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Abstract
Prompt tuning can effectively reduce tunable parameters in pre-
trained Transformers. However, it is weak at capturing speaker
traits because the prompts can easily overfit the adaptation utter-
ances, resulting in poor generalization to unseen speakers. This
paper introduces a prompt pool comprising learnable prompts
to tackle this issue. Unlike the traditional method that learns a
fixed set of prompts for each training utterance, our method uses
a dynamic selection strategy to select the best matching prompts
in a pool for tuning, resulting in each prompt being tuned by its
closely matched speaker. The objective is to make the prompts
in the pool form speaker clusters, enhancing speaker prediction
in the downstream classifier while maintaining the plasticity
of the pre-trained Transformers. Our experiments on language
mismatch in speaker verification demonstrate that the dynamic
prompt pool provides a memory- and computation-efficient so-
lution to fine-tune pre-trained Transformers.
Index Terms: Speaker verification; parameter-efficient tuning;
prompt tuning; pre-trained Transformer; prompt pool

1. Introduction
Applying pre-trained models (PTMs) to speaker verifica-

tion (SV) is a promising direction. This approach’s main advan-
tage is leveraging knowledge from large-scale speech datasets,
enhancing the robustness of downstream SV tasks. However,
full fine-tuning of PTMs is challenging as their size grows from
hundreds of millions to billions of parameters. For instance,
Whisper [1] contains 1.55 billion parameters.

Recently, researchers have proposed parameter-efficient
transfer learning (PETL) methods to tune PTMs using
lightweight trainable parameters while keeping most pre-
trained parameters frozen [2, 3, 4, 5, 6]. Fig. 1 shows the trade-
off between speaker verification performance and the number
of tunable parameters in these methods compared to the prompt
tuning approach. Evidently, for the same number of tunable
parameters, prompt tuning has distinct advantages. Prompt tun-
ing involves concatenating trainable prompt tokens with Trans-
former block’s inputs to facilitate few-shot learning in speech
recognition [7, 8], text-to-speech [9], and other speech process-
ing tasks [5, 10, 11]. In particular, soft prompts can be appended
to the Transformer encoders’ input to incorporate additional
soft constraints and biases, thereby effectively adapting a Trans-
former model to a new domain without extensive re-training or
fine-tuning.

Recent studies have shown that directly updating train-
able tokens may lead to unstable optimization and performance
degradation [3, 12]. To tackle these challenges, a prompt en-
coder, such as a multilayer perceptron (MLP), is employed to
reparameterize the token embeddings [3, 13]. In speaker veri-
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Figure 1: Various parameter-efficient transfer learning methods
reveal a trade-off between an Equal Error Rate (EER) and the
number of tunable parameters in a single adaptation architec-
ture. The pre-trained model used in this study is WavLM Large.

fication, static prompts often lead to poor generalization to un-
seen speakers and reduced improvements even with additional
prompts or tunable parameters.

The problem is that most methods associate the prompts
with training speakers explicitly, leading to the static prompts
overfitting these speakers. Because each utterance has its own
prompts, they tend to be associated with the utterance rather
than the speaker of the utterance, resulting in poor generaliza-
tion to unseen speakers. Consequently, increasing the param-
eters in the prompt encoder does not guarantee the capture of
more speaker information, resulting in minimal improvements
due to prompt underutilization.

We propose constructing speaker-trait-aware prompts to en-
hance the generalization to unseen speakers and effectively uti-
lize the prompt embeddings. The speaker-trait-aware prompts
have three advantages. First, recent research has shown that
allowing the prompts to learn the context from multiple in-
stances can improve generalization to unseen answers in visual
question answering [14] and unseen classes in image recogni-
tion [15] and reduce catastrophic forgetting in continual learn-
ing [16, 17]. Thus, allowing each prompt to learn from multi-
ple instances can enhance prompt generalization. Second, the
speaker-trait-aware prompts can capture the complex relation-
ships between speakers, resulting in well-utilized prompt em-
beddings. Third, by putting the well-utilized prompts into a
prompt pool, we can improve performance with fewer parame-
ters, thereby enhancing the parameter efficiency of prompt tun-
ing.

To create a prompt pool, we employ learning a set of
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dynamic prompts that guide a pre-trained Transformer to ex-
tract frame-level features that can generalize to unseen speak-
ers. Specifically, prompts in the pool are organized in dy-
namic key-prompt pairs, where the dynamic keys are the means
of the Transformer encoders’ inputs and the dynamic prompts
are updated by minimizing the cross-entropy speaker loss. A
dynamic selection strategy is developed to find the appropri-
ate prompts for each training utterance. The prompt pool en-
sures that the shared prompts can encode transferable knowl-
edge across speakers and that the individual prompts can cap-
ture speaker-specific knowledge. The selected prompts are
prepended to the Transformer encoders’ inputs, thus implicitly
providing speaker-trait instructions to pre-trained models.

In summary, this work makes the following contributions:
• We leverage a speaker prompt pool to adapt PTMs. This new

mechanism tackles prompt tuning challenges by introducing
a prompt pool memory space, which serves as parameterized
instructions for pre-trained models to learn speaker identity.

• Our query mechanism dynamically selects prompts relevant
to speaker traits, thereby effectively distinguishing speaker
identity. This selection strategy minimizes the interference
from knowledge unrelated to speaker identity mixed into
speaker representations during optimization.

2. Methodology
Fig. 2 illustrates the proposed model. This section explains

the dynamic prompt selection and updating processes and how
the prompts can be used for adapting a pre-trained Transformer.

2.1. Dynamic Prompt Pool

Because the speakers during inferencing are usually differ-
ent from those for training the speaker embedding network, let-
ting the utterance-dependent prompts be optimized for their re-
spective speakers is not flexible. The limitation is that these
prompts are fixed after training and will be used as input to
the respective Transformer layers during inferencing. However,
these utterance-dependent prompts will limit the model’s ability
to generalize from seen to unseen speakers.

To overcome this limitation, we employ a dynamic prompt
pool with each prompt updated by multiple similar speakers.
A dynamic selection strategy that finds the closest match be-
tween the prompts and the Transformer encoding layers’ in-
puts determines the association between similar speakers and
the prompts. This strategy encourages knowledge sharing and
avoids catastrophic forgetting.

We denote Xi ∈ RD×T as the output feature maps of the
i-th layer of the PTM before concatenating with the prompts. D
is the number of output channels and T is the frame count. We
denote X0 ∈ RD×T as the CNN encoder’s output. The prompt
pool is defined as:

P = {P1,P2, . . . ,PM} , (1)

where M is the number of prompts in the pool and Pj ∈
RD×T ′

represents a single prompt of length T ′ with embedding
size D.

2.2. Instance-wise Prompt Searching

As illustrated in Fig. 2, we employ a dynamic key-to-
prompt searching strategy to select suitable prompts for vari-
ous inputs. The layerwise Transformer outputs determine which
prompts to choose via key-to-prompt matching. To achieve this,

we introduce a key function q : RT×D → RD , encoding input
Xi to match the key’s dimension, with ki = q(Xi) ∈ RD .
Also we define a prompt function p : RT ′×D → RD to map the
prompt Pj to a vector of D dimensions, i.e., pj = p(Pj) ∈
RD . Both p(·) and q(·) are implemented by computing the
mean along the time axis, meaning that both functions do not
have any learnable parameters.

For each key ki, we select a subset of prompts from P ac-
cording to the similarity of their encoded vectors pj’s to the
key. We define {st}Nt=1 as a set of N indices from [1,M ].
Given {st}Nt=1, we define Ps = {Ps1 ,Ps2 , . . . ,PsN } as the
set of top-N prompts chosen from P . For an input Xi, we use
ki = q(Xi) as a key to select the top-N prompts by solving
the following objective:

{sit}Nt=1 = argmax
{sr}Nr=1⊂[1,M ]

N∑
u=1

Sim(q(Xi), p(Psu))

Psi = {Psi1
,Psi2

, . . . ,Psi
N
}

(2)

where Sim : RD × RD → R is a similarity function such as
cosine.

2.3. Speaker Prompt Tuning

Speaker prompt tuning introduces learnable parameters into
the Transformer’s input space while freezing the PTM’s param-
eters during downstream training or PTM adaptation.

We introduce a set of prompt embeddings for the i-th layer
of a PTM, Psi = {Psit

∈ RD×T ′
; 1 ≤ t ≤ N}, where N is

the number of selected prompts. As illustrated in Fig 2, prompts
are inserted into each Transformer layer’s input space as learn-
able D-dimensional vectors. With prompting, the Transformer
encoder’s output at Layer i is:

Zi = Encoder
([

Psi1
;Psi2

; , . . . ,Psi
N
;Xi−1

])
, i = 1, 2, . . . , L

(3)
where Zi ∈ RD×(NT ′+T ). Then, the first NT ′ frames of Zi

are dropped, and the remaining T frames are assigned to Xi.
This process is repeated for Layer i + 1, with a new prompt
subset Psi+1 prepended to Xi. In Eq. 3, L is the number of
encoder layers, the colors • and • indicate learnable and frozen
parameters, respectively. and the symbol “; ” denotes concate-
nation along the time dimension.

2.4. Optimizing the Prompts

The frame-level speaker embeddings Zi’s at all encoding
layers are linearly combined to produce a frame-level speaker
feature matrix H∗. The matrix is then passed to the speaker
encoder gϕ to give an utterance-level speaker embedding vec-
tor. For each training utterance, the speaker encoder’s param-
eters (ϕ), the selected prompts {Psi}Li=1, and the combination
weights {wi}Li=1 are updated by backpropagation through min-
imizing the AAM-Softmax loss [18]. In Eq. 2, each prompt
will be updated by the utterances of some similar speakers in a
mini-batch.

3. Experiments and Results
3.1. Implementation Details

Pre-trained Model and Speaker Encoder. We chose Hu-
BERT Large [19] and WavLM Large [20] as the PTMs and
ECAPA-TDNN [21] as the speaker encoder.
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Figure 2: Illustration of the dynamic prompt selection and updating processes. First, we select a subset of prompts from a key-prompt
paired pool using a query mechanism. Then, the selected prompts are prepended to the input vectors of each Transformer encoder.
Finally, the extended vectors are fed into the encoders, and the selected prompts in the prompt pool are optimized by minimizing the
AAM-Softmax loss. The objective is to select and update the prompts to guide the PTM’s predictions.

Datasets. We used VoxCeleb1-dev [22], CN-Celeb1 [23],
and CU-MARVEL [24] to fine-tune the PTMs and train the
ECAPA-TDNN. CU-MARVEL, a Cantonese dementia data
comprised of 280 speakers, was repurposed for speaker verifica-
tion experiments. To create a challenging scenario, we trained
the models on VoxCeleb1-dev and tested them on the VOiCES
Challenge 2019 evaluation set (Voices19c) [25] due to the dras-
tic difference in their acoustic conditions.

Settings. We truncated each training utterance’s waveform
to 2 seconds and used mini-batches of 128 utterances for fine-
tuning and training. We employed AAM-Softmax [18], setting
the margin to 0.2 and the scaling factor to 30. The learning rate
was reduced by 3% after each epoch. For HuBERT Large and
WavLM Large, the settings were L = 24 and D = 1024. We
set T ′ to 5, N to 3 and M to 15.

3.2. Results and Analysis

Table 1 shows that using a pre-trained model for frame-
level feature extraction can improve SV performance, partic-
ularly when fine-tuning the PTM is applied. Our prompt pool
performs well, utilizing fewer parameters than other parameter-
efficient methods. The performance improvement is attributed
to our prompt pool, which dynamically learns speaker-aware
prompts with significantly fewer tunable parameters.

We observed that full fine-tuning performs badly on the
CU-MARVEL dataset, even worse than the performance of the
fixed model (without fine-tuning). We speculate that this un-
derperformance may arise from a language mismatch between
the pre-trained model and the dataset and the limited number
of speakers in CU-MARVEL. This could negatively affect the
pre-trained model’s parameters during full tuning. In contrast,
the larger speaker count of CN-Celeb facilitates the training of
a more effective speaker encoder. Thus, this issue is less pro-
nounced in the CN-Celeb dataset. While LoRA is effective for

natural language processing, its efficacy in speaker verification
is inferior, as shown in Table 1. The performance gap may be
due to the focus on capturing the phonetic properties of utter-
ances during the pre-training phase [26]. In contrast, speaker
verification demands discrimination between speakers, which
is not achievable by merely modifying the attention weights.

3.3. Ablation Study

Table 2 (row 1) shows that removing the prompt pool but
using a set of static prompts for each Transformer encoder layer
leads to a significant drop in performance. This performance
drop indicates severe catastrophic forgetting and knowledge in-
terference among speakers when using static prompts. Con-
versely, our prompt pool can effectively encode speaker-specific
knowledge.

Table 2 (row 2) demonstrates that randomly selecting the
prompts from the pool adversely affects performance. This
result underscores the critical role played by the key-prompt
search to ensure that each prompt is adapted by a group of
relevant speakers whose speeches, after transformation by the
Transformer encoders, are close to the prompt.

3.4. Effect of Hyperparameters on Dynamic Prompts

Our prompt tuning has three key hyperparameters: prompt
pool size M , single prompt T ′, and the prompt selection size N .
Intuitively, M determines the capacity of learnable prompts, T ′

represents the capacity of a single prompt to encode knowledge,
and NT ′ represents the capacity of the layerwise prompts in
adapting the corresponding Transformer layer.

We fixed T ′ to 5 and M to 15 and then continuously in-
creased N to identify the optimal prompt length. Results in
Fig. 3 (upper panel) show that a too-small T ′ negatively im-
pacts performance, whereas an oversized prompt can lead to
knowledge overfitting. We hypothesize that optimal capacity
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Table 1: Results on the test sets of VoxCeleb1, CN-Celeb1, and CU-MARVEL. Using HuBERT Large or WavLM Large as PTM and
ECAPA-TDNN as the speaker encoder. In the column “#Parames,” the first and second values are the number of adaptation parameters
in a single tuning architecture for fine-tuning the PTM and the number of parameters in the ECAPA-TDNN, respectively.

PTM Fine-tuning Method #Params VoxCeleb1-O CN-Celeb1 CU-MARVEL
EER(%) minDCF EER(%) minDCF EER(%) minDCF

- - 14.7M 2.96 0.30 12.49 0.67 7.20 0.77

HuBERT Large

Fixed 0.0M+14.7M 2.76 0.30 12.05 0.61 10.40 0.93
Full fine-tuning 316M+14.7M 1.98 0.22 10.51 0.60 11.65 0.98

Adapter 0.5M+14.7M 2.13 0.24 10.89 0.62 8.10 0.95
LoRA 0.5M+14.7M 2.38 0.23 10.48 0.60 9.11 0.92

Static prompt 0.6M+14.7M 2.26 0.23 10.69 0.59 8.31 0.88
Dynamic prompts (Ours) 0.3M+14.7M 2.17 0.21 10.61 0.58 8.20 0.86

WavLM Large

Fixed 0.0M+14.7M 1.94 0.22 11.17 0.59 6.66 0.88
Full fine-tuning 316M+14.7M 1.39 0.16 10.47 0.56 9.09 0.94

Adapter 0.5M+14.7M 1.68 0.19 10.83 0.63 5.58 0.81
LoRA 0.5M+14.7M 1.88 0.21 10.89 0.63 6.83 0.88

Static prompt 0.6M+14.7M 1.65 0.18 10.57 0.58 6.42 0.88
Dynamic prompts (Ours) 0.3M+14.7M 1.51 0.17 10.38 0.59 6.62 0.83

Table 2: Ablation studies on VoxCeleb1. The train and test data
are VoxCeleb1-dev and VoxCeleb1-eval, respectively.

Ablated component EER(%) minDCF
w/o prompt pool 1.65 0.18

w/o key-value pairs 1.71 0.18
Dynamic prompts (Ours) 1.51 0.17

Table 3: The performance of dynamic prompts and conventional
fine-tuning methods on Voices19c. The train data is VoxCeleb1-
dev.

Fine-tuning Method v19-eval v19-eval-wpe
EER(%) minDCF EER(%) minDCF

Adapter 20.02 0.97 18.62 0.97
Static prompts 20.22 0.96 17.75 0.87

Dynamic prompts (Ours) 19.06 0.93 15.99 0.86

for prompts is essential for encoding specific aspects of shared
knowledge.

We also set T ′ to 5 and N to 3 and progressively in-
creased M . Results in Fig. 3 (lower panel) suggest that en-
larging the prompt pool size enhances performance, demon-
strating the necessity of a sufficiently large pool to encode di-
verse speaker-specific knowledge. However, excessively in-
creasing the prompt pool size does not significantly enhance
performance.

3.5. Generalization Analysis

We trained the model on VoxCeleb1 and tested them on
the evaluation set of Voices19c (v19-eval), acknowledging the
acoustic differences between VoxCeleb and VOiCES. Speech
files in v19-eval-wpe were subject to weighted prediction er-
ror (WPE) processing. Table 3 shows that adapters and static
prompts yield similar results, whereas dynamic prompts exhibit
improvement. This result suggests that dynamic prompts are
better generalized to unseen speakers in different acoustic envi-
ronments.
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Figure 3: Results on Voxceleb1-O. The training dataset is
VoxCeleb1-dev, and the PTM is WavLM Large. The total length
of the prompt is NT ′.

4. Conclusions
This paper introduces a dynamic prompt-tuning method for

speaker verification. Specifically, our dynamic prompts ap-
proach uses speaker representations as conditions to generate
speaker-aware prompts, avoiding implicit correlations with pre-
viously seen speakers. Furthermore, we employ a prompt pool
to minimize the number of tunable parameters without sacrific-
ing the effectiveness of prompt embeddings. Our experiments
in various settings demonstrate that our method surpasses cur-
rent parameter-efficient baselines in speaker verification.
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