Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114435
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorZeng, Yen_US
dc.creatorLiu, Xen_US
dc.creatorDing, Yen_US
dc.creatorZheng, Zen_US
dc.creatorZhang, Ten_US
dc.creatorHuang, Xen_US
dc.creatorLu, Xen_US
dc.date.accessioned2025-08-06T09:12:16Z-
dc.date.available2025-08-06T09:12:16Z-
dc.identifier.urihttp://hdl.handle.net/10397/114435-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2025 The Authors. Published by Elsevier Ltd on behalf of Zhejiang University and Zhejiang University Press Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Zeng, Y., Liu, X., Ding, Y., Zheng, Z., Zhang, T., Huang, X., & Lu, X. (2025). AI-powered automatic design of fire sprinkler layout for random building floorplans. Journal of Infrastructure Intelligence and Resilience, 4(4), 100167 is available at https://doi.org/10.1016/j.iintel.2025.100167.en_US
dc.subjectBuilding fireen_US
dc.subjectDeep learningen_US
dc.subjectFire services systemen_US
dc.subjectGenerative adversarial networken_US
dc.subjectSmart designen_US
dc.titleAI-powered automatic design of fire sprinkler layout for random building floorplansen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume4en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1016/j.iintel.2025.100167en_US
dcterms.abstractFire sprinkler system is a commonly designed safety provision in modern buildings, yet the current manual drawing preparation process is burdened by time-consuming tasks, heavy workloads, and human errors. This study introduces an intelligent framework aimed at automating the drawing preparation process for fire sprinkler layout. A database of 120 sprinkler design drawings was compiled to train a pix2pixHD generative adversarial network (GAN). After training, the GAN model can generate sprinkler placement with a protection coverage of 99.5% for new and random architectural floorplans. Apart from ensuring code-compliant design, the total number of sprinklers designed by GAN is 13% lower than those arranged by professional engineers. By adopting this intelligent method, the time needed for design drawing preparation can be saved by 76%, and the cost-benefit of the sprinkler design can be improved by using reasonable fewer sprinklers.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of infrastructure intelligence and resilience, Dec. 2025, v. 4, no. 4, 100167en_US
dcterms.isPartOfJournal of infrastructure intelligence and resilienceen_US
dcterms.issued2025-12-
dc.identifier.eissn2772-9915en_US
dc.identifier.artn100167en_US
dc.description.validate202508 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3963a, a4169b-
dc.identifier.SubFormID51840, 52189-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is funded by the HK RGC Theme-based Research Scheme (T22-505/19-N), the National Natural Science Foundation of China (No. 52238011), and Tsinghua-PolyU Joint Research Initiative Fund.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2772991525000301-main.pdf15.68 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.