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Abstract. A chance-constrained knapsack problem (CCKP) is a knapsack problem restricted
by a chance constraint, which ensures that the total capacity constraint under uncertain volume
can be violated only up to a given probability threshold. CCKP is challenging to solve due to
its combinatorial nature and the involvement of its chance constraint. Existing solution methods
for CCKP with tractability guarantees mainly focus on two approaches: (1) a full-information ap-
proach (stochastic programming) that assumes the uncertain volume follows certain distributions,
such as normal or empirical distribution; (2) a partial-information approach (robust optimization)
that adopts specific statistics of the unknown distribution, such as the mean and variance. The ex-
isting full-information approach lacks robustness under limited samples due to its strong assumption;
the existing partial-information approach can be further improved, as the uncertainty set or distribu-
tional ambiguity set can be ameliorated. With these concerns in mind, we propose a nonparametric
robust approach for CCKP by involving a novel nonparametric statistic to form a new distributional
ambiguity set. Furthermore, we develop an upper bound on the violation probability of the chance
constraint under the distributional ambiguity set to approximate CCKP by a deterministic robust
counterpart. In terms of solution methodology, we decompose the deterministic robust counterpart
into cardinality-constrained knapsack problems, which can be efficiently solved by the proposed dy-
namic programming algorithm. Computational results show that our proposed solution methods
produce better solutions to CCKP compared with existing approaches.
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1. Introduction. The knapsack problem is a fundamental and widely studied
combinatorial optimization problem [45]. It can be used to model a wide range of
industrial problems, including facility location, machine scheduling, and resource al-
location problems [17, 24]. Most importantly, the knapsack problem often serves as
a subproblem in large-scale discrete optimization problems. For instance, the assign-
ment problem and the capacitated P-median problem involve the knapsack problem
as a subproblem when implementing column generation algorithms [44, 36, 19]. With
this, the knapsack problem has several variants, including the binary knapsack prob-
lem, the cardinality-constrained knapsack problem, and the quadratic knapsack prob-
lem. The binary knapsack problem is a classic and fundamental variant, known to be
NP-hard, yet solvable in pseudopolynomial time via dynamic programming algo-
rithms. Many efficient algorithms have been extensively studied in the literature
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to solve other variants [20, 41, 12, 1, 39, 34]. For a detailed review of knapsack prob-
lems, the reader may refer to [37] and [29]. In this study, we focus on the binary
knapsack problem.

The knapsack problem often has uncertain volumes in practical applications
[30, 38], motivating decision-makers to apply a chance constraint that restricts the
probability of constraint violation below an allowed risk tolerance [23, 32, 48, 27].
In this article, we investigate the chance-constrained knapsack problem (CCKP)
defined as

1.1 CCKP ix; : Prob a;z; >b| < )
(1.1) ( )Ier?oz?ﬁn{Zcx ro (Zaz ) a}

=1 i=1

where ¢; is the deterministic objective coefficient, and a; is the uncertain volume. The
probability measure Prob(-) represents the probability of an event, and the parameter
« describes the risk tolerance of violation probability that often takes a small value
(e.g., 0.05). As such, the probability of constraint violation Prob(>_" , a;z; > b) is
required to be less than the predetermined o. The CCKP is inherently challenging
to solve, primarily due to the fact that the chance constraint is typically nonconvex
and the decision variables are discrete. Nonetheless, two prominent approaches have
been identified to recapture the tractability of chance-constrained models: stochastic
optimization and (distributionally) robust optimization.

Stochastic optimization typically requires full information about the probability
distribution. One research stream assumes knowing the explicit form of the probability
distribution [26, 30]. Although this approach is implausible, it may offer computa-
tional tractability, which is appealing to decision-makers. For example, when random
variables follow a joint normal distribution [24], the CCKP can be reformulated as a
deterministic mixed integer second-order conic program, enabling the use of off-the-
shelf optimization solvers. However, in many cases, only historical data is available,
and the probability distribution is approximated by its empirical form [46]. Under
these circumstances, the probability of constraint violation can be simulated using
the Monte Carlo method [31] or approximated by conservative measures such as con-
ditional value-at-risk (CVaR) [42] and entropic value-at-risk (EVaR) [2]. The optimal
solution of chance-constrained models can be sensitive to the constructed empirical
distribution, resulting in poor out-of-sample performances. As demonstrated by [49],
the solution obtained under a limited sample size can deviate significantly from true
reality, even for the relatively simple newsvendor problem with only one uncertain co-
efficient. Therefore, the stochastic optimization may lack robustness when the sample
size is limited.

Robust optimization basically relies on partial information about the probability
distribution, such as the support for a random variable. It employs a feasible set of
possible realizations, referred to as the uncertainty set, based on the adopted partial
information. Notable pioneering works include the ellipsoidal uncertainty set [5, 3]
and the budget uncertainty set [9]. Computationally tractable reformulations are pro-
posed to solve their robust counterparts [8, 7]. [33] proposes an uncertainty set based
on a finite number of scenarios to optimize the worst-case performance. [15] intro-
duces an uncertainty set using new deviation measures for bounded random variables,
which can capture distributional asymmetry to improve the objective function. [40]
incorporates asymmetric distribution information into robust optimization. In these
robust optimization approaches, constructing uncertainty sets focuses on parametric
information about the probability distribution. To the best of our knowledge, only
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the robust counterparts of ellipsoidal and budget uncertainty sets are computationally
tractable for CCKPs.

Distributionally robust optimization further involves a plausible set of probability
distributions, known as the ambiguity set. Common ambiguity sets include probability
distributions restricted by moment information, such as the first and second moments,
and semivariance [21, 50, 51]. Focusing on research that addresses CCKPs, we note
that [16] proposes distributionally robust CVaR and [35] proposes distributionally ro-
bust EVaR. [50] reformulates the distributionally chance-constrained binary program
as 0-1 second-order cone (SOC) programs, exploiting the submodularity of the 0-1
SOC constraints under special and general covariance matrices. By utilizing submod-
ularity and lifting, they derive extended polymatroid inequalities to strengthen the
0-1 SOC formulations. It is noted that (distributionally) robust optimization yields
conservative solutions that offer opportunities for improvement.

To address the challenges of robustness and conservativeness, this article proposes
a nonparametric robust approach. Previous studies have demonstrated the effective-
ness of incorporating nonparametric information, such as monotonicity and convexity,
in the newsvendor problem [49]. It is essential to identify valid nonparametric informa-
tion for the knapsack problem. To this end, we propose a novel supportwise statistic,
the maximum average tail probability distribution (MATPD), which exploits the non-
parametric information of underlying distributions. The proposed MATPD induces an
ambiguity set of candidate distributions. Based on this ambiguity set, we then present
a distributionally robust CCKP (DR-CCKP) formulation, which explicitly derives an
upper bound on the probability of constraint violation and yields an approximation
for the CCKP. Furthermore, we propose tractable reformulations via subproblems
of cardinality-constrained knapsack problems. In addition to utilizing off-the-shelf
optimization solvers, we provide an exact solution technique based on dynamic pro-
gramming for these subproblems. The numerical experiment demonstrates that our
nonparametric robust approach outperforms distributionally robust optimization in
terms of conservativeness and stochastic optimization in terms of robustness.

Our major contributions are summarized as follows.

1. We propose a novel supportwise MATPD to construct the ambiguity set for
the DR-CCKP. The proposed MATPD leverages the nonparametric informa-
tion of distributions.

2. We derive an explicit upper bound on the probability of constraint violation in
the DR-CCKP. Specifically, the derived upper bound is tight when uncertain
volumes follow uniform distributions.

3. We equivalently reformulate the DR-CCKP into a set of deterministic
cardinality-constrained knapsack problems, which can be efficiently solved
using off-the-shelf solvers or dynamic programming techniques.

Organization. The rest of this article is organized as follows. Section 2 presents
our new distributionally robust optimization approaches. Section 3 introduces the
explicit upper bound for the probability of constraint violation. Section 4 provides
solution methods. Section 5 applies our robust optimization approaches in a data-
driven setting and extends our robust optimization approach for the multidimentional
CCKP. Section 6 conducts numerical experiments comparing our framework with ex-
isting approaches. Section 7 provides the conclusions and potential research directions.

Notation. We denote random variables with the tilde sign (e.g., ;). Lowercase
letters represent scalars, such as x;. Uppercase letters represent sets, such as N.
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2. Distributionally robust optimization approach for the CCKP. Let
N :={1,2,...,n} denote the set of subscripts for the uncertain volume a;. We as-
sume that these coefficients are independent and distributed within bounded intervals.
Despite its ostensible deviation from many practical situations, the independence as-
sumption is common in myriad studies engaged in chance constraints [35, 32, 10].
For each uncertain volume a;, we define its nominal value as a; and its deviation
from the nominal value as a;. Specifically, when the support set of a; is bounded
by the interval [s;,¢;], the nominal value has a; = (¢; + s;)/2 and the deviation has
a; = (t; — s;)/2. Many have scaled the uncertain volume by (a; — a;)/a; [4, 8.
Crucially, this representation can derive an explicitly formed but computationally
intractable formulation in our approach. For that reason, we introduce the scaled
uncertain volume Z; = (a; — @;)/a, where @ denotes the maximum value of deviations
such that ¢ = max{ay,asg,...,a4,}. With this tailored representation, our numerical
studies indicate that the robust optimization approach based on & still has superior
performance to many existing approaches on robustness and conservativeness. As
such, we can represent Z; as an independent random variable distributed within the
interval [—1,1]. We consider continuous random variables Z; with probability density
functions (PDFs) f;(z) and cumulative distribution functions (CDFs) F;(z). However,
a fundamental challenge in the CCKP is that the full knowledge of the probability
distribution may not be accessible. Instead of estimating the empirical probability
distribution of Z;, we employ a set of plausible probability distributions, termed the
ambiguity set F;. The DR-CCKP is defined as

n n
(2.1) (DR-CCKP) merﬁ)aﬁc}n {;ml : Igg};Prob (izzl(al +az;)w; > b) < a} )
where F = F; X Fa X ...J, represents the ambiguity set of the joint distribution
because Z; is independent for all i € N. Given the binary decision vector x € {0,1}",
let I(x) := {i € N : x; = 1} denote the set of subscripts corresponding to the
selected uncertain volumes. For notation convenience, we equivalently denote I(x) :=
{i1,42, ... ,im(z)} Where m(x) is the cardinality of the set I(x). Before constructing
the ambiguity set F, we propose a novel upper bound for the violation probability by
introducing a nonnegative and integrable functions g;(z) for ¢ € N, which first-order
stochastically dominates f;(z), in the following Theorem 2.1.

THEOREM 2.1. If there exists a nonnegative and integrable function g;(z) that
first-order stochasticallly dominates the PDF f;(z) such that

(2.2) /gi(z)dzZ/ fi(z)dzVy € [-1,1],i € N,

then the wviolation probability satisfies

n m(x)
(23) Prob (Z(al + &20.131 > b) < / .. / H 9i; (le) dZil . dzim(z),
i1 z€S(x) j=1
where S(x) :={z=(zi,, 2iy, -+ %i,,(,,) € [-1,1]"®) Z;n:(f) azi, >b— Z;n:(f) ai, } and
ze{0,1}™.

Proof. We use mathematical induction to prove this theorem.

First, we prove that the statement holds when m(x) = 1. We assume that b €
[@;, — a,a;, + a] such that —1 < (b—a;,)/a < 1. Otherwise, the violation probability
is zero when b is larger and one when b is smaller. The violation probability satisfies
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(2.4) Prob (Z(ai +az)w; > b) :/( fin (i, )dzi,

i=1 b—a;,)/a

1
S\/ gh(zll)d‘zll _/ gi1(zi1)dzi1a
(b all)/ Ziles(m)

where S(x) = {z;, € [-1,1],42;, >b—a;, }. The inequality in (2.4) derives from the
definition of first-order stochastic dominance in (2.2).

Second, we assume that the statement holds when m(x) = k — 1 > 2. Then,
we prove that the statement holds when m(z) = k. To exclude trivial cases, we
similarly assume that b € [Zm(f) @i, —m(x)a, Y (1) ai, +m(x)a]. Denoting B(x) =
b— 37" a;,, it holds that

(2.5)  Prob Z(al—&—azl Yo; >b / / H Ji;(zi,) | dzi, - dzi, s
zeS(x) =1

where S(z) :={(2i,, Ziys -, 2i,) € [-1,1]* Z _,0z;; > B(z)}. Then, we show that

(2.6

)
// le (zll)flz(zw)fzk(zlk)dz“dzzzdzzk
(ziy Zig Z%)ES(z)
1 k—1
_ / Faue)dzi Prob | 3 az, > B(z) -,
Zig j=1
1 [k—1
Z::k (ZiyZigyZiy 4 )ESi (i) | 7=1
[k—1
§/ iy, (%, dzlk/ / Hgij(zij) dz, ...dz;,_,
z; zll,zlz,..“z% 1)65%('3%) _j:l |
z€S8(x) j=1

where S;, (21,) = {(2i,2ias - 2i,) € [LUFL YN laz, > B(z) — az,} and
z, = max{—l,w}. The first inequality in (2.6) holds by the induction
assumption. The second inequality in (2.6) holds by the following arguments, in which

k-1
(2.7) F(z,) / / H i (zi;) | dziy - dziy .
(z Jj=1

i1 1%ige0%ig 1 )ESiy (2iy,)

For any given z| . € [—1,1], according to the second mean value theorem for definite
integrals [18], there exists ¢ € (2], ,1) such that
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1
28) [ fanlen) = gn )l e )i

¢ 1
=P [ Ui =gl + PO [ (Fleu) — gl

ik

¢ 1
<P [ V) =l + PG [ 1) =gl

1

= F(,) [ Uaen) - ga (s, <0,
z,

The first inequality in (2.8) holds by f; [fir (zi,) = 91, (20,)]dzi,, <0 and F(z; ) < F(1).

The second inequality in (2.8) holds by F'(z], ) > 0 and le, [fir (z3,) = Gir, (23,,)]d 24, <0.

Consequently, the statement holds for all m(z) € N, and the proof is complete. 0

Theorem 2.1 establishes a sufficient condition in (2.2) for deriving an upper bound
on the violation probability. Notably, if we find a nonnegative and integrable function
gi(z) that can bound the tail probability distribution fyl fi(z)dz V y € [-1,1], then
we obtain an upper bound of the violation probability, which is expressed in (2.3) as
[... fzes(w) [H;nz(f) 9i;(2i;))dz, .. .dz,, . For the sake of computational tractability
toward this newly proposed upper bound, it is convenient to select a constant value
for g;(z) that satisfies the sufficient condition. Intuitively, a larger selected constant
results in a higher upper bound, thereby yielding a more conservative approxima-
tion of the violation probability. Motivated by this observation, we seek to identify
a minimum constant that satisfies the sufficient condition. Subsequently, we intro-
duce the concept of the MATPD in Definition 2.2 and demonstrate its minimality in
Theorem 2.3.

DEFINITION 2.2 (maximum average tail probability distribution). For a random
variable Z; with the integrable PDF f;(z) over its support set [—1,1], the MATPD is
defined as

1
2.9 MATPD) — := max h;(y),
(29) (MATPD) - i= maxc hi(y)
where
S} fi(2)dz
(2.10) hi(y)z{ ey yElLD),
fi(1)7 y=1

Definition 2.2 stipulates that the MATPD of random variable Z; is defined as
1/p;, which corresponds to the maximum value of h;(y) within its support set [—1, 1].
Notably, the tail probability distribution fyl fi(z)dz is positive for any y € [—1, 1], and
the average tail probability distribution h;(y) is scaled over the interval [y,1]. When
the variable y equals —1, the average tail probability distribution h;(y) is 1/2. As the
variable y approaches one, the function h;(y) converges to f;(1). Thus, our MATPD is
properly defined on the support set [—1,1]. Next, we present several useful properties
about the MATPD.

THEOREM 2.3. The MATPD of random variable Z; satisfies the following proper-
ties:
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(i) Dominance: f 1/,uldz>f fi(2)dz Vy € [—1,1].

(ii) Minimum: 1/p; is the minimum constant ¢ that satisfies fyl cdz > fyl fi(z)dz
Yy e [-1,1].
(iii) Uniqueness: 1/p; equals 1/2 if f;(2) is a nonincreasing PDF.

Proof. (i) According to Definition 2.2, it holds that 1//12 > f fi(z dz/(l —y) for

any y € [—1,1]. By simple reformulations, it holds that f 1/ pidz > f fi(2)dz or,
equivalently, F;(y) >1—1/u; +y/pi, for any y € [—1,1]. Thus (i) is proven.

(ii) It follows directly from the definition of MATPD. Thus, (ii) is proven.

(iii) Flrst we prove that 1/u; > 1/2. According to Definition 2.2, it holds that
1/ > f fi(2)dz/(1 —y) for any y € [—1,1]. Then, by setting y = —1, it holds that
1/ 1 >f fi(z)dz/2=1/2.

Second we prove that 1/p; < 1/2. (1) We prove that 1/p; < 1/2 when optimal
y = 1. Since f;(z) is a nonincreasing PDF, it holds that f;(1) < 1/2. Otherwise,
f_ll fi(z)dz > f_ll 1/2dz = 1 contradicts the definition of PDFs. Therefore, 1/u; <
fi(1) <1/2. (2) We prove that 1/u; <1/2 when optimal y € [—1,1). By the definition
of the MATPD, it holds that 1/u; < 1/2 is equivalent to F;(y) —1/2 —y/2 > 0.
Denote T;(y) = Fi(y) —1/2 — y/2. Then, we only need to verify that T;(y) > 0 for all

€ [-1,1). To exclude trivial cases, we here consider that the PDF f;(2) is first-order
differentiable and strictly decreasing. The function T;(y) is concave in y € [—1,1], due
to 02Ty (y)/0y* = dfi(y)/dy < 0. Besides, the function T;(y) equals zero on the end
points such that T;(—1) = T;(1) = 0. Consequently, T;(y) > max(T;(—1),7;(1)) =0
for all y € [—1,1). To conclude, (iii) is proven and the proof is completed. d

Theorem 2.3 provides several prominent properties of the proposed MATPD. The
first property ensures that the MATPD dominates the PDF f;(z), thereby satisfying
the sufficient condition presented in (2.2), achieved by setting a constant function
gi(z) = 1/u; for z € [—1,1]. This property motivates us to adopt the MATPD as
a constant proxy of f;(z), enabling us to derive an upper bound of the violation
probability. The second property states that the MATPD is the minimum constant
that dominates the PDF f;(z). This property guarantees that our MATPD is the
best among all constant proxies of f;(z), resulting in the tightest upper bound of the
violation probability. The third property reveals that the MATPD equals 1/2 for any
nonincreasing PDF. This property is particularly useful when dealing with random
variables that exhibit nonincreasing PDFs.

Based on the proposed MATPD, we now formally present the ambiguity set JF;
for the uncertain volume 2;. Given the CDF F;(y) for the uncertain volume Z;, we
know that F;(y) is bounded such that F;(y) > 1 — fyl 1/p; or, equivalently, F;(y) >
1 —1/p; +y/pi (see the proof of (i) in Theorem 2.3). Then, the ambiguity set F;
induced by the MATPD 1/u; is defined as

(2.11) ]—"i::{Fi:Fi()>1—1+'3,ye[ 1,1]}.
K3

Intuitively, the ambiguity set F; contains more distributions as the MATPD 1/u;
decreases. The motivation for using the ambiguity set F; may be attributed to the
following reasons. It is simple to approximate the violation probability, as the gen-
eral function g;(y) is replaced by the MATPD, the minimum constant, to facilitate
computations. Second, it can derive a tight upper bound of the violation probability,
when uncertain volumes follow uniform distributions. This conclusion directly follows
from Remarks 3.4 and 3.5. In our analysis later, we show that the proposed ambiguity
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set F; derives an explicit upper bound of the violation probability in section 3 and
possesses computational tractability for DR-CCKP in section 4.

Afterward, we first analyze truncated normal distributions to demonstrate the
benefits of choosing the MATPD. For example, we consider three truncated nor-
mal distributions with zero expectations and standard deviations of 1, 2, and 3,
respectively. 'We compare our proposed ambiguity set JF; with the ambiguity set
F! ={z € [-1,1], E(2;) = 0} proposed by [35]. Besides the support, both F; and
F! incorporate one more statistic into the ambiguity set (i.e., F; with the MATPD

?

and F; with the mean). Under these distributions, the MATPD equals 0.50, 0.51,
and 0.52, respectively. In this example, we can tailor our ambiguity set JF; for each
distribution but construct an identical ambiguity set F/ for all distributions. Conse-
quently, our MATPD can build a more accurate ambiguity set based on distribution
information, thereby reducing the model’s conservativeness. In our numerical stud-
ies later, we show that our DR-CCKP yields higher objective values compared with
existing (distributionally) robust optimization approaches.

Then, we analyze the consistency of MATPDs under different sample sizes. For
instance, we consider a truncated exponential distribution with the rate parameter
being one. Then, we generate 50, 500, and 5000 samples to estimate the rate pa-
rameter and the MATPD. In this example, we find that the largest gap is 11.5%
between the estimated rate parameters and 1.25% between the estimated MATPD.
This observation motivates us to adopt MATPDs under limited sample sizes. In our
numerical studies later, we show that our DR-CCKP yields more stable objective
values compared with existing stochastic optimization approaches.

3. Approximating chance constraint under distributional ambiguity
set. The CCKP is generally challenging to solve due to the combinatorial nature of
decision variables and the nonconvexity of chance constraints. Particularly, the chance
constraint in (1.1) represents a value-at-risk (VaR) constraint, which is formulated as
VaRl,a(Z?zl dixi) < b [43]. To solve CCKPs, several celebrated tractable approxi-
mations have been identified to restore the convexity of VaR constraints. For instance,
CVaR and EVaR have been proposed by [2] and [42], respectively. More sophisticated
tractable approximations have been designed for chance-constrained programs with
continuous decision variables [25, 27].

In this section, we approximate the chance constraint under the ambiguity set F
constructed on the supportwise statistic MATPD. Specifically, we set out to derive the
violation probability suppczProb( Y1, (aZ)x; > B(x)). For any given z € {0,1}",
we focus on b € [Z;’I:(:f) ai, — m(m)&,zgf) a;, +m(z)a). Otherwise, the violation
probability equals one when b is smaller and zero when b is larger. After eliminating
these trivial cases, We establish Theorem 3.1 as follows.

THEOREM 3.1. For any given x € {0,1}" and MATPDs 1/u; of Z; for alli € N,
the violation probability of the chance constraint under the ambiguity set F satisfies

Fer i=1

(3.1) sup Prob <Z(ai +az)x; > b) <u(z, B(x)),
where the upper bound u(x,B(x)) is

— vk max{[m(z) — 2kla — f(x),03m
(3.2) U(af,ﬁ(l‘)) = I;J( 1) Cm(w) m(w)!l_[?zl(dui)””i »
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and B(x):=b— Zm(‘f a;,. Here, Ck ) denotes the number of combinations of m(z)
taken k at a time.

Proof. First, the violation probability under the ambiguity set F satisfies

n m(x)

sup Prob a; + az;)x; >b | = sup // fi;(zi;) | dziy - dz
FeF (;( ) > FeF 2€S(x) 71_[1 ' )

— dZi N dzim -

/ ~/ZES(x) e 144, 1 ()

m(r)
= dz, ...dz;, ..,
l 1 Mu / /ZGS(z) ' @
where S(z) 1= {(2iy, Ziy, -+ Zipymy) € [—1 @) Zm(lx az;, > B(x)} is measurable,

and the inequality derives from Theorem 2.1 and Definition 2.2.

Second, the upper bound of the violation probability relies on solving the definite
integral [ ... fzes(m) dzi, ...dz,,,,, which represents the volume of set S(z). Let the
set function |- | denote the volume of measurable sets. Define sets S’(x) and S;(x) as
follows:

(3.3) S'(@) 1= (211, Zigs - 2 y)) €[00, 1 Y "z, > B(a) o
=1

and
(3.4) Si(@):=8"(@) [ {(2ir: 2igs- -+ Zis)) 20, < —1}Vj €1 ().

It holds that |S(z)| = |S'(z)| — |Um(‘” S;(x)|, due to the fact that S(z) = S'(x) \

(U;n:(f) S;j(z)). Let Py denote |S'(x)|. As shown in Lemma 3.2, Py has an analytic
expression.
Then, by applying the principle of inclusion-exclusion, it holds that

m(x) m(x)
U Si@)|= > (-1 'p,
j=1 k=1

where Pr =35 o veam el o,y Si(@)], and the set collection (k) de-
notes the Sigma—algebra on I(x) wherein each set element has cardinality k, Vk €
{1,2,...,m(x)}. For example, if I(x) ={1,2,3}, then Q(1) = {{1}, {2}, {3}}, Q(

{{1,2},{2,3},{1,3}}, and Q(3) = {{1,2,3}}. As shown in Lemma 3.3, P, Vk €

{1,2,...,m(x)}, also has an analytic expression.
As a result, it obtains that |S(x)| = Py + Zznz(f)(—l)kflPk. After substituting Py
and Py obtained in Lemmas 3.2 and 3.3, the proof is completed. ]

Theorem 3.1 provides an upper bound u(x, 3(z)) for the violation probability un-
der the ambiguity set F. Intuitively, the tightness of the upper bound depends on the
MATPD. One concern is that the MATPD may be loose when the underlying distri-
bution is concentrated. However, we demonstrate that the MATPD slightly increases
when the PDF becomes more concentrated. To illustrate this observation, we com-
pare the MATPD (i.e., 1/u;) with the peak of density (i.e., UB; := max,¢c(_1,1] fi(¥))-
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Let y* be the optimal solution to the optimization problem maxye[—1,12i(y). By the
first mean value theorem, there exists a £ € (y*,1) such that 1/u; = f;(§) < UB;,
because f fi(y)dz = f;(€). Although a highly concentrated f;(y) can lead to a large
UB;, the obtamed 1/p; can be significantly smaller than the UB;. For example, con-
sider two truncated normal distributions in [—1,1] with zero expectation, one with a
standard deviation of ¢ = 0.1 and the other with ¢ = 1. The UB; for the former is
4.99, and that for the latter is 0.58. However, the MATPD for the former is 1.03, and
that for the latter is 1.92. Despite the significant difference in the distributions, the
MATPD for the concentrated one is not far from that for the dispersed one. Thus,
the proposed upper bound u(z, 5(x)) may not be sensitive to the form of underlying
distributions. Numerical studies in section 6 indicate that our approach performs well
across various underlying distributions.

LEMMA 3.2. For any x € {0,1}", it holds that Py := % where B(x) =
m(xz) — e
b— ZJ 1 Qi

Proof. We use mathematical induction to prove this lemma.
First, we prove that the statement holds when m(xz) = 1. It holds that

1 P p—
PO Z/ dZil :/ dzil = ﬂ
2, €5/ (2) B(x)/a a

Second, we assume that that the statement holds when m(x) =k — 1> 2. Then,
we prove that the statement holds when m(z) = k. It holds that

Py= / / dzi dz, . ..dz;,,
(21152155021, ) JES' ()

ﬁ(z) Zk 1, dZZk/ / dZilei2...dZik717
=1 (= igseesZig_q )ES(2iy)

i19%ig
(m(x)a — B(a)™)
(m(@) Licr@) (@)
where S(z;,) = {(21,22,...,26-1) : zi, € [—00,1JVl € {1,2,... .k —1},>, 711 Gz, >
B(x) — az;, }. The proof is completed. 0
LEMMA 3.3. For any x € {0,1}", it holds that

max {m(z)a — B(z) — Qk&,O}m(x)
(@) Licr(x) (@) ’

B, =(-1)*Ck

where B(x) =b— 370 f)&ZJ
Proof. We use mathematical induction to prove this lemma.

First, we prove that the statement holds when m(z) =1. For simplicity of nota-
tion, suppose that I(z)\ J = {i1,42,...,%m)—1} and J = {in (g }. It holds that

/ .. / dzi,dzi, ... dzim(z)
(Zi15Zig %, 5y ) ENjes Si

—1
_ / Cdzi, / dziy ey
B(w)i(ng(z)il)a (2717272"”’z’m(1) I)ES(Zim(m))
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/1 . max{(m(z) — 1)a — B(x )—I—dzim(mwo}m(m)fl
- e B T [m ( )71}|Hmu) (@)
_ max{m(z)a— f(z) =237, ;4,04

(@) [ Lies () (@) ’

where S(z,, (w)) = {(%iys Zigr -5 Zigyya) ¢ 2 € [F00, 1]V € {1,2,...,m(z) — 1},

1, .
D > () iz )
Second we assume that that the statement holds when m(z) = k—1 > 2. Then, we
prove that the statement holds when m(z) = k. For brevity of notation, we assume

that J = {im(m),m+17im(z),m+2,.. Zm(m } and I( )\J = {21,22, . ,im(z),m}. It
holds that

/ / dZileiz, ceey dzimm
211 Riga i (4) )EﬂkeJ Sk

= dz; dz;, ...d.
ﬁ(m)—(vg(w)—l)a bm (@) (221 2y )eS (s i Fim(a)—1’

BigsFigs i, (py—1 m(:L‘))
max{m( )a — B(x) — 2ma,0}™®)
(z

A(
(@) T Licr() (@) ’

where S(2i,, ., ) = {(Ziy; Zigs - s Zipoy_1 ) # 70y € [F00, 1,V €{1,2,...,m(x) —m}, 2 €
(o0, — 1],V € {m(z) —m+ 1,m(z) —m+2,...,m(z)}, S~ 1&2” > B —az,, )}
Together with the fact that |Q(k)|=C the proof is completed. |

m(z)’

Remark 3.4. If uncertain volumes a; for i € N follow uniform distributions with
a homogeneous deviation a, the approximation of chance constraint is tight such that
Prob (Y7, (@; + az)x; > b) =u(w,5(x)).

To verify Remark 3.4, we note that the violation probability Prob(}"}" | a;z; > b)
in (1.1) equals Prob(}_;", (a;+az;)z; > b) due to the homogeneous dev1at10n G. Then,
both the PDF and the MATPD of random variable Z; have the same value of 1/2 when
they follow uniform distributions (as shown in (iii) of Theorem 2.3). This implies that
the true violation probability Prob(>""",(a; + az;)z; > b) equals its approximation
suppe r Prob(3°1 , (a@; + aZ;)x; > b) under the ambiguity set 7. Consequently, this
remark holds true.

Afterward, we address the issue of computing u(z,3(z)). One concern is that
computing u(x,(z)) may result in unaffordable memory consumption, as the nu-
merator and denominator of w(z,S(x)) could be very large numbers. For exam-
ple, the factorial calculation m(x)! may require excessive memory consumption. To
tackle this computational issue, we scale the numerator and denominator by multiply-
ing 1/(m(z)a)™®) simultaneously. As such, u(zx,5(x)) is equivalently reformulated
as A™®) /(B T, ()], where A = max{[m(x) — 2K]/m(x) — B(x)/[m(x)i], 0} and
B= m(x)!/m(x)m(x) take values between zero and one. Thus, the proposed u(z, 5(x))
is capable of handling large-scale DR-CCKPs.

Remark 3.5. For any given z € {0,1}"™ and MATPDs 1/u; of 2; ¥V i € N, the
violation probability of the chance constraint under the ambiguity set F satisfies
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sup Prob <Z(di2i)xi > 5(33))

FeF pt
ey | Cier @i = @)™

<1+ 3 “0Mp(n)

max{> ;. @i—B(x)—2>, . ;a:,0}
where p(J) := e%:wz) o et and B(z) :=b— Z;ﬂ(alc) i -

Proof. According to Theorem 2.1 and Definition 2.2, it is noted that

Prob (aiz;)x; > Bz / / — | dz, ... dzi s
<Z ) ) zeS(x) l 1 iy )

i=1

where S(x) := {(zi,, Ziys - -+ Zipn(,y) € [—1, @) s 1:6) G, 2, > B(x)}.
To obtain an upper bound for | ... fzes(m) [ l";(f) Lz, ... dz define

i, m(z)?

m(z)

1
/ / I —|dz, . dzi .,
Z71 yRig i m(x) GS,(m) =1 ’uil
and
m(x)
VJ—/ / —_— dZi...dZimw,
(2igZig i, () ) €N S5(@) l];[l Hiy ' «
where J denotes any subset of I(z).
Denote S'(x) = {(zil,ziz,...,zim<z)) € [0 ]m(x E;n(f i, 25, > ( )} and
Sj(m):{(Zil7zi27"'7zi7n,(m)):Zil E[—OO, 1]7VZEI( )\]ﬂzij [_ _1} Zl 1 alzzlz >

B}. By a similar argument in the proof for Theorem 3.1, it holds that

1
—\dzy ..dzy =V + V.
/ /(zi,l,ziz,...,ztm(m))ES(:c) ll;[ Hi, ' ) Z

JCI(z)

After substituting V/ and V; obtained in Lemmas 3.6 and 3.7, the proof is
completed. ]

Remark 3.5 offers an alternative upper bound for the violation probability un-
der the ambiguity set F. Specifically, it seeks to derive the violation probability
sup pex Prob( 3.7 (@:Z;)x; > B(x)), which directly incorporates heterogeneous devi-
ations a; for ¢ € N. This approximation differs from the one in Theorem 3.1, where a
is set to max{ay,as,...,an}. On the flip side, it has an exponential complexity, as its
computation enumerates all possible combinations of J C I(z). For this reason, we
concentrate on the polynomial-complexity approximation presented in Theorem 3.1.
Following a similar argument for Remark 3.4, one can verify that the upper bound is
also tight for uniform distributions even when a; is heterogeneous.

a;— m(x)
LEMMA 3.6. It holds that V' = [;Z(;)e]'!ﬁiy(jz&mi) for any x € {0,1}™, where

Bla)=b- YTV a;,.
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Proof. This lemma is proven using induction. If m(z) =1, the analysis follows a
similar approach as the proof of Lemma 3.2. Then, supposing the theorem holds for
m(z) =k —1 and k — 1> 1, we prove that the theorem holds for m(x) = k. We have

1
V= / / ——dz;, dz, ... dz,
(2 YES (z) My Mig - - - My,

i1:%igs- 771( x)

Hf—l(u’il)/ /lezbzv i () )ES! () ' ’ *
k—1 ~ N _
_ N dz; (Zz 11a”— B(x )—’_aikzik)k !
T 1k ] Bmfzfz—f ag, ik T Ya
[1— (ki) T a— (k NI=1 (@)
(e i — B(x))m®
[m ()M (o) (sti)

Here, S(2i,) = {(2i1: Zigs- s 2ip 1) * 20 € [—00, 1,V € {1,2,.. k — 13,5007 i, 24, >
B(x) — a4, i, }. The second equality holds by the induction assumptlon The proof is
completed. ]

di— x m(z)
LEMMA 3.7. It holds that V; = [(—1)|J|[p(J)]m(m)]([%:ni(il)ﬁfi—[ I(B ()()@) oy for any
A el (e Kl

v €{0.1)", where p(J) = "M@ W FD B2 8 and fla) =b- 7 a,.

Proof. It is noted that ;¢ ;S5 = {(2i1, 2i5s -5 210 (0) zi, € [-o0,1],Vl € I(x) \

Jozi, € [—00,—1 V1 € LM g,z > Bx)} Y ep i — B =250 i1 < Bla),
then it can be concluded that ﬂ ¢S5 =0, which implies that VJ = 0; otherwise, we

have ;. ;S5 # 0.
We prove this by induction. When |J| = 1, for simplicity of notation, suppose

I(x) \ J = {i1,i2,. .., im(@)—1} and J = {iy,(z)}. It holds that

1
/ / —dnid,..da
(Zil7Zi27'“azim(w>)eﬂjejSj iy fhig - - 'Mzm(fﬂ)

-1
1 /
= m(z)—1 dz; . dz;, ...d,
m(x) B(z)—3; aq, m(z) 1 () —1
(,u”) PP 7s=1 Yy (zil,ziQ,‘.A,zim(z)_l)ES(zi

=1 B (2) mm)
_ 1. R B
- ;/ ' (z)— dZ ( l";(lx) ail - ﬁ(x) + aim(z) Zim(z))m(m) 1
N P - 1ay, i) o

. (Zle](z) a — ZZleJ CAll - 5(37»7"(@

- [m(z)'Mle 1(2) (padr)

(Zie[(;c) a; — 5(x))m(z)
[m(@)] Mg r(2) (p1ia;)

= p(J)"®

where S(zi,,,,) = {(2i1s Zigs s Zinwy_1) * 21 € [=00, 1],V € {1,2,...,m(x) — 1},

m(xz)—1 A ~
=1 @i, zi; = B(x) = Qi (2) P (a) }
When the lemma holds for [J| =m — 1 and m — 1 > 1, we prove as follows that
it holds for |J| = m. Without loss of generality, we assume that J = {in(z)—m+1,
T (z)—m+25 -+ > Im(z) } and I(x) \ J = {i1,42,...,im(z)—m}. It holds that
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1
[ v
(zi o Zi () €Ny Sk HinHiz -+ Mg )

i1 3%i9 "

1

= — m(x)—m . m 1 dZ

m(ﬂc)( .)/ﬁu) ST a4t e, PR
=1 24

T ()

X/ dziln-dzi
(2iy 12ig i )€S (i et

BigsFigs i, (py—1 "m.(m'))

—1
1
= m(z)—m . m(z)—1 dz;
m(aj)( ) Bl -1 i +Z_] m(z)—m+1 a4y tm(=)
=1 2]

()
X (Zﬁ(lz)il aq, — B(x) =2 Z;l(vfz)(;)l—m+1 a;, + dim(m)zim(m)m(x)_l
[m(x) — 1]!1'[7;(1“”)_1&1-
s @ =2y @ — B@)")
- [m(2) Mg 1(2) (adr)
m(z) (X ier() @i — B(a))m=)

l

=p(J) -
[m(x)]!HiGI(z)(Miai)
where S(2i,, ., ) = {(Ziy; Zigs - s Zinoy_1 ) 70y € [-00, 1,V €{1,2,...,m(x) —m}, 2 €
[—00,—1],¥l € {m(z) — m + 1,m(z) — m + 2,...,m(z)}, z’”‘” 1%2” > B(x) —
dimmzim(z)}' The proof is completed. ]

Finally, with the upper bound u(x,(z)) for the violation probability under the
ambiguity set F, we can approximately transform the DR-CCKP into its deterministic
robust counterpart, denoted by RCP-CCKP, as follows:

3.5 RCP-CCKP) Z*:= i
s merccw) 7= s S
(3.5b) s.t.u(z, B(2)) <«

where B(z) =b— "7, a;x;. Straightforwardly, RCP-CCKP is feasible to DR-CCKP,
due to the upper bound of the violation probability.

4. Solution methods for the robust counterpart of CCKP. This section
establishes solution methods for the RCP-CCKP. In section 4.1, we decompose the
RCP-CCKP into a set of binary programs. In section 4.2, we design an exact solution
method for binary programs by using a dynamic programming approach.

4.1. Decomposition into binary programs. The RCP-CCKP cannot be di-
rectly handled by the off-the-shelf solvers, as u(z, 3(z)) is highly nonlinear in decision
variable z. The following Theorem 4.1 decomposes the RCP-CCKP into a set of
binary programs.

THEOREM 4.1. Solving the RCP-CCKP is equivalent to solving | Wy | x | Wa |
binary programs

4.1 BP-CCKP) Z*:= Q(wy,ws),
(4.1) ( ) L S (w1, w3)

where Wy = {31 x; + x € {0,1}"}, Wo = {31 In(ap;)z; : = € {0,1}"}, and
Q(wy,ws) is defined as
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4.2 Q
(4.2a) (w1, ws) ;z:el?oai(}" Zczx,
(4.2b) s.t. Z ;i + Ba(wi, w2) <,

i=1

(4.20) le =wi,
i=1

(4.2d) Zln(&,ui)mi = wa,

and B (wy,ws) is given by

(426) 6 ('wl,UIQ) —mln{ﬂ Z Ck: maX{[ 2]@]&_6;0}101 <a}.

wlew?
k=0 1

Proof. First, we prove that the optimal solution * to the RCP-CCKP is a feasible
solution to Q(wy,ws) for wi and wj, where wi =>"" , z and ws =Y . In(au;)z}
Note that z* satisfies that u(z*, 8(z*)) < . By the definition of 8, (w7}, w3), we have
Bo(wi,wi) < B(x*) =b—>""  a;x}. Since Y., a;z} + B(z*) =b and B (w],ws) <
B(z*), we have Y | a;z} + Bo(w}, ws) < b, which implies that 2* is a feasible solution
to Q(wi,ws).

Second, we prove that the optimal solution Z to the BP-CCKP is a feasible solu-
tion to the RCP-CCKP. Let wy =Y, & and wo = > ., In(ap;)&;. Since By (w1, w2)
satisfies that " | a;&; + Ba(W1,w2) < b, noticing that B(Z) = b — >, a;&;, we
have B (w1, w2) < B(&). Considering that ;2 ((—1)FCE max{[t, jlj,i BOF™ ig non-

increasing in 3, and that Zwl (—DkCE max{[i = 2k]w1'é852(w1,w2) 037

tain that S0 (— nkCck max{[01—2kla—5(2).01" <, which implies that uw(z, B(7)) <

Wyle®2

a. Thus, we have Z is a feasible solution to the RCP-CCKP, which completes
the proof. 0

< a, we can ob-

Now, we elaborate on computing S, (w1, ws) with the binary search approach.
First, expression Y L, (—1)*C¥k max{[wlwlz.gi BOF™ g continuous and nonincreasing
in B, which takes values in the bounded interval [0,na]. Hence, the binary search
approach can efficiently optimize S, (w1, ws) in (4.2e). Second, we can only approxi-
mate this expression with a certain level of accuracy that depends on the computing
precision. With this, evaluating this expression may encounter numerical instability,
where number values exceed the numerical range allowed by the computing preci-
sion. For example, if wy exceeds 710, e*2 will surpass the numerical range allowed
by the double precision. To tackle this issue, one can simultaneously scale down
the numerator and denominator of the expression by multiplying by an appropriate
factor. For example, if the factor is 1/(w1a)™*, the expression is reformulated as

©(=1)kCk, [Hr;llaxizwl(lel)l]—é_eé‘?!(qi}’iﬁf(g;a;“l] Thus, when terms wy — w; and @ take
intermediate values, computing transitional terms such as e*“2~%** and (e/a)** is more
numerically stable, ensuring guaranteed computing precision.

Then, we analyze the cardinalities of sets W; and W,. The cardinality of W;
is n, due to the combinatorial nature of z. However, the cardinality of W5 could
be exponentially large, as the coefficient In(du;) could be an irrational number. To
restrict the problem scale, we introduce a rounding procedure to approximate Ws.
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Given a rounding precision € € (0, 1], we define r, = e[Iln(ap;)/e] ¥V i € N, where [-] is
the ceiling function. By replacing In(ag;) with r}, we denote Wj = {>"""  riz; :z €
{0,1}7}.

Instead, we analyze the cardinality of the set W5. Let pmin (resp., fimax) de-
note the minimum (resp., maximum) value of p; across i € N. Since r] is bounded
such that e[In(Gpmin)/€] < i < e[ln(apmax/€)], the cardinality of W3 is no greater
than nmax{[In(dtmax)/€] — [In(apimin)/€],1}, which linearly relates to the number
of random variable (i.e., n). Specifically, when pmax = fimin, which means all random
variables share the same value of MATPDs, then the cardinality of W3 equals n. Con-
sequently, random variables with less dispersed distributions potentially relate to a
lesser MATPD gap (i.€., ftmax — Mmin), leading to a smaller cardinality of the set W3.

It is possible to question whether |W7| x |[Wj)| is a large number. However, we
can demonstrate that, in a medium case where all random variables follow truncated
normal distributions, the cardinality of |W;| x |W3] is at most 2500. For instance,
consider a medium-sized problem with n =50, ¢ = 0.05, @ = 10 (i.e., the largest a; is
10), fmaz = 0.519 (i.e., the smallest variance of Z; is 3), and pinn = 0.502 (i.e., the
largest variance of Z; is 1). Under these conditions, we find that |[W3| is at most 50,
which equals n. As a result, the cardinality of |W7| x |W3] is indeed 2500.

Finally, we examine the error term of violation probability when replacing Wy
with WJ. For any given wy € Wa, let w) denote its rounded value. Then, we have
why —wo =y, ma; — o, In(ap)x; < wie for any wy € Wi. After replacing wy with
w} in (4.2d), the error term of violation probability is ew2=w2 < Wi This implies
that the violation probability is actually scaled up by a factor of €€, relative to its
original level a. As such, the tolerance « in (w1, ws) should be replaced by a/e™*€,
ensuring that the chance constraint still holds at the tolerance a. For example, when
a = 0.05, n = 100, and ¢ = 0.01, to guarantee that the violation probability is not
greater than 0.05, the tolerance « in Q(wy,wz) should be reset accordingly: 0.018
when wy =100, 0.03 when wy; = 50, and 0.045 when w; = 10.

4.2. Exact solution method for each binary program based on dynamic
programming. As is well established, the classical knapsack problem admits an ex-
act algorithm based on dynamic programming, which exhibits a pseudopolynomial
time complexity of O(nb) [28]. In this section, we develop a dynamic programming
approach for the binary program Q(ws,ws), as presented in Theorem 4.1. For de-
scription convenience, we assume that In(au;) V ¢ € N has been rounded to integers,
denoted by r.. We define (4,7, k,w) as the state variable, where i € {0,1,...,n},
je{0,1,...;u}, k€ {0,1,...,we}, and w € {0,1,...,]|b — Bo(wi,w2)]}. Now we
present the following optimization problem:

(4.3a) 9(i,7,k,w) = max Ty

(4.3b) sty o=,

=1
(4.3c) Z ryze =k,
=1
i
(4.3d) Zagl‘g =w.
=1
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The optimal objective of Q(w,ws) can be obtained by max{g(i, j,k,w) : w <
b— Buo(w1,w2)}. The dynamic programming is stated as follows: The initial condition
is ¢(0,0,0,0) =0 and ¢(0, j,k,w) = —oco for any j € {1,2,..., w1}, k€ {1,2,...,wa},
and we {1,2,..., Lb ﬁa(wl,wg)J} the recursion equation is ¢(i, j, k,w) = max{g(i —
1,5,k w),g(i—1,7j—1,k—rl,w—a;)}, where g(i,j, k,w) is set to —oo for any negative
attribute j, k, or w.

The dynamic programming approach presented herein can be viewed as a gener-
alization of the cardinality-constrained knapsack problem with the time complexity
being O(n? | W4 |) (see [11] for more details). Notably, the largest cardinality of
| W34 | is bounded by nmax{[In(dpmax)/€] — [In(dptmin)/€], 1}, which implies that the
time complexity of the proposed dynamic programming is O(n3 max{[In(aimax)/€] —
’—ln(&ﬂmin)/e—lv 1})

5. Applications and extensions. We have developed distributionally robust
approaches for CCKPs with known PDFs. In section 5.1, we apply our proposed
robust approach in a data-driven setting when only historical data is available. In
section 5.2, we extend the CCKP to the multidimensional CCKP (MD-CCKP) by
incorporating multiple chance constraints.

5.1. Applications in a data-driven setting. Let M := {1,2,...,m} denote
the set of subscripts for samples (y; ;)jenm, which are drawn independently from the
uncertain volume @, for any ¢ € N. We define ¥; min and y; max as the minimum and
maximum samples, respectively. To avoid underestimating the support interval, we
assume that the uncertain volume a; takes values between yZ min = Yi,min — 0 and
Yi max = Yi.max + 0, where § takes a positive and small value (e.g., § = 0.01). Then,
the correspondmg estimators can be obtained as follows: @; = (¥} uax T i min)/2 and
@i = (Y; max — Yi.min)/2- Subsequently, we define the scaled samples d; J= (yl j—a;)/a
for any i € N and Jj € M. As one can observe, the scaled samples (d; ;);jca are drawn
independently from the scaled uncertain volume Zz; and take values within the interval
(-1,1).

Following the statistics theory, the empirical CDF of z; is given by

(5.1) F™(y): ZH ooy (di )

where the indicator function I(_ (di,j) equals one if d; ; € (—o0,y] and zero other-
Wlse We consider the estimator of the MATPD defined in (2.9). When h;(y) equals
f fi(z)dz/(1 — y), it can be estimated by its empirical form [1 — F™(y)]/(1 — y).
When hi(y) equals fi(1), it can be estimated by [F/™(1) — F/™(1 — )]/~ for a posi-
tive and small 7 [46]. We can always select a v that is less than §/d;, ensuring that
F™(1) = F™(1—46)=0 and h;(1) =0. With this, the estimator of the MATPD with
m samples is obtained as follows:
(5.2) 1o max il(y)
i ye{d“, i2endim}t 1=y

To examine the stability of various estimating approaches, we further conduct a com-
parative analysis of three statistics (i.e., the MATPD, the first moment, and the
empirical distribution) under limited sample sizes, employing the deviation ratio as
the stability indicator.

First, we consider the deviation ratio for the first moment of Z;. The sample mean
i Yi,m = ;= dij/m when the sample size is m and y; ;11 = ZJ L dij/(m+1)
when the sample size is m + 1. The deviation ratio for the first moment equals
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(5.3) Yim+1 — Yim _ mtl

Yim (m+1)Yim m+1

Intuitively, the deviation ratio tends to increase significantly as y; », approaches zero,
a phenomenon commonly encountered in symmetric distributions (e.g., scaled normal
distributions), so that the sample mean can exhibit substantial changes in response
to even slight increases in the small sample size. In this sense, the first moment is
unstable under limited sample conditions.

Second, we consider the deviation ratio for the empirical distribution. The
empirical CDF is F/"(y) = + i1 [(ooy)(dij) when the sample size is m and

F' N y) = 357 Z;n:tl LI(—ooy] (d,7 ) when the sample size is m + 1. We can verify

that F/™(y) and F;""'(y) satisfy that F/""'(y) = m+§y) for y € [—a,d;m+1) and

Fim“(y) = % for y € [d;m+1,a]. Based on these equations, the deviation
ratio for the empirical distribution is

—1 1
i m ’ 7A7dim 5
5.4 F ) = Fr) )1 T mar Er) St
(5.4) ) =M i A
¢ m_'_l» ze[di1m+1,a].

As can be observed, the deviation ratio tends to be large when F™(y) approaches
zero, so that the change of empirical CDF's can be substantial. This suggests that the
empirical distribution is also unstable under limited sample conditions.

Third, we consider the deviation ratio for the MATPD. Denote d; s« as the op-

. . 1—F™ (s . .

timal solution to maxy,c[_1,1) 1+y(y), and denote d; .~ as the optimal solution to
1-F" 1 (y) : : 1 1= F{" (disv) 1

maxye[ 1,1) fy For notation bI'eVlty7 we set e W and HTH =

m1
- Fl d(”) Recall that d; ; € (—1,1) for any i€ N and j € M U {m + 1}, implying

that 0 <1 —d; ; < 2. Then, we consider the following four cases:
(1) di s+ < dim+1 and d; ¢+ < dj my1. For this case, it must hold that d;s- > djs-
and

. 1 <( 1 1 ) 1
(17di78*)(m+1) m—+17 \fm+1  Hm Hm
< Hom 1
T (1—dig)(m+1) m+1

(2) di s+ > dim+1 and d; ¢« > d; ppt1. For this case, it must hold that

( 1 1 )/ 11
Hm+1 Hm Hm m+1

(3) di+ <dim+1 <d; . For this case, it must hold that

1 < 1 1 > / 1 L 1
—— < - —< - .
m+1 Hm+1 Hm Hm (1 _di,t*)<m+1) m+1
(4) di s+ <dims1 <d; . For this case, its condition does not hold.
Compared to the first moment and the empirical distribution, the deviation ratio
of the MATPD remains bounded, regardless of the sample size. This observation can

be attributed to the fact that the sample is scaled by d;; = (yi; — a;)/a for any
i € N and j € M U{m+ 1}, ensuring that all boundaries in cases (1)—(3) take finite
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values. For example, in the lower bound of case (1), 1/(1 —d; 4+ ) takes a finite value
because d; o~ # 1. This analysis leads to the conclusion that the MATPD exhibits
greater stability than the first moment and empirical distribution under limited sample
conditions.

5.2. Extensions to the multidimensional CCKP. The MD-CCKP extends
the CCKP by involving multiple chance constraints. According to the CCKP formu-
lation (1.1), the MD-CCKP is formulated as follows:

: MD-CCKP)

(5.5a) ( CcC xer?oai{}" Z Cx;

(5.5b) st.Prob | Y @i ;> b | <asic K.
j=1

Let K :={1,2,...,k} denote the set of subscripts for knapsacks. Following the
independence assumption for the CCKP, we assume that all random variables in each
constraint are independent. For each knapsack i € K, the uncertain volume a; ; has
the nominal value as a;; and the largest deviation from its nominal value as a; ;.
For notation brevity, let a; denote the maximum value max{a;1,d;2,-..,4in}- By
introducing the scaled uncertain volume 2; ; = (a;,; — a@;,;)/d;, we can represent z; ;
as an independent random variable distributed within the interval [—1,1].

Similar to the DR-CCKP, we construct the ambiguity set F¢ for each chance
constraint ¢ € K. These ambiguity sets are also induced by the MATPD, as described
n (2.11). Then, the distributionally robust MD-CCKP (DR-MD-CCKP) can be
formulated as

5.6 DR-MD-CCKP T

(5.6a) ( ) zer?oai(}n 101%

(5.6b) s.t. sup Prob E a;jx; >b; | <agie K.
FicFi =

According to Theorem 3.1, we can derive the upper bound w;(z,5;(z)) under
the ambiguity set F* similarly for each chance constraint i € K. Then, we can
approximately transform the DR-MD-CCKP into its deterministic robust counterpart,
denoted by RCP-MD-CCKP, as follows:

(5.7a) (RCP-MD-CCKP) ze?(?ﬁw Zc]xj
(5.7b) s.t. ui(x,ﬂi( )) <awi€eK,

where the upper bound u;(z, 8;(x)) is

(2 B () e max{[m(zx) — 2k|a; —ﬁi(x),O}m(m)
B = o e T T e

and B;(x) :=b; — Z;'L=1 a; ;jr;. Here, C* . denotes the number of combinations of

m(z)
m(z) taken k at a time.
Following Theorem 4.1, the RCP-MD-CCKP can be decomposed into a multitude
of binary programs, analogous to the RCP-CCKP. However, the number of binary
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programs in RCP-MD-CCKP is substantially higher, due to the presence of multiple
chance constraints. To overcome this computational complexity, we propose an alter-
native upper bound to replace the original one u;(z, 8;(x)), motivated by finding new
bounds on 77, In(aip ;);.

THEOREM 5.1. Solving the RCP-MD-CCKP s feasible to solve | Wy | binary
programs

(5.8) (BP-MD-CCOKP) W*:= max I'(uy),

where Wy = {E;;l zj:x €{0,1}"} and T'(wo) is defined as

5.9 r =

oo e g S

(5.9b) s.t. Zai7j$j + hi(we) <b; Vie K,
j=1

(5.9¢) Z%‘ = wo,
j=1

where h;(wp) :=min{B; : 3_,° (—1)kCk_ max{[wo—2k]a, —5i.0}™0 < Y and B, is

wolePisk

n
min{Z] €[0,1],3°"_, zj=wo} Z ln(&i,ui,j)zj Zf k is even,
B = =

maX{Zje[071],E;}=l zj=wo} Zl ln(fLiILLLj)Zj Zf k is odd.
j=

Proof. Originally, to solve the RCP-MD-CCKP, the h;(wp) in (5.9b) should be
replaced by h/(w), defined as follows:

wo

h/‘(wo):min{ﬂi:Z( ) Ck max{[ O—Qk] ﬁlv }wo al}.

| Z 1In(@ips )
k=0 Wop-€

According to the definition of B, j, it holds that Z - In(aipi j)x; > By, when k is
even and Z 1 In(a;p; 5)x; < Bip when k is odd. As a result, it holds that hj(wg) <
hi(wo), unplymg that the optimal solution of (5.9) is a feasible solution to (5.7). The
proof is completed. 0

6. Numerical studies. In this section, we numerically evaluate the performance
of our proposed nonparametric robust optimization approaches for CCKPs. In sec-
tion 6.1, we describe the experimental setups of the CCKP instances. Then, we elab-
orate on comparing with alternative robust and stochastic optimization approaches.
In section 6.2, we present computational results for CCKPs with a single chance
constraint.

6.1. Computational setups. To evaluate the performance of our proposed ro-
bust optimization approach, we consider two types of distributions: symmetric and
asymmetric distributions. On the one hand, the symmetric distribution comprises uni-
form distributions with various intervals of support. For brevity, we denote Uniform-
E (resp., Uniform-U) as uniform distributions with equal (resp., unequal) interval
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lengths. In this numerical study, Uniform-E has a homogeneous interval length of 30,
while Uniform-U has interval lengths varying from 20 to 30. On the other hand, the
asymmetric distribution includes right-skewed distributions with light and heavy tails.
Specifically, we use exponential distributions to represent the light-tailed distributions
and Pareto distributions to describe the heavy-tailed distributions. Compared to the
exponential distribution, the Pareto distribution has a higher probability of extreme
values, resulting in a heavier tail on its right side. In this numerical study, both distri-
butions are truncated to bounded intervals with lengths ranging from 20 to 30. The
rate parameter of the exponential distributions is set to the centroid of the intervals,
while the scale parameter of the Pareto distributions is set to the left endpoint of the
intervals.

We compare our RCP-CCKP with robust optimization approaches incorporating
partial distributional information (i.e., interval, mean, and variance). Specifically,
these robust optimization approaches include classic Ellipsoidal and Budget uncer-
tainty sets proposed by [4] and [8], respectively, and distributionally robust CVaR and
EVaR (abbreviated as DCVaR and DEVaR, respectively) proposed by [14] and [35],
respectively. Additionally, we apply two ambiguous methods under the mean-variance
ambiguity set proposed by [50] and under the oo-Wasserstein ambiguity set provided
by [27] (abbreviated as DCBP and DALSO-X+, respectively). Both ambiguous meth-
ods offer tractable approximations for the distributionally robust chance-constrained
program. To estimate parameters for each robust optimization approach, we adopt
500 samples for each random volume.

We also compare our RCP-CCKP with stochastic optimization approaches en-
compassing full distributional information (i.e., empirical distributions). In particu-
lar, these full-information models include a tractable approximation called ALSO-X-+,
which outperforms the CVaR, approximation as demonstrated by [27]. Additionally,
except for the EVaR approximation, we also appraise a full-information optimization
approach by assuming the Gaussian distribution of random volumes, which is proposed
by [24]. As stochastic optimization approaches with limited samples generally lack
sufficient protection against distributional ambiguity, we particularly focus on their
limited sample performances. Thus, we adopt 50 samples for each random volume.

All computations are performed on a workstation with an Intel Core 15-12400
CPU at 2.50 GHz and 16 GB of memory. We implement the optimization approaches
and the branch-and-cut algorithm using the commercial solver Gurobi 11.0 via Python
3.9.12. The Gurobi default settings are used to optimize all the binary programs, and
we set the number of threads to four. Throughout the numerical studies, the rounding
precision is set to 0.1 to maintain one decimal place.

6.2. Computational results with a single chance constraint. We inves-
tigate the computational results for CCKPs with a single chance constraint. The
number of items (i.e., n) and the capacity of the knapsack (i.e., b) are set to 50 and
400, respectively. The objective coefficients (i.e., ¢;) are deterministic integers ran-
domly generated from uniform distribution UJ[1,10]. The risk tolerance of violation
probability (i.e., «) is set to 0.05 and 0.1 to check the sensitivity of our results.

6.2.1. Comparison with robust optimization approaches. This section
compares our RCP-CCKP model with existing robust optimization approaches. The
Budget and DEVaR models are reformulated to solve a polynomial number of deter-
ministic knapsack problems and optimized using the branch-and-cut algorithm. The
uncertainty sets in both models depend on the range of random volumes. Then, the
Ellipsoidal, DCBP, and DCVaR models are representable as SOC binary programs,
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which are often time-consuming to solve due to the binary restrictions on decision
variables. When implementing the branch-and-cut algorithm, we utilize the extended
polymatroid inequalities, which are derived from the submodularity of the SOC binary
constraints, to accelerate the computing procedures (see section 4 in [50]). Further-
more, the DALSO-X+ model resembles a bilevel optimization problem, where the
upper-level problem is to find the best objective value, and the lower-level problem is
to minimize the expectation of constraint violations (see Algorithm 4 in [27]). In our
numerical settings, these alternative models incorporate various distributional infor-
mation: the Ellipsoidal and Budget models adopt the range and mean information,
the DCBP and DCVaR models rely on the mean and variance information, and the
DALSO-X+ model sets the Wasserstein radius as the standard deviation. To solve
these robust models, we estimate the empirical uncertainty sets from 500 in-sample
data points, along with the empirical MATPDs using (5.2).

Tables 1 and 2 report our computational performances on three indicators for vari-
ous models. The first column (i.e., Obj.) reports the optimal objective value (i.e., Z*).
The percentage in brackets reflects our RCP-CCKP model’s relative improvement.
The second column (i.e., P%) reports the out-of-sample probability of constraint vio-
lation, given the optimal solution (i.e., z*) calculated on the empirical uncertainty set
with in-sample data. When the out-of-sample probability exceeds the risk tolerance of
violation probability (i.e., v), we disregard the optimal objective due to its unreliabil-
ity. The third column reports the CPU time (in seconds). The time limit for comput-
ing each instance is set to 1200s, where all instances are solved to global optimality.

Table 1 summarizes the computational performances on symmetric distributions
and provides several observations. First, we find that our RCP-CCKP model demon-
strates the highest objective value, while the Budget model reports the lowest one.
When the risk tolerance equals 0.05, our RCP-CCKP model improves upon the Bud-
get model by 34.7% and 21.3% under Uniform-E and Uniform-U distributions, re-
spectively. The performance of our RCP-CCKP model is even more appealing, which
can improve the objective value of the DALSO-X+ model by around 10%-26%. Sec-
ond, we find that our RCP-CCKP model has better out-of-sample probabilities of
constraint violation, which are closer to the risk tolerance. For instance, under the
Uniform-E distribution, the out-of-sample probabilities of constraint violation are

TABLE 1
Comparison with robust optimization approaches on symmetric distributions.

Uniform-E Uniform-U
« Model
Obj. P (%) Time (s) Obj. P (%) Time (s)
0.05 RCP-CCKP 163 (0.0%) 0.4 13.7 165 (0.0%) 0.0 12.8
0.05 Ellipsoidal 143 (14.0%) 0.0 2.3 157 (5.1%) 0.0 0.5
0.05 Budget 121 (34.7%) 0.0 0.1 133 (24.1%) 0.0 0.1
0.05 DCBP 136 (19.9%) 0.0 16.9 151 (9.3%) 0.0 2.3
0.05 DCVaR 143 (14.0%) 0.0 2.7 156 (5.8%) 0.0 0.7
0.05 DALSO-X+ 129 (26.4%) 0.0 8.1 143 (15.4%) 0.0 2.7
0.05 DEVaR 121 (34.7%) 0.0 0.1 136 (21.3%) 0.0 0.6
0.1 RCP-CCKP 168 (0.0%) 0.6 14.9 168 (0.0%) 0.0 14.2
0.1 Ellipsoidal 150 (12.0%) 0.0 1.8 163 (3.1%) 0.0 0.5
0.1 Budget 121 (38.8%) 0.0 0.1 133 (26.3%) 0.0 0.1
0.1 DCBP 157 (7.0%) 0.0 1.1 168 (0.0%) 0.0 0.4
0.1 DCVaR 163 (3.1%) 0.2 0.4 168 (0.0%) 0.0 1.0
0.1 DALSO-X+ 136 (10.3%) 0.0 9.2 143 (14.0%) 0.0 2.5
0.1 DEVaR 121 (38.8%) 0.0 0.2 136 (23.5%) 0.0 0.5
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TABLE 2
Comparison with robust optimization approaches on asymmetric distributions.

o Model Light-tailed Heavy-tailed
Obj. P (%) Time (s) Obj. P (%) Time (s)
0.05 RCP-CCKP 180 (0.0%) 0.0 6.2 175 (0.0%) 0.0 0.5
0.05 Ellipsoidal 157 (14.6%) 0.0 0.9 157 (11.5%) 0.0 0.6
0.05 Budget 134 (34.3%) 0.0 0.0 135 (29.6%) 0.0 0.1
0.05 DCBP 157 (14.6%) 0.0 1.1 157 (11.5%) 0.0 0.3
0.05 DCVaR 162 (11.1%) 0.0 0.3 161 (8.7%) 0.0 0.3
0.05 DALSO-X+ 169 (6.5%) 0.0 4.7 184 (-4.9%) 0.0 4.7
0.05 DEVaR 136 (32.4%) 0.0 0.5 137 (27.7%) 0.0 0.5
0.1 RCP-CCKP 182 (0.0%) 0.0 6.4 176 (0.0%) 0.0 0.5
0.1 Ellipsoidal 163 (11.7%) 0.0 0.4 163 (8.0%) 0.0 0.3
0.1 Budget 134 (35.8%) 0.0 0.1 135 (30.4%) 0.0 0.1
0.1 DCBP 171 (6.4%) 0.0 0.7 169 (4.1%) 0.0 0.5
0.1 DCVaR 175 (4.0 %) 0.0 0.2 175 (0.6%) 0.0 0.2
0.1 DALSO-X+ 174 (4.6%) 0.0 2.2 188 (-6.4%) 0.0 5.9
0.1 DEVaR 143 (27.3%) 0.0 0.4 143 (23.1%) 0.0 0.4

0.4% and 0.6% when the risk tolerance equals 0.05 and 0.1, respectively. This ob-
servation explains why the RCP-CCKP achieves better objective values. Third, the
CPU time of the RCP-CCKP is comparable to that of alternative models, due to the
fact that the number of binary programs (i.e., |Wy| x |[Wj]|) is not as daunting as it
appears. To conclude, our RCP-CCKP outperforms alternative robust optimization
approaches with improved conservativeness and tolerable computation times.

Table 2 summarizes the computational performances on asymmetric distributions.
We see that the performance of RCP-CCKP and DALSO-X+ models belongs to the
first tier. Indeed, the DALSO-X+ model can provide better objective values than our
RCP-CCKP model under the heavy-tailed distribution, implying a stronger bound
than our u(z,3(z)) under this setting. Since ALSO-X+ is a better approximation
than CVaR, which has been known to be the best for more than a decade, its worst-
case version (i.e., DALSO-X+) can provide noninferior objective values as expected.
Besides, the DCBP and DCVaR models perform similarly to our RCP-CCKP model.
Compared with other alternative models, the DCBP and DCVaR models incorporate
more parametric information (i.e., the second moment), which results in compara-
ble robustness to the nonparametric information (i.e., the MATPD). Moreover, we
observe that our RCP-CCKP model yields greater improvement under light-tailed
distributions than under heavy-tailed ones. For example, when the risk tolerance is
set to 0.05, our RCP-CCKP model outperforms the DCBP model by 14.6% and 11.5%
under light-tailed and heavy-tailed distributions, respectively. This is intuitively at-
tributed to the fact that heavy-tailed distributions typically require a higher value of
MATPD, which compromises the optimality of the solution.

6.2.2. Comparison with stochastic optimization approaches. In this sec-
tion, we compare our RCP-CCKP with existing stochastic optimization approaches.
We employ the sample average approximation (SAA) approach to approximate the
hinge-loss function (i.e., E[-]+) exploited by CVaR and ALSO-X+ models and the
moment generating function employed by the EVaR model. Then, we implement
ALSO-X+ using Algorithm 4 in [27], whereas we solve CVaR and EVaR using Gurobi
directly. Additionally, we formulate the Gaussian model as an SOC binary program,
assuming a Gaussian distribution of random volumes. Similarly to the Ellipsoidal
and DCVaR models, we utilize valid inequalities for the submodular SOC binary
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TABLE 3
Comparison with stochastic optimization approaches on symmetric distributions.

Uniform-E Uniform-U
« Model
Obj. P (%) Time (s) Obj. P (%) Time (s)
0.05 RCP-CCKP 151 (0.0%) 0.0 24.6 156 (0.0%) 0.0 22.1
0.05 Gaussian 181 (-16.6%) 5.0 0.3 187 (-16.6%) 4.0 0.3
0.05 CVaR - 8.8 0.2 - 11.6 0.1
0.05 ALSO-X+ - 17.4 0.5 - 18.6 0.5
0.05 EVaR 121 (24.8%) 0.0 1.0 136 (14.7%) 0.0 0.5
0.1 RCP-CCKP 154 (0.0%) 0.0 23.6 157 (0.0%) 0.0 24.3
0.1 Gaussian - 10.6 0.2 - 12.0 0.2
0.1 CVaR 182 (-15.4%) 8.8 0.2 - 11.6 0.1
0.1 ALSO-X+ - 17.2 0.7 - 23.4 0.3
0.1 EVaR 128 (20.3%) 0.0 1.1 136 (15.4%) 0.0 0.5

constraints, and implement the branch-and-cut algorithm. To solve these stochastic
models, we estimate the empirical distribution of random volumes from 50 in-sample
data points, as well as the empirical MATPD using (5.2). We disregard the optimal ob-
jective (denoted by —) when the out-of-sample probability exceeds the risk tolerance.

Table 3 summarizes the computational performance of stochastic optimization
approaches on symmetric distributions. Compared with Gaussian, CVaR, and ALSO-
X+ models, although our RCP-CCKP model does not always yield the highest objec-
tive value, its probability of constraint violation is always less than the risk tolerance.
The Gaussian model is unreliable when the underlying distribution deviates from the
Gaussian assumption, regardless of sample size. Our observation is also consistent
with the SAA approach, which suggests that CVaR and ALSO-X+ models may be
treacherous under limited sample sizes. We conduct additional experiments with the
same computational setups, finding that CVaR and ALSO-X+ models converge when
the sample size increases to more than 100. Additionally, compared with EVaR, the
performance of our RCP-CCKP model is even more appealing, as it can improve the
solution quality by around 15%-25%. This improvement stems from the better ap-
proximation of the violation probability, as the Chernoff inequality adopted by the
EVaR model lacks tightness for most distributions.

In terms of computational time, all instances are solved within seconds. Although
our RCP-CCKP model is more time-consuming, its computational complexity may
be significantly lower than that of CVaR and ALSO-X+ models. Following the same
computational setups with 200 random volumes, we conduct additional experiments
and find that CVaR, ALSO-X+, and RCP-CCKP models take 123.3s, 380.1s, and
30.8s, respectively. In conclusion, our RCP-CCKP model can provide necessary pro-
tection against data uncertainty when limited sample sizes are available.

Table 4 reveals that our RCP-CCKP model has a more stable out-of-sample per-
formance than the Gaussian, CVaR, and ALSO-X+ models, which may backfire under
the light-tailed distributions. This observation echoes the analysis of various statis-
tics in section 5.1, which states that the MATPD (i.e., the RCP-CCKP model) is
more stable than the first moment (i.e., the Gaussian model) and the empirical dis-
tribution (i.e., CVaR and ALSO-X+ models) under the limited sample conditions.
As mentioned earlier, the Gaussian model is only reliable when the underlying as-
sumption holds, and empirical (i.e., CVaR and ALSO-X+) models converge when the
sample size increases (to more than 100 in our experiments). This suggests that our
RCP-CCKP model is generally preferable, when limited sample sizes are available.
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TABLE 4
Comparison with stochastic optimization approaches on asymmetric distributions.

o Model Light-tailed Heavy-tailed
Obj. P (%) Time (s) Obj. P (%) Time (s)
0.05 RCP-CCKP 174 (0.0%) 0.0 15.3 179 (0.0%) 0.0 15.8
0.05 Gaussian - 7.2 0.2 251 (-28.7%) 3.8 0.2
0.05 CVaR - 10.2 0.1 242 (-26.0%) 3.4 0.1
0.05 ALSO-X+ - 10.2 0.3 - 5.2 0.2
0.05 EVaR 143 (21.7%) 0.0 0.5 143 (25.2%) 0.0 0.5
0.1 RCP-CCKP 175 (0.0%) 0.0 174 187 (0.0%) 0.0 6.3
0.1 Gaussian - 13.6 0.2 257 (-27.2%) 8.4 0.4
0.1 CVaR - 10.2 0.1 247 (-24.3%) 2.0 0.1
0.1 ALSO-X+ - 11.2 0.4 - 15.4 0.2
0.1 EVaR 148 (18.2%) 0.0 0.6 149 (25.5%) 0.0 0.5
1.00{ = t
\ | Budget
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2. x g

=4 +
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F1a. 1. Approximated violation probabilities under various robust optimization approaches.

6.2.3. Comparison on the approximations of chance constraint viola-
tion. This section evaluates the approximation of violation probability embedded in
robust optimization approaches. Theorem 3.1 provides a novel upper bound u(z, 5(x))
to the violation probability Prob( Y7  (aZ;)z; > B(z)). We refer to 8(z) as the
robust protection, as it aims to protect the chance constraint against potential vi-
olations. The upper bound u(z,8(x)) is contingent upon the underlying ambigu-
ity (or uncertainty) set F. For example, the Ellipsoidal model is characterized by
u(zr, B(z)) = exp(—w?/2), where w is a given nonnegative parameter determined by
B(x) =w\/> ;. (@;x;)? (see [4]). Interested readers are referred to (8, 14, 35, 50] for
other comparable models.

Figure 1 illustrates the approximated violation probabilities by varying the robust
protection under various robust optimization approaches. The violation probabilities
are simulated based on 50 items and Uniform-E distribution with interval [0,10]. As
shown in Figure 1, the approximated violation probability in our RCP-CCKP model
is approximately 0.5 when the robust protection is zero and decreases exponentially
thereafter. Given that the approximation in the RCP-CCKP model is tight for the
chance constraint with the Uniform-E distribution by Remark 3.4, the remaining mod-
els evaluated are all conservative approximations. Consequently, these conservative
approximations exhibit a notable gap compared with our RCP-CCKP model.

7. Conclusions. For the knapsack problem under uncertainty, apart from the
chance constraint, other distributionally robust optimization approaches are
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introduced to cope with the uncertainty. For example, [6] addressed the problem
of evaluating the expected optimal objective value of a binary program under un-
certainty. For other distributionally robust optimization studies, readers may refer
to [47], [22], and [13] as examples. Compared with other distributionally robust
optimization methods, the chance constraint has important applications, particularly
with the “stop-loss” constraint in the risk management of portfolio selection or project
selection.

In future studies, we will further enhance the performance of the proposed method
by improving the upper bounds of the violation probability. Following this direction,
we will investigate how to utilize additional structural information, such as mono-
tonicity and convexity. Specifically, we can divide the support for random variables
into mutually exclusive partitions. With monotonicity information, we can divide the
support into partitions where the probability density function (PDF) is either non-
increasing or nondecreasing. With convexity information, each monotone partition
can be further refined into concave or convex subpartitions. We can approximate the
PDF by using a piecewise linear proxy, such that the provided proxy is stochastically
dominated by the densities. However, the explicit form for the upper bound on the
violation probability can hardly be expected. Instead, based on the distribution am-
biguity set with support and moment information provided in [35], we can incorporate
the piecewise linear proxy into the distribution ambiguity set to narrow down the dis-
tribution ambiguity set and improve the performance under EVaR. This also presents
research opportunities to extend our work to continuous optimization problems.

Acknowledgments. The authors are grateful to the editor-in-chief, the associ-
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