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High-entropy alloys (HEAs) have attracted wide attention in the field of electrocatalysis owing to their tunable
catalytic activity, multielement synergy and high stability. However, it remains challenging to develop efficient
HEA catalysts for the alkaline hydrogen evolution reaction (HER) due to their vast multielement space and
unidentified active sites. Herein, we report the synthesis and characterization of a low-Pt NbgsV3oMo10CuioPtis
HEA catalyst by combining arc-melting and acid etching. Remarkably, the acid-etched HEA exhibits an ultralow
overpotential of 28 mV and a small Tafel slope of 40.9 mV dec™* at 10 mA ecm™2 in 1.0 M KOH solution,

comparable with the commercial Pt/C catalyst. First principles calculations show that the enhanced catalytic
performance is due to the significant reduction of the energy barrier for breaking the H-OH bond from the multi-
active sites. Our work demonstrates that the combination of multisite synergy and acid-induced surface modi-
fication provides a novel strategy to develop efficient catalysts for alkaline HER.

1. Introduction

Hydrogen energy has been widely accepted as one of the most pro-
spective clean energy alternatives to the traditional fossil energy owing
to its high energy density and zero-carbon emission, which is of great
significance to relieve the global energy dilemma and environmental
pollution [1-3]. In this context, electrocatalytic water splitting has
drawn great attention as an economy and sustainable technology for
efficient hydrogen production [4,5]. Nevertheless, the rection kinetics of
electrocatalytic hydrogen evolution reaction (HER) highly affect the
overall water splitting efficiency. In particular, the HER in alkaline
medium suffers from a sluggish reaction kinetics and high energy barrier
due to the additional water dissociation, which becomes a practical
obstacle to the alkaline water electrolysis [6,7]. To overcome this
problem, a larger number of electrocatalysts have been developed for
the alkaline HER [8,9]. While Pt-based catalysts have been demon-
strated to be the most effective catalysts for alkaline HER, their
large-scale application is limited by the high-cost, scarcity, and poor
durability in alkaline electrolyte [10]. It is thus highly desirable to

explore low-Pt or free-Pt catalysts to maximize the intrinsic activity and
enhance the catalytic stability towards alkaline HER.

Alloying Pt with transition elements is known to be effective in
boosting the intrinsic activity while simultaneously reducing the Pt
usage [11,12]. For instance, in Pt-Ni alloyed bimetallic catalyst, the
d-band center of the Pt active sites is shifted downward, which lowers
the Gibbs free energy toward the hydrogen intermediates in alkaline
HER [13]. However, traditional bimetallic or ternary Pt-based alloy
catalysts tend to be phase-separated because of the large immiscible
gaps of the constituted elements, making it difficult to realize the
continuous regulation of the surface electronic structure [14,15]. In this
regard, high-entropy alloys (HEAs), which incorporates four or more
elements in a homogeneous solid solution structure, can effectively
avoid this limitation under the high-entropy configuration [16-18].
Moreover, this multielement composition broadens the compositional
space, and affords diverse adsorption sites to optimize the adsorption
energy between intermediates and active sites, thus promoting the cat-
alytic efficiency [19,20]. In addition, the entropy stabilization and
sluggish diffusion of atoms hinder the degradation and corrosion of HEA
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catalysts [18,21].

Nonetheless, the complexity and random distribution of multiple
elements also pose challenges in the exploration of efficient HEA cata-
lysts. On one hand, it is hard to predict the HEA catalysts with desirable
crystal structure via random combinations of various metal elements
[22,23]. On the other hand, the compositional elements and surface
structure of HEAs closely affect the catalytic activity. The homogeneous
HEAs based on extremely non-equilibrium synthesis would restrict the
structural flexibility and cause the loss of distinctive catalytic sites as
well as the scarcity of surface sites [24,25]. Especially, the noble metal
atoms as the potential active sites are often located inside HEA nano-
particles, which inevitably inhibits the catalytic activity [26]. As such,
traditional homogeneous HEAs often require tailored surface structures
or delicate morphological control to optimize their performance in
specific reactions. As is well known, acid etching is a widely used
technique to tailor the surface structures with exposed active sites,
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thereby creating a hierarchical and functional surface to boost the cat-
alytic capacities [27,28]. For example, Maulana et al. observed that
acid-etched IrFeCoNiCu HEA undergoes surface reconstruction, leading
to the formation of an Ir-enriched active shell with distinct nanodomain
due to the preferential dissolution of 3d metals [29]. Meanwhile, the
core retains a uniform single-phase HEA structure, which avoids the
phase separation or elemental segregation that could affect the catalytic
performance.

In this work, we elaborately design a low-Pt NbssV3oMojPt;5Cuig
HEA by alloying Pt with transition elements V, Nb, Mo and Cu, in which
Pt is used as the H activation center, oxyphilic Mo as the OH interaction
site to promote dissociation of water molecules [10], and Nb, V and Cu
elements are adopted to balance the valence electron accounts for
constructing an A15-type cubic phase HEA [30,31], as well as regulate
the electronic state density by the electronegativity difference. In
addition, to expose the internal Pt-based active sites and improve the
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Fig. 1. (a) XRD patterns. (b) SEM mappings of the initial and acid-etched HEAs. (c) N, adsorption-desorption isotherm and pore-size distribution of the acid-etched
Nb-V-Mo-Pt-Cu HEA. (d) Element distribution of the acid-etched Nb-V-Mo-Pt-Cu HEA.
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atomic utilization efficiency, a simple acid etching process is adopted to
modify the HEA surface by selectively removing a small quantity of V
and Nb elements with relatively low reduction potential. Such a design
highlights the importance of exposing Pt-based active sites on surface,
while maintaining the strong synergistic catalytic effects to obtain effi-
cient and durable catalysis. Indeed, the HEA after acid etching achieves
a low overpotential of 28 mV@10 mA cm 2 and a small Tafel slope of
40.9 mV dec™!, along with excellent durability in 1.0 M KOH solution.
DFT investigations reveal that multielement synergy of HEA results in
not only a higher density of electronic states distribute near the Fermi
level (Ep) but also a lower energy barrier toward the water dissociation,
which greatly accelerates the efficiency of water dissociation.

2. Results and discussion
2.1. Preparation and structural characterizations

The Nb-V-Mo-Pt-Cu HEA catalyst was synthesized via the arc-
melting method, followed by acid etching process. The synthesis de-
tails are summarized in the Experimental Section (Figure S1, Supple-
mentary Materials). To confirm the optimal etching condition, we tested
the polarization curves of this HEA catalyst with different etching times.
As shown in Figure S2, the HEA after etching in HF for 10 min shows the
lowest HER overpotential. As the etching time is increased to 20 min, the
overpotential remains almost constant. However, further extending the
etching time to 30 min leads to an increase in the HER overpotential,
which is possibly because the elements loss or structural collapse orig-
inated from the excessive etching reduces the multicomponent syner-
getic effects and catalytic activity [32].

Fig. 1a shows the XRD patterns of the HEA before and after the acid
etching. Very similar diffraction peaks are observed and can be well
indexed on a cubic lattice with a Pm-3n space group
(PDF#00-017-0711) [33]. The refined lattice constants are 5.015 Aand
5.018 A, respectively, for the sample before and after acid etching.
Moreover, the acid etching turns out to be effective in removing the
impurity phases, which are marked by the asterisks. From the SEM
image displayed in Fig. 1b, the initial HEA has a smooth surface, while
the acid-etched HEA forms a loosened morphology covered with lots of
ultrafine particles owning to the selective etching of V and Nb elements.
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This is beneficial for exposing the internal active sites and increasing the
specific surface area. The surface area and pore distribution of the
etched HEA were investigated using Brunauer-Emmett-Teller (BET)
analysis. As shown in Fig. 1c, the Ny adsorption-desorption test verified
that it has a BET surface area of 1.91 m?/g, and shows a mesoporous
structure with an average nanopore size of 21.7 nm. These abundant
mesopores can facilitate mass transfer, such as the rapid release of Hy
bubbles, and keep the catalyst exposed to the reactants, thus holding
high catalytic activity [34].

Fig. 1d and Figure S3 show the elemental mappings obtained from
the EDS measurement, and the corresponding atomic percentages are
listed in Table S1. For both before and after acid etching, the constituent
elements are distributed uniformly in the HEA without phase segrega-
tion and element aggregation. The measured composition of the initial
HEA is consistent with the nominal one of Nb35V3oMo1oCuyoPtys. After
the acid etching, the atomic percentages of Nb and V elements decrease
obviously (Nb:27.07 %, V:26.34 %), while Mo, Cu and Pt elements with
low metal activity increase accordingly (Mo:10.13 %, Cu:14.45,
Pt:22.01 %). These atomic percentages are also in consistent with the
results of the ICP-OES test, and still meets the requirements of high-
entropy alloy composition (5 %-35 at%), maintaining a homogeneous
high-entropy configuration (AS:1.55 R).

Fig. 2a shows the bright-field high-solution TEM image of the acid-
etched HEA, with regions A and B selected to analyze the microstruc-
ture. The selected area electron diffraction (SAED) patter of region A
indicates a polycrystalline nature (Fig. 2b). Moreover, the diffraction
rings match well with the XRD data, confirming its cubic structure.
Fig. 2c presents the enlarged lattice fringe of region A, and gives an
interplanar spacing of 0.213 nm. This spacing corresponds to the (112)
crystal plane of the bcc structure, which is consistent with the fast
Fourier transform (FFT) pattern (Fig. 2f). Notably, the crooked lattice
fringes in Fig. 2e imply the sever lattice distortion from the large dif-
ference in the sizes of atoms existed in the acid-etched HEA. In the
crystalline region B, multiple stacking faults and lattice distortion are
also discernible (Fig. 2d). There structural defects induce surface strain
effects, which contribute to optimizing the interaction between the ac-
tives sites and hence boosting the catalytic activity [35,36].

(-112)

v

Fig. 2. (a) The bright-field TEM image. (b) The corresponding SAED pattern. (c) The enlarged image of region A. (d) The enlarged TEM image of region B. (e) Atomic
lattice image of region A imaged along the (112) crystal plane. (f) FFT pattern of region A.
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2.2. Surface chemical valence states

The chemical valence states of the HEA before and after the acid
etching are also studied by the XPS. The full XPS spectrum shown in
Figure S4 confirms the coexistence of Nb, Mo, V, Pt, Cu and O elements
on surface. Compared with the initial HEA, the peak intensities of V, Nb
elements reduce after acid etching, while that of the Pt element increases
significantly. These results are consistent with the EDS ones and imply
that more Pt-based active sites are available on surface. Fig. 3 displays
the XPS patterns of Pt 4 f, Mo 3d, Nb 3d, Cu 2p, V 2p, and O 1 s of the
initial and etched HEAs. For the initial HEA, the Nb, V and Mo active
metals with high oxygen affinity mainly form the highest oxidation
states of Nb>7(207.2 eV), V> (517.3 eV) and Mo®(232.4 eV), respec-
tively, due to surface oxidation. In comparison, Cu (935.1/933.1 eV)
and Pt (73.8/71.5 eV) are found to be in the mixed valence states of
0 and 27. After acid etching, the zero valence V0 (520.4 eV) and Mo
(227.8 eV) are detected while the fractions of zero valence Cu® and Pt°
increase, which is attributed to that the acid etching reveals the internal
metallic states. On the other hand, the Ols spectrum suggests the
binding energies at 530.5, 531.9 and 533.2 eV should correspond to the
M-O, M-OH, and absorbed O species, respectively [37]. Note that the
Mo, Nb and V elements after acid etching exhibit slightly negative shift
at the binding energy, M-OH and M-O species show lightly positive
shifts, signifying that the acid etching induces an enhanced electron
hybridization in the Nb-V-Mo-Pt-Cu HEA [38,39].

2.3. Alkaline HER performance

The alkaline HER performance of the initial and acid-etched HEAs is
evaluated in 1.0 M KOH solution. As illustrated in Figs. 4a and 4b, the
acid-etched HEA exhibits a high catalytic activity and rapid reaction
kinetics for the alkaline HER. It only requires an overpotential of 28 mV
to drive a current density of 10 mA cm ™2, along with a low Tafel slope of
40.9 mV dec’l, which is much superior to the initial HEA (151 mV,
195.5 mV dec V) and comparable to the commercial Pt/C (32 mV,
47.1 mV dec™!) catalyst under the same conditions. This is further
corroborated by the comparison between the alkaline HER performance
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of the representative noble-metal HEA catalysts and transition metal-
based catalysts in Fig. 4c (corresponding overpotentials and Tafel
slopes are summarized in Table S2). Indeed, such low overpotential and
Tafel slope of the acid-etched Nb-V-Mo-Pt-Cu HEA can be comparable to
or better than those state-of-the-art alkaline HER catalysts [40-46]. It is
worth noting that the Pt content in this HEA catalyst is much lower than
that of the noble metal-based HEA catalysts such as Pt4FeCoNiCu [41],
PtMoPdRhNi [42] and CoNiMoPtRu [43]. Although these catalysts
achieved excellent catalytic activity in the alkaline HER, the substantial
use of precious metals and intricate nanostructures dramatically
increased both the catalyst cost and preparation complexity. In contrast,
the current HEA catalyst demonstrates a simplified composition design
and synthesis process while maintaining high catalytic performance.
Furthermore, this HEA catalyst obtains good stability with a small
overpotential amplifications after working ~72 h in alkaline conditions
at a static current density of 10 mA cm 2, even 20 mA cm 2 (Fig. 4 1),
outperforming most comparable catalysts and commercial Pt/C catalyst
[44]. More importantly, the previously reported HEA nanocatalysts are
generally prepared by solution-type or shock-type syntheses, which
often suffered from the poor generality or harsh high temperature con-
ditions [47,48]. All these issues can be avoided in this synthesis pro-
cedure employed in the present study, which may also benefit the
large-scale production.

The HER performance of the initial and acid-etched HEAs is further
characterized by the electrochemical impedance spectroscopy (EIS) and
cyclic voltammetry (CV) method. As can be seen from the Nyquist plots
shown in Fig. 4d, the Nb-V-Mo-Pt-Cu HEA after acid etching shows
better interfacial charge-transfer kinetics in alkaline HER than both the
initial HEA and Pt/C [49]. Meanwhile, the double-layer capacitance
(Cqp measured via the CV method in the non-faradaic region at different
scan rate is 3.84 mF cm™? for the acid-etched HEA (Figure S5). This
value is higher than those of the Pt/C (3.18 mF cm2) and initial HEA
(2.12 mF em™2) (Fig. 4e), implying that the acid etching induces an
increased electrochemical active surface area (ECSA) [50]. We further
investigated the intrinsic HER activity by normalizing the LSV curves
with respect to the calculated ECSA (Figure S6), the results revealed that
the overpotential of the etched HEA is substantially lower than that of
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the initial HEA and compared to the Pt/C catalyst, which demonstrates
that the overpotential changes were not related to the geometric surface
area. In addition to the catalytic activity , the acid-etched HEA also
exhibits high catalytic stability. As depicted in Fig. 4 £, the overpotential
remains nearly stable (37 mV) after persistently electrolyzing over 48 h
at a current density of 10 mA ecm 2 in 1.0 M KOH solution, and slowly
shifts to 61 mV after further continuous electrolysis for about 24 h at a
current density of 20 mA cm™2. Moreover, we examined the structure
stability of HEA catalyst after stability test (Figure S7). The surface
morphology and crystal structure of this HEA catalyst maintain well, and
the atomic percentages are well consistent with that of the catalyst
before the stability test (Table S1), indicating good stability of this HEA
catalyst for HER in alkaline conditions.

2.4. Density functional theory calculations

Figs. 5a and 5b present the atomic configuration model of the HEA
and calculated density of states (PDOSs) projected on each atom,
respectively. The Pt 5d and Cu 3d orbitals mainly occupy the bands far
below from the Fermi level (Eg), while the Nb 4d, V 3d and Mo 4d or-
bitals dominates the bands near the Ex, The former is beneficial for the
dehydrogenation processes in alkaline HER [51] and the latter is of great
importance to regulate the electron distribution and accelerate electron
transfer [52]. The calculated Gibbs free energies of hydrogen adsorption
(AGy+) at the five catalytic sites are displayed in Fig. 5c. One can see that
Pt and Cu sites has the most appealing AGy+, especially the Pt site re-
alizes a AGy+ of only —0.083 eV. This is much higher than those of the
Nb (-0.416 eV), V (-0.496 eV), and Mo (-0.607 eV) sites, underlying that
the Pt site is most suitable for the absorption/desorption of H* inter-
mediate. Whereas the weak OH* adsorption (AGoy+) restrict the HyO
dissociation on the Pt site, both the Nb and V sites have stronger OH*
adsorption (Fig. 5e). This can change the charge distribution in the H,O
molecule, thereby activating the H-O bond and accelerating HyO
dissociation kinetics, although excessive OH* adsorption may cause
poisoning and blocking of the active sites. Fortunately, the Mo site with
a relatively small AGoy+ of —0.62 eV, in support of the fast OH* ab-
sorption and desorption. Because of this multisite synergy, the energy
barrier for breaking the H-OH bond on the HEA surface is as low as
0.39 eV, which is only around one third that on the Pt surface (0.92 eV).
This much reduced energy barrier is presumably responsible for the
superior alkaline HER performance in the Nb-V-Mo-Cu-Pt HEA.

2.5. Discussion

The acid-etched Nb-V-Mo-Cu-Pt HEA as an efficient alkaline HER
electrocatalyst have shown some interesting phenomena. In terms of the
surface modification, the Nb-V-Mo-Cu-Pt HEA show high intrinsic cat-
alytic activity after the acid etching, it is different from many reported
HEA nanocatalysts, in which the nano-size effect makes them have a
large specific surface area to maximize the catalytic activity. In contrast,
the acid-etched Nb-V-Mo-Cu-Pt is mainly composed of micrometer size
particles, and has a small specific surface area. Thus, we speculate that
reducing the size of HEA particles will further improve the catalytic
performance. In addition, for the catalytic mechanism, the synergistic
effect arising from the compositional elements of HEAs is crucial for the
optimization of catalytic activity. We found that removing more V/Nb/
Mo elements can increase Pt active sites, but also impair the synergistic
effect and result in a reduced catalytic activity. In fact, the V and Nb
elements can effectively change the charge distribution of such HEA and
optimize the energy barriers of Mo and Pt active sites for stabilizing OH*
and H* intermediates. In this regard, the electronegativity difference
between the compositional elements may be an important factor to be
considered in the future exploration of advanced HEA catalysts, which is
also an effective strategy to convert inactive to active sites for electro-
catalysis [53,54].

Next Materials 8 (2025) 100818
3. Conclusions

In summary, we have developed a low-Pt Nb-V-Mo-Pt-Cu HEA
catalyst for the efficient alkaline HER by combining arc melting and acid
etching. The as-cast HEA adopts a cubic structure, which is maintained
after acid etching without phase separation or element aggregation.
Electron microscopy and XPS measurements indicate that the acid
etching mainly removes the V and Nb elements while leaves more zero-
valence Pt and Cu exposed on the surface. The acid-etched HEA exhibits
a superior HER catalytic performance with an ultrasmall overpotential
of 28 mV@10 mA cm ™2, a small Tafel slope of 40.8 mV dec™?, and good
catalytic stability during continuous electrolysis for about 72 hin 1.0 M
KOH electrolyte. These properties greatly outweigh the initial HEA and
are comparable favorably to the commercial Pt/C and other classical
HER catalysts. Through DFT calculations, we show that the enhanced
catalytic performance is due to the significant reduction of energy bar-
rier for breaking the H-OH bond resulting from the synergistic effects of
multiple active sites (V, Nb, Mo, Pt). Our study offers a viable strategy to
develop advanced HEA catalysts for alkaline HER with potential for low
cost and large-scale production.
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