Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/114649
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Mainland Development Office | - |
| dc.creator | Liang, D | - |
| dc.creator | Gong, W | - |
| dc.creator | Xie, X | - |
| dc.date.accessioned | 2025-08-18T03:02:35Z | - |
| dc.date.available | 2025-08-18T03:02:35Z | - |
| dc.identifier.issn | 2822-7840 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/114649 | - |
| dc.language.iso | en | en_US |
| dc.publisher | EDP Sciences | en_US |
| dc.rights | © The authors. Published by EDP Sciences, SMAI 2025 | en_US |
| dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | en_US |
| dc.rights | The following publication Liang, D., Gong, W., & Xie, X. (2025). A new error analysis for parabolic Dirichlet boundary control problems. ESAIM: M2AN, 59(2), 749-787 is available at https://doi.org/10.1051/m2an/2025006. | en_US |
| dc.subject | Convex polytopes | en_US |
| dc.subject | Error estimate | en_US |
| dc.subject | Finite element | en_US |
| dc.subject | Fully discrete | en_US |
| dc.subject | Parabolic Dirichlet boundary control | en_US |
| dc.subject | Semi-discrete | en_US |
| dc.subject | Smooth domains | en_US |
| dc.title | A new error analysis for parabolic Dirichlet boundary control problems | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 749 | - |
| dc.identifier.epage | 787 | - |
| dc.identifier.volume | 59 | - |
| dc.identifier.issue | 2 | - |
| dc.identifier.doi | 10.1051/m2an/2025006 | - |
| dcterms.abstract | This paper investigates the finite element approximation of a parabolic Dirichlet boundary control problem, presenting a new a priori error estimate. We establish two main convergence results for both semi-discrete and fully discrete optimal control problems, under suitable assumptions. Specifically, we demonstrate convergence orders of O(k¼) and O(k¾ − ɛ) (∀ɛ > 0) for the temporal semi-discretization of control problems on polytopes and smooth domains, respectively. For control problems defined on polyhedra, we achieve a convergence rate of O(k¼ + h½) in the fully discrete setting. The contributions of this work are twofold. First, we provide an improved temporal convergence rate for parabolic Dirichlet boundary control problems on smooth domains, setting a foundation for further fully discrete error analysis. Second, we refine the existing fully discrete error estimate for boundary control problems on polyhedra by removing the artificial mesh size restriction k = O(h2). As an intermediate but essential result, we establish both the convergence order and stability of the finite element approximation for parabolic inhomogeneous boundary value problems. Importantly, these results hold under low regularity boundary conditions without imposing mesh size constraints. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | ESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN), Mar.-Apr. 2025, v. 59, no. 2, p. 749-787 | - |
| dcterms.isPartOf | ESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN) | - |
| dcterms.issued | 2025-03 | - |
| dc.identifier.scopus | 2-s2.0-105002244558 | - |
| dc.identifier.eissn | 2804-7214 | - |
| dc.description.validate | 202508 bcch | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_Others | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | The Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000); the National Natural Science Foundation of China (Grant No. 12071468); the National Natural Science Foundation of China (Grant No. 12171340) | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | CC | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| m2an240002.pdf | 591.69 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



