Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114429
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorBo, L-
dc.creatorHuang, Y-
dc.creatorYu, X-
dc.date.accessioned2025-08-06T09:12:11Z-
dc.date.available2025-08-06T09:12:11Z-
dc.identifier.urihttp://hdl.handle.net/10397/114429-
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rightsThe following publication Lijun Bo. Yijie Huang. Xiang Yu. "A decomposition-homogenization method for Robin boundary problems on the nonnegative orthant." Electron. J. Probab. 29 1 - 25, 2024 is available at https://doi.org/10.1214/24-EJP1260.en_US
dc.subjectClassical solutionen_US
dc.subjectDecomposition-homogenization methoden_US
dc.subjectProbabilistic representationen_US
dc.subjectRobin boundary problemen_US
dc.subjectStochastic flow analysisen_US
dc.titleA decomposition-homogenization method for Robin boundary problems on the nonnegative orthanten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume29-
dc.identifier.doi10.1214/24-EJP1260-
dcterms.abstractThis paper studies the existence and uniqueness of a classical solution to a type of Robin boundary problems on the nonnegative orthant. We propose a new decomposition-homogenization method for the Robin boundary problem based on probabilistic representations, which leads to two auxiliary Robin boundary problems admitting some simplified probabilistic representations. The auxiliary probabilistic representations allow us to establish the existence of a unique classical solution to the original Robin boundary problem using some stochastic flow analysis.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic journal of probability, 2024, v. 29, 200-
dcterms.isPartOfElectronic journal of probability-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85213726374-
dc.identifier.eissn1083-6489-
dc.identifier.artn200-
dc.description.validate202508 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3961en_US
dc.identifier.SubFormID51833en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
24-EJP1260.pdf515.8 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.