Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114607
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorLi, Z-
dc.creatorMak, MW-
dc.creatorLee, HY-
dc.creatorMeng, H-
dc.date.accessioned2025-08-18T03:02:10Z-
dc.date.available2025-08-18T03:02:10Z-
dc.identifier.urihttp://hdl.handle.net/10397/114607-
dc.descriptionInterspeech 2024, 1-5 September 2024, Kos, Greeceen_US
dc.language.isoenen_US
dc.publisherInternational Speech Communication Associationen_US
dc.rightsThe following publication Li, Z., Mak, M.-w., Lee, H.-y., Meng, H. (2024) Parameter-efficient Fine-tuning of Speaker-Aware Dynamic Prompts for Speaker Verification. Proc. Interspeech 2024, 2675-2679 is available at https://doi.org/10.21437/Interspeech.2024-295.en_US
dc.subjectParameter-efficient tuningen_US
dc.subjectPre-trained Transformeren_US
dc.subjectPrompt poolen_US
dc.subjectPrompt tuningen_US
dc.subjectSpeaker verificationen_US
dc.titleParameter-efficient fine-tuning of speaker-aware dynamic prompts for speaker verificationen_US
dc.typeConference Paperen_US
dc.identifier.spage2675-
dc.identifier.epage2679-
dc.identifier.doi10.21437/Interspeech.2024-295-
dcterms.abstractPrompt tuning can effectively reduce tunable parameters in pre-trained Transformers. However, it is weak at capturing speaker traits because the prompts can easily overfit the adaptation utterances, resulting in poor generalization to unseen speakers. This paper introduces a prompt pool comprising learnable prompts to tackle this issue. Unlike the traditional method that learns a fixed set of prompts for each training utterance, our method uses a dynamic selection strategy to select the best matching prompts in a pool for tuning, resulting in each prompt being tuned by its closely matched speaker. The objective is to make the prompts in the pool form speaker clusters, enhancing speaker prediction in the downstream classifier while maintaining the plasticity of the pre-trained Transformers. Our experiments on language mismatch in speaker verification demonstrate that the dynamic prompt pool provides a memory- and computation-efficient solution to fine-tune pre-trained Transformers.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2024, p. 2675-2679-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85214797325-
dc.description.validate202508 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
li24e_interspeech.pdf610.23 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.