Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114577
PIRA download icon_1.1View/Download Full Text
Title: A nonparametric robust optimization approach for chance-constrained knapsack problem
Authors: Xu, L
Zhang, C
Xu, Z 
Long, DZ
Issue Date: 2025
Source: SIAM journal on optimization, 2025, v. 35, no. 2, p. 739-766
Abstract: A chance-constrained knapsack problem (CCKP) is a knapsack problem restricted by a chance constraint, which ensures that the total capacity constraint under uncertain volume can be violated only up to a given probability threshold. CCKP is challenging to solve due to its combinatorial nature and the involvement of its chance constraint. Existing solution methods for CCKP with tractability guarantees mainly focus on two approaches: (1) a full-information approach (stochastic programming) that assumes the uncertain volume follows certain distributions, such as normal or empirical distribution; (2) a partial-information approach (robust optimization) that adopts specific statistics of the unknown distribution, such as the mean and variance. The existing full-information approach lacks robustness under limited samples due to its strong assumption; the existing partial-information approach can be further improved, as the uncertainty set or distributional ambiguity set can be ameliorated. With these concerns in mind, we propose a nonparametric robust approach for CCKP by involving a novel nonparametric statistic to form a new distributional ambiguity set. Furthermore, we develop an upper bound on the violation probability of the chance constraint under the distributional ambiguity set to approximate CCKP by a deterministic robust counterpart. In terms of solution methodology, we decompose the deterministic robust counterpart into cardinality-constrained knapsack problems, which can be efficiently solved by the proposed dynamic programming algorithm. Computational results show that our proposed solution methods produce better solutions to CCKP compared with existing approaches.
Keywords: Chance constraint
Knapsack problem
Nonparametric
Robust optimization
Publisher: Society for Industrial and Applied Mathematics
Journal: SIAM journal on optimization 
ISSN: 1052-6234
EISSN: 1095-7189
DOI: 10.1137/23M1620867
Rights: © 2025 Society for Industrial and Applied Mathematics
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
The following publication Xu, L., Zhang, C., Xu, Z., & Long, D. Z. (2025). A Nonparametric Robust Optimization Approach for Chance-Constrained Knapsack Problem. SIAM Journal on Optimization, 35(2), 739-766 is available at https://doi.org/10.1137/23m1620867.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
23m1620867.pdf461.72 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.