Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114649
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorMainland Development Office-
dc.creatorLiang, D-
dc.creatorGong, W-
dc.creatorXie, X-
dc.date.accessioned2025-08-18T03:02:35Z-
dc.date.available2025-08-18T03:02:35Z-
dc.identifier.issn2822-7840-
dc.identifier.urihttp://hdl.handle.net/10397/114649-
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rights© The authors. Published by EDP Sciences, SMAI 2025en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Liang, D., Gong, W., & Xie, X. (2025). A new error analysis for parabolic Dirichlet boundary control problems. ESAIM: M2AN, 59(2), 749-787 is available at https://doi.org/10.1051/m2an/2025006.en_US
dc.subjectConvex polytopesen_US
dc.subjectError estimateen_US
dc.subjectFinite elementen_US
dc.subjectFully discreteen_US
dc.subjectParabolic Dirichlet boundary controlen_US
dc.subjectSemi-discreteen_US
dc.subjectSmooth domainsen_US
dc.titleA new error analysis for parabolic Dirichlet boundary control problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage749-
dc.identifier.epage787-
dc.identifier.volume59-
dc.identifier.issue2-
dc.identifier.doi10.1051/m2an/2025006-
dcterms.abstractThis paper investigates the finite element approximation of a parabolic Dirichlet boundary control problem, presenting a new a priori error estimate. We establish two main convergence results for both semi-discrete and fully discrete optimal control problems, under suitable assumptions. Specifically, we demonstrate convergence orders of O(k¼) and O(k¾ − ɛ) (∀ɛ > 0) for the temporal semi-discretization of control problems on polytopes and smooth domains, respectively. For control problems defined on polyhedra, we achieve a convergence rate of O(k¼ + h½) in the fully discrete setting. The contributions of this work are twofold. First, we provide an improved temporal convergence rate for parabolic Dirichlet boundary control problems on smooth domains, setting a foundation for further fully discrete error analysis. Second, we refine the existing fully discrete error estimate for boundary control problems on polyhedra by removing the artificial mesh size restriction k = O(h2). As an intermediate but essential result, we establish both the convergence order and stability of the finite element approximation for parabolic inhomogeneous boundary value problems. Importantly, these results hold under low regularity boundary conditions without imposing mesh size constraints.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN), Mar.-Apr. 2025, v. 59, no. 2, p. 749-787-
dcterms.isPartOfESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN)-
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-105002244558-
dc.identifier.eissn2804-7214-
dc.description.validate202508 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000); the National Natural Science Foundation of China (Grant No. 12071468); the National Natural Science Foundation of China (Grant No. 12171340)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
m2an240002.pdf591.69 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.