The following statements hold 
1. (k + 1 

4 )π < c2k+1 <  (k + 1 
4 )π + e−2c2k+1 and (k + 3 

4 )π > c2k+2 >  (k + 3 
4 )π − e− 2c2k+2 .

2. Ak, Bk = O(e−ck) and Ck, Dk = O (1).

3. ‖θk‖L∞(D) = O(1), ‖θ ′
k‖L∞(D) = O(k) and ‖θ ′′

k ‖L∞(D) = O( k2).

4. ‖θ2k+1(x) − cos(c2k+1x)‖L2(D) = O(k−1/2) and ‖θ2k+2(x) − sin(c2k+2x)‖L2(D) = O(k−1/2).
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Proof. For c2k+1, from the relation tan(c2k+1) = coth(c2k+1) = 1 + 2/(e2c2k+1 − 1), we obtain that 

c2k+1 −
(

k + 
1 
4

)
π  <  tan

(
c2k+1 −

(
k + 

1 
4

)
π

)
= 

tan(c2k+1) − 1 
1 + tan(c2k+1 ) 

= e−2c2k +1 .

The first inequality uses x < tan x for x ∈ (0, π 
4 ). The result for c2k+2 follows a similar derivation. 

We only prove for θ2k+1, the proof is similar for θ2k+2.∫
D

(
− cos(c2k+1) 

sinh(c2k+1) 
sinh(c2k+1x) + cos(c2k+1x)

)2 
dx 

=
∫

D

(
cos(c2k+1) 
sinh(c2k+1) 

sinh(c2k+1x)

)2 
dx +

∫
D 

cos2(c2k+1x) dx 

− 2
∫

D 

cos(c2k+1) 
sinh(c2k+1) 

sinh(c2k+1x) cos(c2k+1x) dx 

=
(

cos(c2k+1) 
sinh(c2k+1)

)2 [ sinh(2c2k+1) 
2c2k+1 

− 1
]

+
[

sin(2c2k+1) 
2c2k+1 

+ 1
]

= 
cos2(c2k+1) coth(c2k+1) 

c2k+1 
+ 

sin(2c2k+1) 
2c2k+1 

+ 1 −
(

cos (c2k+1) 
sinh(c2k+1)

)2 
= 1 + O(k−1 ).

(B.2)

Therefore C2k+1 = 1 + O(k−1) and |B2k+1|  ≤  sinh(c2k+1)
−1|C2k+1|  =  O(e−c2k+1). The norm

‖θ2k+1‖L∞(D ) ≤ 2C2k+1 = O(1) and

θ ′
2k+1(x) = C2k+1c2k+1

(
− 

cos(c2k+1) 
sinh(c2k+1) 

cosh(c2k+1x) − sin(c2k +1x)

)
,

which means ‖θ ′
2k+1‖L∞(D) = O(k) and similarly, ‖θ ′′

2k+1‖L∞(D) = O(k2). We also can see from (B.2) 
that ∫

D 
|θ2k+1(x) − C2k+1 cos(c2k+1x)|2 dx = O( k−1), 

which means θk ∼ C2k+1 cos(c2k+1x) + O(k−1/2) = cos(c2k+1x) + O(k−1/2). �

C. Improved bounds for learning dynamics

C.1 Part I 

In the first step, we provide an improved estimate for∫
D 

∂bw(b′, t)μ2(b
′, t)θ ′

m(b′) db′ = 
1 
n 

n∑
i=1 

∂bw(bi(t), t)|ai(t)|2θ ′
m(b i(t)).

Here we slightly abuse the notation and treat ∂bw as zero outside D. Define the piecewise linear 
continuous function A(·, t) ∈ C(D) that A(bi(t), t) = |ai(t)|2, then we have the following equation
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using integration by parts, 

1 
n 

n∑
i=1 

∂bw(bi(t), t)|ai(t)|2θ ′
m(bi(t)) −

∫
D 

∂bw(b, t)A(b, t)θ ′
m(b) db 

= −
∫

D 
disc(b, t)∂b

[
∂bw(b, t)A(b, t)θ ′

m (b)
]

db , 

where disc is the discrepancy function 

disc(b, t) = 
1 
n 

n∑
i=1 

1[−1,b)(bi(t)) − b 

and 1 S denotes the characteristic function on the set S.

LEMMA C1. Let V(t) be the total variation of ∂bw(b, t)A(b, t)θ ′
m(b), then there exists an absolute constant 

C > 0 that

V(t) ≤ CV(A)m2‖h(·, t) − f (·)‖L2(D ),

where V(A) is the total variation of A:

V(A) = a2 
1(t) + 

n−1∑
i=1 

|a2 
i (t) − a2 

i+1(t)| +  a 2n(t). (C.1)

Proof. The result comes from the fact ∂2 
b w(b, t) = h(b, t)−f (b), |θ ′′

m(b)| =  O(m2), and bounded variation 
functions form a Banach algebra. �

LEMMA C2. Suppose sup1≤i≤n |ai(t)|2 is uniformly bounded by M, the total variation of A is bounded 
by M′, and the initial biases are equispaced distributed, then there exists a constant C > 0 such that∣∣∣∣∫

D 
∂bw(b′, t)μ2(b

′, t)θ ′
m(b′) db′

∣∣∣∣ ≤ C‖h(·, 0) − f (·)‖L2(D)

(
1 +

(
2 
n 

+ Kt

)
m2
)

.

The constant K = √
2M‖h(x, 0) − f (x)‖L2(D).

Proof. Let L = ‖θm‖C(D) = O(1), we apply integration by parts and there exists a constant C′ > 0 such
that ∣∣∣∣∫

D 
∂bw(b, t)A(b, t)θ ′

m(b) db

∣∣∣∣
≤
∣∣∣∣∫

D 
θm(b)∂b

(
∂bw(b, t)A(b, t)

)
db

∣∣∣∣+ ∣∣∣θm(b)∂bw(b, t)A(b, t)
∣∣∣
∂D

∣∣∣
≤ L

[∫
D 

|∂2 
b w(b, t)A(b, t)| db +

∫
D 

|∂bw(b, t)||∂bA(b, t)| db + M‖∂bw(·, t)‖C(D)

]
≤ L

[
‖∂2 

b w(·, t)‖L2(D)‖A(·, t)‖L2(D) + ‖∂bw(·, t)‖C(D)V(A) + M‖∂bw(·, t)‖C(D)

]
≤ C′‖h(·, t) − f (·)‖L2(D)(M + M′).

(C.2)
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Therefore we have a new estimate:∣∣∣∣∫
D 

∂bw(b, t)μ2(b, t)θ ′
m(b) db

∣∣∣∣ ≤ C′‖h(·, t) − f (·)‖L2(D)(M + M′) 

+
∣∣∣∣∫

D 
disc(b, t)∂b

[
∂bw(b, t)A(b, t)θ ′

m(b)
]

d b
∣∣∣∣ . 

Notice that this bound will be better than the constant bound in Theorem 3.8 if the second term on the 
right-hand side is relatively small. Next, we characterize the discrepancy function disc(b, t). 

|disc(b, t) − disc(b, 0)| =
∣∣∣∣∣1 
n 

n∑
i=1 

1[−1,b)(bi(t)) − b −
(

1 
n 

n∑
i=1 

1[−1,b)(bi(0)) − b

)∣∣∣∣∣
= 

1 
n

∣∣∣∣∣
n∑

i=1

(
1[−1,b)(bi(t)) − 1[−1,b)( bi(0))

)∣∣∣∣∣ .
Because ∣∣∣∣ d 

dt 
bi(t)

∣∣∣∣ ≤ |ai(t)|
∫

D 
|h(x, t) − f (x)||∂bψ(x, bi(t))| dx 

≤ K := C′′′√M‖h(x, 0) − f ( x)‖L2(D), 
(C.3) 

and within time t, the maximum distance of propag ation is Kt for each bias. Therefore,

1 
n

∣∣∣∣∣
n∑

i=1

(
1[−1,b)(bi(t)) − 1[−1,b)(bi(0))

)∣∣∣∣∣ ≤ 
1 
n

∣∣∣∣∣
n∑

i=1

(
1[−1+Kt,b−Kt)(bi(0)) − 1[−1,b)(bi(0))

)∣∣∣∣∣
= 

1 
n 

n∑
i=1 

1[−1,−1+Kt)∪[b−Kt,b)(bi(0)) ≤ Kt + 1

n
.

Therefore, using |disc(b, 0)| ≤ 1
n for equispaced biases,∣∣∣∣∫

D 
∂bw(b, t)μ2(b, t)θ ′

m(b) db

∣∣∣∣ ≤ C′‖h(x, t) − f (x)‖L2(D)(M + M′) +
(

2 
n 

+ Kt

)
V(t) 

≤ ‖h(x, 0) − f ‖L2(D)(M + M′)
(

C′ + 
(

2

n
+ Kt

)
C′′m2

)
.

�

REMARK C3. If the bound of V(A) can be as large as O(nM) at the worst case, then we may return to the
Theorem 3.8. In fact, if V(A) becomes O(m), we may also have to return to the Theorem 3.8. 

C.2 Part I I

In this part, we try to optimize the bound for Jm(t) − Jm(0): 

Jm(t) − Jm(0) = θ ′
m(−1)h(−1, t) = θ ′

m(−1) 
s−1∑
i=1 

ai(t)χ(bi(t))(−1 − bi(t)).

The main result is the following estimate.
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THEOREM C4. Assume that sup1≤i=1≤n |ai(t)|2 is uniformly bounded by M > 0 and the biases {bi(0)}n 
i=1 

are initially equispaced on D, then there exists a constant C > 0 that

|Jm(t) − Jm(0)| ≤  Cm
√

MK2nt 2.

Proof. The biases are propagating with finite speed that | d 
dt bi(t)|  ≤  K := C′′′√M‖h(· , 0) − f (·)‖L2(D)

(see (C.3)). If the initial biases are equispaced distributed on D, then s(t) − 1 ≤ Knt 
2 . For each 1 ≤ i ≤ 

s(t) − 1, the bias bi(t) satisfies 

|bi(t) − bi(0)| ≤  Kt, and |bi(0) − (−1)| ≤  Kt . 

Therefore 
s(t)−1∑

i=1 
χ(bi(t))| −  1 − bi(t)| ≤  

s(t)−1∑
i=1 

| − 1 − (bi(0) − Kt)| 

≤ 
s(t)−1∑

i=1 
| − 1 − bi(0)| +  Kt (s(t) − 1) 

≤ K2 nt2. 

Therefore |Jm − Jm(0)| ≤ |θ ′
m(−1)|√MK2nt2 ≤ Cm

√
MK2nt2. �

C.3 Part III 

Now we can prove the following theorem with the improved bounds. In the following, we assume n ≥ m. 
In other words, it only makes sense to s tudy the learning dynamics for those frequency modes which can
be resolved by the grid resolution corresponding to the network width.

THEOREM C5. Suppose sup1≤i≤n |ai(t)|2 is uniformly bounded by M, the total variation of A (C.1)  is  
bounded by M′, and the initial biases are equally spaced. Let n ≥ m4 be sufficiently large, then it takes 
at least O(

m4|ŵ(m,0)| 
n ) to reduce the initial error in generalized Fourier mode |ŵ(m, t)|  ≤  1 

2 |ŵ(m, 0)|.
Especially when |ŵ(m, 0)| > c′m−2, the half-reduction time is at least O(m2c′

n ).

Proof. Using Lemma C2, there exists a constant C′′ > 0 that∣∣∣∣∫
D 

∂bw(b′, t)μ2(b
′, t)θ ′

m(b′) db′
∣∣∣∣ ≤ C′′

(
1 +

(
1 
n 

+ t 
)

m2
)

. 

We only consider the case that n ≥ m, otherwise we return to Theorem 38. Recall that in Theorem 3.8 
that |ŵμ0(m, t)| is uniformly bounded (see (3.16)) and |Hm(t)−Hm(0)| ≤  1 

2 |θm(−1)|√MKnt (see (3.17) 
and (3.18)). Combine the estimate in Theorem C4 and follow the same process as (3.19), we can find a 
constant C ′′′ > 0 that

|ŵ(m, t)| − |ŵ(m, 0)| ≤ −C′′′ n 
pm

((
1 + 

m2 

n

)
t + (m + m2)t2

)
. (C.4)
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We solve an upper bound for the half-reduction time τ from the quadratic equation 

1 
2
|ŵ(m, 0)| =  

n 
pm 

C′′′
((

1 + 
m2 

n

)
τ + (m + m 2)τ 2

)
. (C.5  )  

The solution satisfies 

τ ≥ 
pm 

2C′′′n 
|ŵ(m, 0)|√

(1 + m2/n)2 + 2(m + m2)pm|ŵ(m, 0)|/(C′′′n) 
. (C.6  )  

Let’s use the notations A ≺ B and A � B to represent the relation A = O(B) and B = O(A), respective. 
We find the following regimes: 

1. n � m2 and |ŵ(m, 0)| � n 
m6 , then τ = O

(
m
√

ŵ(m,0 ) 
n

)
.

2. n � m2 and |ŵ(m, 0)| ≺  n 
m6 , then τ = O

(
m4 

n |ŵ(m, 0)|
)

. 

3. m ≺ n ≺ m2 and |ŵ(m, 0)| � 1 
nm2 , then τ = O

(
m
√

ŵ (m,0) 
n

)
.

4. m ≺ n ≺ m2 and |ŵ(m, 0)| ≺  1 
nm2 , then τ = O(m2| ̂w(m, 0)|). 

In the second case, when n � m4 is sufficiently large and |ŵ(m, 0)| > c′m−2, the half-reduction time

becomes O( c′m2

n ), which is a better bound than the one in Theorem 3.8. �

REMARK C6. If the biases bi are equally spaced and fixed, the learning dynamics become the gradient 
flow for the least square problem. Using a standard Fourier basis one gets a simpler version of (3.14) 
without the boundary terms and the last term involving θ ′

m. Since w(b, t) is H2, one gets μ̂0w(m, t) ≤ 
C( 1 

m2 + mdisc({bi(0)}n 
i=1)),  for  n � m3 and equispaced {bi}n 

i=1 that disc({bi(0)}n 
i=1) = O( 1 

n ), it takes 
O(m4) steps to reduce the initial error in mode m by half. Hence the full learning dynamics, i.e. involving
the bias, while requiring more computation cost in each step, may speed up the convergence. See Fig.
C7 for an e xample.

C.4 Numerical e xperiments

In the following, we perform numerical experiments to demonstrate the scaling laws with a different 
total variation of |ai(t)|2. The objective function is 

f (x) = sin(kπx) 

with k chosen from selected high frequencies. We set the number of neurons n = kβ , β ∈  {2, 3, 4} 
for a selected frequency k. The learning rate is selected as n−1. This set up is regime 1 above, where
ŵ(k, 0) = k−2, and hence the number of iterations should be of order O(nτ) = O(

√
n).

The initialization of biases {bi(0)}n 
i=1 are equispaced and ordered ascendingly. The weights {ai(0)}n 

i=1 
are initialized in the follo wing ways.

(A) ai(0) = 1 
2 (−1 )i.

(B) ai(0) = 1 
2 cos(i).
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TABLE C1 Theoretical lower bounds 
TV(A) β = 2 β = 3 β = 4 

Init A O(1) O(k) O(k1.5) O(k2) 
Init B O(n) O(k) O(k) O(k) 

TABLE C2 Experimental fitted results 

TV(A) β = 2 β = 3 β = 4 

Init A O(1) O(k1.61) O(k1.82) O(k1.87) 
Init B O(n) O(k1.59) O(k1.75) O(k1.90) 

FIG. C1. Experiment for initialization (A) and β = 4. Left: the graphs of Ek(t). Middle: the graphs of k1.87 ln(Ek(t)). Right: the 
total v ariations of A.

We record the dynamics of the network (denoted by hk) at exactly frequency k through the projection 

Ek(t) =
∣∣∣∣∫

D 
(hk(x, t) − f (x))f (x) dx

∣∣∣∣ . 
As we will see in the experiments, the total variation in A is slowly varying in time, so we can
summarize the a priori theoretical lower bounds and the experimental results of the number of epochs in
the following tables C1 and C2. The initialization (A) has a relatively small total variation, and the 
experiments agree with the theoretical bounds quite well. However, similar results are observed for
initialization (B), which has a relatively large total variation during the training, see Fig. C1, C2, C3 for 
initialization (A) and Fig. C4, C5, C6 for initialization (B). One possible explanation is the ov erestimate
using the total variation in (C2) which might be unnecessary. As we mentioned in Remark C6, we record 
the training dynamics with fixed biases, initialization (A), and choose n = k4, see Fig. C7.  The  result  
matches the argument in Remark C6. For comparison purposes, we additionally demonstrate an example 
with Adam optimizer, which shows a similar scaling relation as the GD optimizer at the initial training
stage, see Fig. C7. 

All these tests show a consistent phenomenon, the higher the frequency, the slower the learning
dynamics.
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STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 51

FIG. C2. Experiment for initialization (A) and β = 3. Left: the graphs of Ek(t). Middle: the graphs of k1.82 ln(Ek(t)). Right: the
total variations of A.

FIG. C3. Experiment for initialization (A) and β = 2. Left: the graphs of Ek(t). Middle: the graphs of k1.61 ln( Ek(t)) (fitting first
2000 epochs only). Right: the total variations of A.

FIG. C4. Experiment for initialization (B) and β = 4. Left: the graphs of Ek(t). Middle: the graphs of k1.90 ln( Ek(t)) (fitting first
2000 epochs only). Right: the total variations of A.

FIG. C5. Experiment for initialization (B) and β = 3. Left: the graphs of Ek(t). Middle: the graphs of k1.75 ln(Ek(t)). Right: the
total variations of A.
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FIG. C6. Experiment for initialization (B) and β = 2. Left: the graphs of Ek(t). Middle: the graphs of k1.59 ln( Ek(t)) (fitting first
2000 epochs only). Right: the total variations of A.

C.5 Further r emarks

C.5.1 Initial distribution of biases. If the initial biases are uniformly distributed instead of equis-
paced, the previous estimates need to be modified. In particular, the upper bound of s(t)−1 will become 
Knt 
2 + Op(

√
Knt) using the Chebyshev inequality. The discrepancy of { bi(0)}n

i=1 will be also updated to

Op(n
−1/2). Then we have the following modified estimates:

|Hm(t) − Hm(0)| ≤  
1 
2
|θm(−1)|√M(nKt + Op(

√
nKt)), 

|Jm(t) − Jm(0)| ≤ |θ ′
m(−1)|√MKt(Knt + Op(

√
Knt)),∣∣∣∣∫

D 
∂bw(b′, t)μ2(b

′, t)θ ′
m(b′) db′

∣∣∣∣ ≤ C′′
(

1 +
(

t + Op

(
1√ 
n

))
m2
)

,

and (C.4) becomes 

|ŵ(m, t)| − |ŵ(m, 0)|  ≤
p 

−C′′′ n 
pm

((
1 + 

m2 
√

n

)
t + (m + m2)t2 + (1 + mt)

√
t 
n

)
. 

In particular, when n � m4 and |ŵ(m, 0)| > c′m−2, the half-reduction time is still the sameOp(m
2c′/n) as

Theorem C5. A similar probabilistic estimate can be derived for initial biases sampled from a continuous 
probability density function which is bounded from below and above by positive constants.

C.5.2 Activation function. The regularity of the activation function plays a crucial role in the 
analysis. In general, using a smoother activation function, which leads to a faster spectrum decay of the 
corresponding Gram matrix, will take an even longer time to eliminate higher frequencies. For instance, 
if the activation function is chosen as 1

p!σ
p(x), p ≥ 1, where σ is the ReLU activation function, then

a similar analysis will show that if n � mp+3, then under the assumption of Theorem C5,  the  half-

reduction time of ‘frequency’ m is at least O(m2p+2 

n |ŵ(m, 0)|) in the Theorem C5. This also implies that 
using a shallow neuron network with smooth activation functions will be even worse for learning and
approximating high-frequency information by minimizing the L2 error or mean-squared error (MSE).

In the following, we perform a simple numerical experiment to validate our conclusion. We set the 
objective function as the Fourier mode f (x) = sin(mπx) on D, m ∈ N and use the activation functions 
ReLUp(x) := 1

p!σ
p(x), p = 1, 2 to train the shallow neuron network hm,p(x, t) to approximate f (x),
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FIG. C7. Additional experiment for initialization (A) and β = 4. Left: Graphs of k3.5 ln(Ek(t)) for k = 5, 7, 9 with fixed equispaced 
biases, trained by GD. Middle: Graphs of Ek(t) for k = 5, 7, 9, trained by Adam. Right: Graphs of k2 ln Ek(t) for k = 5, 7, 9, trained
by Adam.

FIG. C8. The comparison of ReLU, ReLU2 for the approximation to f (x) = sin(mπx). From left to right, the figures are Em,1(t), 
m1.95 ln(Em ,1(t)), Em,2(t), m3.25 ln(Em,2( t)).

respectively. The number of neurons n = 104. We record the error of the F ourier mode

Em,p(t) :=
∣∣∣∣∫

D 
(h(x, t) − f (x))f (x) dx

∣∣∣∣
at each iteration. The errors are shown in Fig. C8 for m = 5, 7, 9. We can observe that the decay rates of 
ReLU and ReLU2 are O( m−2) and O(m−3) roughly.

C.5.3 Boundedness of weights. One may notice that the requirement of weights supi≥1 |ai(t)|2 ≤ M 
for all t > 0 can be relax ed to 0 ≤ t ≤ τ , where τ denotes the lower bound of half-reduction time in
Theorem 3.8 or Theorem C5. When n � m in Theorem 38 or n � m2 in Theorem C5, such requirement 
can be relaxed to only the initial condition supi≥1 |ai(0)|2 ≤ M.

D. Rashomon set for bounded activation function

In this section, we characterize the Rashomon set for a general bounded activation function instead of 
ReLU. We consider a more general setting of the parameter space: ai are mean-zero i.i.d sub-Gaussian 
random variables that 

P[|ai| > t] < 2e−mt2 
, i ∈ [ n]

for some m > 0. Then we have the following estimate for the Rashomon set by following a similar idea
for the proof of Theorem 41.
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THEOREM D1. Assuming the same network structure as Theorem 41 and σ as a bounded activation 
function that 

− 1 ≤ σ(t) ≤ 1, σ ′(t)  >  0, ∀t ∈ R, (D.  1)  

then the Rashomon set’s measure 

P[‖h(x) − f (x)‖L2(D) ≤ ε‖f ‖L2(D)] ≤ 2 exp

(
− 

Cn(1 − ε)2‖f ‖4 
L2(D) 

4 κ2�2θ2

)
, 

where θ = ‖ai‖ψ2 is the Orlicz norm, � = diam(D), and κ denotes

κ := sup 
(w,t)∈Sd−1×R

∣∣∣∣∫{x·w=t,x∈D} 
f (x)dHd−1x

∣∣∣∣ .

Proof. We denote ri := |wi| and � = diam(D), then let 

Xi := ai

∫
D 

f (x)σ (wi · x − bi)dx = 
ai 
ri

∫ �ri 

−�ri 
σ(s − bi)

∫
{x·wi=s} 

f (x)dHd−1(x)ds. 

Then 〈h, f 〉 =  1 
n

∑n 
i=1 Xi and 

P

[
‖h − f ‖2 

L2(D) ≤ ε2‖f ‖2 
L2(D)

]
≤ P

[
(1 − ε)‖f ‖2 

L2(D) ≤ 
1 
n 

n∑
i=1 

Xi 

]
. 

Since the random variable ai is sub-Gaussian, then Xi is also sub-Gaussian by |Xi| ≤ 2ai�κ . One can
apply the Hoeffding’s inequality (see Theorem 2.6.2 [62]) that 

P

[
(1 − ε)‖f ‖2 

L2(D) ≤ 
1 
n 

n∑
i=1 

Xi

]
≤ 2 exp

(−Cn(1 − ε)2‖f ‖4 
L2(D ) 

4κ2�2θ2 

)
. 

for certain absolute constant C. �
The constant κ stands for the largest possible average of f on every hyperplane {x · w = t}, t ∈ R. 

When f (x) is oscillatory in all directions, the constant κ becomes small. More intuitively speaking, an
activation function of the form (D.1) can not feel oscillations in f , i.e. 〈f , σ 〉 is small due to cancellation.
According to the heuristic argument in [50], it also implies that it is relatively difficult to find a shallow
neural network with activation function (D.1) that can approximate highly oscillatory functions well. In 
other words, the optimal set of parameters only occupies an extremely small measure of the parameter
space for highly oscillatory functions.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/3/iaaf022/8210855 by The H
ong Kong Polytechnic U

niversity user on 09 Septem
ber 2025



STRUGGLES OF SHALLOW NETWORKS WITH HIGH FREQUENCIES 55

E. Further discussions

E.1 General case of Gram matrix of two-layer ReLU networks in one dimension

When the two-layer ReLU network in one dimension is 

f (x) = c + 
n∑

i=1 
aiσ(wix − bi), x ∈ D := [ −1, 1], 

where wi ∈ {+1, −1} obeys the Bernoulli distribution with p = 1 
2 . Then the corresponding Gram matrix 

has the following block structure of continuous kernels 

G :=
(
G++(x, y) G+−(x, y) 
G+−(x, y) G−−(x, y)

)
where the sub-kernels are 

G++(x, y) = 
1 
24 

(2 − x − y − |x − y|)2(2 − x − y + 2|x − y|), 

G−−(x, y) = 
1 
24 

(2 + x + y − |x − y|)2(2 + x + y + 2|x − y|), 

G+−(x, y) = 
1 
48 

[|x − y| −  ( x − y)]3 , 

G−+(x, y) = 
1 
48 

[|x − y | +  (x − y)] 3 .

Note the kernels G+−(x, y) = G−+(−x, −y) and G++(x , y) = G−−(−x, −y), suppose (g+
k , g−

k ) is an
eigenfunction of G for eigenvalue λk, we can obtain:

• If φk(x) = g+ 
k (x) + g− 

k (−x) 
≡ 0, then it is an eigenfunction of Gφ = G++(x , y) + G+−(x, −y) for
eigenvalue λk.

• If ψk(x) = g+ 
k (x) − g− 

k (−x) 
≡ 0, then it is an eigenfunction of Gψ = G++(x, y) − G+−(x, −y) for
eigenvalue λk.

The kernel Gφ ∈ C2(D × D) is 

Gφ(x, y) = 
1 
12 

(|x − y|3 + |x + y|3 + 4 + 12xy − 6(x + y) − 6xy(x + y )). 

Based on the above observation, it is straightforward to derive the following theorem.

THEOREM E1. If the two kernels Gφ and Gψ do not allow common eigenvalues, then (g+ 
k , g− 

k ) is an 
eigenfuntion of G, then they satisfy either g +k (x) = g−

k (x) or g+
k (x) = g−

k (−x).

REMARK E2. The kernel Kα =  |x − y|α has been studied in [6]  for  α = 1, where the eigenvalues have 
a leading positive term and all of the rest eigenvalues are negative and decay as c 

(2 k+1)2 . Consider the

eigenvalue for |x − y|3, we need to find

λh(x) =
∫ x 

−1 
(x − y)3h(y) dy +

∫ 1 

x 
(y − x)3h(y) dy
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by differentiating the above equation 4 times, we get f (4) = 12 
λ h(x),  let  ω4 = 12 

λ , then the solution 
consists of the basis 

3∑
k=0 

Ak exp(ωe 
2π ik 

4 x) . 

Thus solving the eigensystem is equivalent to solving a 4×4 matrix det(M) = 0 for  ω. Similar arguments 
hold f or the Hankel kernel |x + y|3, they share the same basis. The exact values are quite expensive to
compute.

Now we apply the same idea for Gφ , by the same differentiation technique used in deriving (2.6), we 
arrive at the same form: 

φk(x) = 
3∑

l=0 
cl exp(ωe 

2π il 
4 x ), 

where ω4 = 2 
λ

, here λ  >  0, thus we choose ω ∈ R
+ and the basis are more explicit:

φk(x) = c0 cosh(ωx) + c1 sinh(ωx) + c2 cos(ωx) + c3 sin(ωx).

The eigenvalues λk can be computed in a similar way as in Theorem B4 and there are constants c1, c2 > 0 
that c1k−4 ≤ λk ≤ c2k−4.

E.2 Leaky ReLU activation function

For the leaky ReLU activation function with parameter α ∈ (0, 1), σα(x) = σ(x) − ασ(−x), we can 
derive the Gram matrix Gα: 

Gα,ij =
∫ 1 

−1 
σα(x − bi)σα(x − bi) dx 

=
∫ 1 

−1 
(σ (x − bi) − ασ(−x + bi))(σ (x − bj) − ασ(−x + bj)) dx 

= G(bi, bj) + α2G(−bi, −b j) − 
α 
6

|bi − b j|3. 

Then we can derive the following estimate for the eigenvalue for Gα . Let the kernel G α(x, y) := G(x, y)+
α2G(−x, −y) − α

6 |x − y|3.

THEOREM E3. Suppose bi are quasi-evenly spaced on [−1, 1], bi = −1 + 2(i−1) 
n + o

(
1 
n

)
.  Let  λ1 ≥ λ2 ≥ 

· · ·  ≥  λn ≥ 0 be the eigenvalues of the Gram matrix Gα then |λk − n 
2μα,k|  ≤  C for some constant

C = O(1), where μα,k = O(
(α−1)2

k4 ) is the kth eigenvalue of Gα .

Proof. Let the kernel Gα(x, y) := G(x, y)+α2G(−x, −y)− α 
6 |x−y|3, then using the same differentiation

technique in deriving (2.6), if ψα,k is an eigenfunction of Gα for the eigenvalue μk,α , we have

ψ (4) 
α,k = 

(α − 1)2 

μk
ψα,k.
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Let wα,k =
√|1 − α|μ− 1 

4 
k , then equivalently we obtain the following equation for wα,k:(

P0,α(wα,k) + P1,α(wα,k) cos(2wα,k) + P2,α(wα,k) sin(2wα,k)
)

+ tanh(wα,k)
(
Q0,α(wα,k) + Q1,α(wα,k) cos(2wα,k) + Q2,α(wα,k) sin(2wα,k)

)
+ tanh2(wα,k)

(
R0,α(wα,k) + R1,α(wα,k) cos(2wα,k) + R2,α(wα,k) sin (2wα,k)

) = 0, 

where Pi,α , Qi,α , Ri,α , i = 0, 1, 2 are polynomials of wα,k of degree ≤ 4. Set Aα(x) = (−36α4 + 42α5 − 
12α6)x2 and Bα(x) = (8α4 − 8α5 + 2α6)x4, then 

P0,α(x) = 
3 
2 

+ 6α2 − 6α3 + 
3 
2 
α4 + Aα(x) + Bα(x), 

P1,α(x) = P0,α(x) − 3, 

P2,α(x) = −3α2(α2 − 3α + 3)x + 2 α2(α − 2)(2 − 9α2 + 6 α3)x3, 

Q0,α(x) = 2α2x(−18 + 15α − 42α2 − 57α3 + 18α4 + (12α2 − 14α3 + 4α4)x2), 

Q1,α(x) = 2α2x(9 − 6α + 45α2 − 18α4 + (8 + 4α + 24α2 − 28α3 + 8α4)x2), 

Q2,α(x) = −12α 2x2(−4 + 3α − 10α2 + 13α2 + 4 α4),

R0,α(x) = 
1 
2

[
3 − 24α2 + 12α3 + 111α4 − 144α5 + 48α6

]
− Aα(x) + Bα(x), 

R1,α(x) = 
1 
2

[
−3 + 48α2 − 36α2 − 105α4 + 144α5 − 48α6

]
− Aα(x) + Bα(x), 

R2,α(x) = α2(27 − 21α − 87α2 + 114α3 − 36α 4)x + α2(8 − 4α − 12α2 + 14α3 − 4 α4)x2.

We can rewrite the equation as 

Z0,α(wα,k) + Z1,α(wα,k) cos(2wα,k) + Z2,α(wα,k) sin(2wα,k) = 0, 

where Z0,α = P0,α + tanh(wα,k)Q0,α + tanh2(wα,k)R0,α , Z1,α = P1,α + tanh(wα,k)Q1,α + tanh2(wα,k)R1,α 
and Z2,α = P2,α + tanh(wα,k)Q2,α + tanh2(wα,k)R2,α . It is not hard to show that as wα,k > 0, we have 
0 < 1 − tanh(wα,k) ≤ 2e−2wα,k , and there exists a constant c > 0 that ∀x > c,

Z0,α(x) + Z1,α(x)  >  0, and Z0,α(x) − Z1,α(x) < 0

by computing the sign of leading power in x, which implies that there exist roots on the intervals [nπ , (n+
1
2 )π] and [(n + 1

2 )π , (n + 1)π], respectively for sufficiently large n. �
The following corollary can be derived by using the Corollary 2.5. It shows that the kth eigenvalue 

grows as O((α − 1)2k− 4) when k is sufficiently large.

COROLLARY E4. When {bi}n 
i=1 are i.i.d uniformly distributed on [−1, 1], then with probability 1 − p that

|λk − 
n 
2 
μα,k| =  

⎧⎨⎩O
(

n 
5 
8 i−3

√
log n 

p

)
, i < n 

7 
8 , 

O
(

n−2
√

log n
p

)
, n

7
8 ≤ i ≤ n,
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for certain constant C > 0, where μα,k = O( (α−1)2 

k4 ) is the kth eigenvalue of Gα .
The leading eigenvalue μα,1 can be estimated from above using the Hilbert–Schmidt norm of Gα

and also using the Perron-Frobenious theorem [18] (or Krein-Rutman theorem for positive compact 
operators), one can estimate both μα,1 from below.

COROLLARY E5. For any α ∈ (0, 1), the leading eigen value μα,1 ∈ [0.941, 2.754].

Proof. First, we compute that 

v(x) :=
∫ 1 

−1 
Gα(x, y) dy 

= 
(x − 1)2(x2 + 6x + 17) − 2α(1 + 6x2 + x4) + α2(x + 1 )2(x2 − 6x + 17) 

24 
, 

then the leading eigenvalue satisfies 

μα,1 ≥
‖v‖L2[−1,1]√

2 
≥ 2

√
(728 − 323α + 450α2 − 323α3 + 728 α4) 

2835 
.

Minimize the right-hand side, we find that μα,1 ≥ 0.941, ∀α ∈ [0, 1], the minimum is achieved around 
α = 0.351. For the upper bound, we compute the Hilbert–Schmidt norm√∫ 1 

−1

∫ 1 

−1 
|Gα(x, y)|2 dx dy =

√
β(Υ · (1, α, α2, · · · , α8)) ≤ 

32 
3
√

15
≈ 2.754, α ∈ [0, 1],

where β = 512
212837625 and

Υ = (1370738, −172283, 394834, −98757, 164086, −98757, 394834, −172283, 1370738) ∈ R9,

and the maximum is achieved at α = 1. �
We should observe that the leading eigenvalue μα,1 actually is uniformly bounded from below if α ∈ 

(0, 1). Therefore the decay of eigenvalues is even worse for α close to 1. This somewhat is straightforward 
since α ∼ 1 means the loss of nonlinearity and the eigenvalues collapse to zeros except the leading one.

E.3 Analytic activation functions

For analytic activation functions such as Tanh or Sigmoid, the Gram matrix is formed by 

Gi,j =
∫

D 
σ(wi · x − bi)σ (wj · x − bj)dx. 

Particularly, if the weights |wi| ≤  A < ∞, then the kernel function can be viewed as 

G(x, y) =
∫

D 
σ(x · z)σ (y · z)dw, x, y ∈ [−A, A] × [− 1, 1], 

where z := (w, −1) ∈ Rd +1. Since the kernel is analytic in both x and y, the eigenvalues of the kernel
are decaying faster than any polynomial rate [44, 45]. Two examples in one dimension are provided in
Fig. E1.
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FIG. E1. Illustrations of the spectrum of Gram matrices in the one-dimensional case with n = 100 for Tanh and Sigmoid 
activation functions. The x-axis and y-axis correspond to log10 k and log10 λk , respectively, for k ∈ [n]. Here, (bi)

n 
i=1 is evenly 

spaced in the interval [−1, 1] and (wi)
n
i=1 is chosen from one of three cases: wi = 1 for all i, wi = 10 for all i, or wi randomly

sampled from a uniform distribution U(1, 10).
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