Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115085
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorLiu, B-
dc.creatorChen, S-
dc.creatorTan, W-
dc.creatorZhang, K-
dc.creatorXu, X-
dc.creatorDong, K-
dc.creatorYu, L-
dc.creatorChan, K-
dc.creatorRen, Z-
dc.date.accessioned2025-09-09T07:40:42Z-
dc.date.available2025-09-09T07:40:42Z-
dc.identifier.urihttp://hdl.handle.net/10397/115085-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Bin, L., Chen, S., Tan, W., Zhang, K., Xu, X., Dong, K., Yu, L., Chan, K., & Ren, Z. (2025). An acid-etched low-Pt high-entropy alloy with significantly boosted activity for alkaline hydrogen evolution. Next Materials, 8, 100818 is available at https://doi.org/10.1016/j.nxmate.2025.100818.en_US
dc.subjectAcid etchingen_US
dc.subjectAlkaline hydrogen evolution reactionen_US
dc.subjectCatalytic activityen_US
dc.subjectElectrocatalysten_US
dc.subjectLow-Pt high-entropy alloysen_US
dc.titleAn acid-etched low-Pt high-entropy alloy with significantly boosted activity for alkaline hydrogen evolutionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume8-
dc.identifier.doi10.1016/j.nxmate.2025.100818-
dcterms.abstractHigh-entropy alloys (HEAs) have attracted wide attention in the field of electrocatalysis owing to their tunable catalytic activity, multielement synergy and high stability. However, it remains challenging to develop efficient HEA catalysts for the alkaline hydrogen evolution reaction (HER) due to their vast multielement space and unidentified active sites. Herein, we report the synthesis and characterization of a low-Pt Nb35V30Mo10Cu10Pt15 HEA catalyst by combining arc-melting and acid etching. Remarkably, the acid-etched HEA exhibits an ultralow overpotential of 28 mV and a small Tafel slope of 40.9 mV dec−1 at 10 mA cm−2 in 1.0 M KOH solution, comparable with the commercial Pt/C catalyst. First principles calculations show that the enhanced catalytic performance is due to the significant reduction of the energy barrier for breaking the H-OH bond from the multi-active sites. Our work demonstrates that the combination of multisite synergy and acid-induced surface modification provides a novel strategy to develop efficient catalysts for alkaline HER.-
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNext materials, July 2025, v. 8, 100818-
dcterms.isPartOfNext materials-
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105007897284-
dc.identifier.eissn2949-8228-
dc.identifier.artn100818-
dc.description.validate202509 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the Yunnan Fundamental Research Projects (Grant No. 202401AT070378), the Hong Kong Scholar Program (XJ2023030), and the Analysis and Testing Foundation of Kunming University of Science and Technology.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2949822825003363-main.pdf8.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.